
1042 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 5, MAY 2025

PimBeam: Efficient Regular Path Queries Over
Graph Database Using Processing-in-Memory

Weihan Kong , Shengan Zheng , Yifan Hua , Student Member, IEEE, Ruoyan Ma, Yuheng Wen ,
Guifeng Wang , Cong Zhou , and Linpeng Huang , Senior Member, IEEE

Abstract—Regular path queries (RPQs) in graph databases are
bottlenecked by the memory wall. Emerging processing-in-memory
(PIM) technologies offer a promising solution to dispatch and
execute path matching tasks in parallel within PIM modules. We
present an efficient PIM-based data management system tailored
for RPQs and graph updates. Our solution, called PimBeam, fa-
cilitates efficient batch RPQs and graph updates by implementing
a PIM-friendly dynamic graph partitioning algorithm. This algo-
rithm effectively addresses graph skewness issues while maintain-
ing graph locality with low overhead for handling RPQs. PimBeam
streamlines label filtering queries by adding a filtering module on
the PIM side and leveraging the parallelism of PIM. For the graph
updates, PimBeam enhances processing efficiency by amortizing
the host CPU’s update overhead to PIM modules. Evaluation re-
sults of PimBeam indicate 3.59x speedup for RPQs and 29.33x
speedup for graph update on average over the state-of-the-art
traditional graph database.

Index Terms—Graph partition, load balance, path matching,
processing-in-memory, regular path query.

I. INTRODUCTION

THE rapid increase in the quantity and complexity of graph
data has sparked interest in graph databases from both

academia [1], [2], [3] and industries [4], [5]. In graph databases,
regular path queries (RPQs) [6] are one of the most essential
classes of queries. They have been widely used in various fields,
including social networks analysis [7], biological networks [8],
knowledge graphs [9], and the semantic web [10]. When eval-
uating RPQs, graph databases return all endpoint pairs of these
matched paths.

Received 2 August 2024; revised 20 January 2025; accepted 27 February
2025. Date of publication 4 March 2025; date of current version 7 April 2025.
This work was supported in part by the National Key Research and Development
Program of China under Grant 2022YFB4500303, in part by the National Natural
Science Foundation of China (NSFC) under Grant 62332012, Grant 62227809,
and Grant 62302290, in part by the Fundamental Research Funds for the Central
Universities, Shanghai Municipal Science and Technology Major Project under
Grant 2021SHZDZX0102, and in part by the Natural Science Foundation of
Shanghai under Grant 22ZR1435400. Recommended for acceptance by D. Li.
(Corresponding authors: Shengan Zheng; Linpeng Huang.)

Weihan Kong, Yifan Hua, Ruoyan Ma, Yuheng Wen, Guifeng Wang,
Cong Zhou, and Linpeng Huang are with the School of Electronic Infor-
mation and Electrical Engineering, Shanghai Jiao Tong University, Shanghai
200240, China (e-mail: weihankong@sjtu.edu.cn; huahuahuahua@sjtu.edu.cn;
maruoyan@sjtu.edu.cn; wenyuheng@sjtu.edu.cn; wangguifeng@sjtu.edu.cn;
cong258258@sjtu.edu.cn; lphuang@sjtu.edu.cn).

Shengan Zheng is with the MoE Key Lab of Artificial Intelligence, AI
Institute, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
shengan@sjtu.edu.cn).

Digital Object Identifier 10.1109/TPDS.2025.3547365

Unfortunately, RPQs on traditional graph databases face bot-
tlenecks due to the memory wall [11]. Processing RPQs involves
extensive pointer chasing operations, which trigger numerous
irregular and unpredictable memory access patterns when ac-
cessing neighboring nodes. This leads to a low cache hit rate and
frequent DRAM memory access. The excessive data movement
between DRAM and cache results in high access latency and
high bandwidth consumption, not only limiting system perfor-
mance but also incurring considerable energy costs.

The emerging processing-in-memory (PIM) technology [12],
[13], [14], [15] is expected to solve this bottleneck. By em-
bedding processors within memory modules, PIM technology
allows computations to be performed closer to where the data
resides. Specifically, PIM modules can perform data-intensive
computations within memory modules that integrate computa-
tional resources, reducing data movement to the host CPU for
processing, thereby accelerating task completion. This enhances
the performance of applications with high data intensity or
poor cache locality [16]. PIM systems have been widely used
in the fields of graph analysis [17], [18], [19] and database
indexing [20], [21], [22].

However, PIM systems encounter significant challenges when
executing RPQs on graph databases. The first challenge is how
to partition the graph precisely to achieve load balancing among
PIM modules [23]. Graph partitioning plays a critical role in a
wide range of applications, including distributed graph process-
ing [24], [25], graph neural networks [26], and parallel compu-
tation frameworks [27]. Similarly, PIM scenario also requires
well-designed graph partitioning algorithm to fully utilize the
hardware’s computational potential. Moreover, many real-world
graphs [28], [29], [30] exhibit varying degrees of skewness,
characterized by few high-degree nodes and many low-degree
nodes. High-degree nodes demand more computing and band-
width resources due to their extensive neighborhoods. As a
result, PIM systems often experience load imbalances, where
some PIM modules are overloaded with high-degree nodes while
others remain underutilized. The second challenge is high com-
munication overhead in PIM-based graph databases [31], which
includes CPU-PIM communication (CPC) and inter-PIM com-
munication (IPC). CPC overhead arises from task distribution
and collection between PIM modules and the host. IPC overhead
stems from data interaction between PIM modules, which in turn
depends on the effectiveness of the partitioning algorithm. If
the partitioning algorithm maintains good locality of the graph,
IPC overhead can be significantly reduced; otherwise, numerous

1045-9219 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:36:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0007-6922-1740
https://orcid.org/0000-0003-2485-760X
https://orcid.org/0000-0002-2321-367X
https://orcid.org/0009-0000-4971-8855
https://orcid.org/0009-0007-5322-2431
https://orcid.org/0009-0000-4620-0276
https://orcid.org/0000-0002-1531-7962
mailto:weihankong@sjtu.edu.cn
mailto:huahuahuahua@sjtu.edu.cn
mailto:maruoyan@sjtu.edu.cn
mailto:wenyuheng@sjtu.edu.cn
mailto:wangguifeng@sjtu.edu.cn
mailto:cong258258@sjtu.edu.cn
mailto:lphuang@sjtu.edu.cn
mailto:shengan@sjtu.edu.cn

KONG et al.: PimBeam: EFFICIENT REGULAR PATH QUERIES OVER GRAPH DATABASE USING PROCESSING-IN-MEMORY 1043

next-hop queries across different PIM modules will result in
high IPC costs. The third challenge is managing dynamic graphs
with constant insertion and deletion of nodes [32], [33], requir-
ing the graph storage engine to efficiently deal with frequent
updates. Additionally, changes in nodes affect graph locality,
necessitating reevaluation of graph locality and adjustment of
node partitioning.

This paper proposes PimBeam, a PIM-based efficient graph
database management system. PimBeam significantly acceler-
ates path matching and graph update operations by leveraging
the parallel capabilities of PIM modules. It employs a novel
graph partitioning algorithm that utilizes known node degree
information to maintain graph locality while achieving load
balancing among PIM modules through dynamic capacity con-
straints. Instead of using a hash function to randomly assign
graph nodes to PIM modules, we track and record previous
partitioning decisions, optimizing subsequent allocations. This
approach achieves more precise graph partitioning while main-
taining low partitioning overhead.

To cope with the diversity of regular paths, PimBeam clev-
erly utilizes the parallelism of the PIM side by setting the
filtering mechanism in PIM modules. To handle different types
of workloads, PimBeam adopts a labor-division strategy that
fully exploits the advantages of both the host CPU and PIM
modules. Specifically, high-degree nodes with good locality
access patterns are assigned to the host CPU, while the remaining
low-degree nodes are allocated to PIM modules. The threshold
for high-degree nodes can be adaptively adjusted based on
the dataset. Thus, the PIM modules can overcome the load
imbalance issue that stems from graph skewness by avoiding the
high-degree nodes. To address changes in graph locality caused
by continuous insertion and deletion of nodes, we propose a
node migration scheme. This scheme enhances graph locality
by migrating nodes with unreasonable partitions between PIM
modules under the new state.

For graph updates, high-degree nodes are more likely to be
frequently updated, consuming more computing resources. To
tackle this challenge, PimBeam employs a heterogeneous graph
storage for high-degree nodes, delegating complex update oper-
ations to PIM modules. The CPU side, based on synchronizing
updates from the PIM modules, handles query operations with
good cache locality.

To summarize, we make the following contributions:
1) We propose PimBeam, a graph database management sys-

tem based on the PIM architecture that supports efficient
batch processing of typical RPQs, extended RPQs with fil-
tering labels, and graph updates through the collaboration
of the PIM side and the host side.

2) We introduce a PIM-friendly dynamic graph partitioning
algorithm that utilizes node degree information to handle
graph skewness with low overhead while maintaining
graph locality. Through this partitioning, PimBeam ad-
dresses load imbalance and communication bottlenecks
during execution of RPQs in the PIM system.

3) We design a heterogeneous graph storage scheme for high-
degree nodes, achieving rapid graph updates by amortizing
the update cost of high-degree nodes on the host side to
the PIM side.

4) We implement PimBeam on the commodity PIM system
UPMEM [34]. Compared to the state-of-the-art traditional
graph database RedisGraph [35], PimBeam is significantly
faster, achieving speedup of 3.59x and 29.33x in RPQs
and graph updates on average, respectively. Compared to
other partitioning algorithms, PimBeam achieves a good
balance between partitioning time and preserving graph
locality.

II. BACKGROUND

A. Regular Path Queries and Pointer Chasing

A regular path query seeks pairs of endpoints connected by a
path that matches a specified regular expression [36]. A typical
RPQ starts from a fixed node and queries several hops. More
generally, for a directed graph with labels on its edges, a regular
path query is just a regular expression over the set of edge labels.
In some studies, the regular expression can also be extended to
the labels of nodes [37], [38]. The answers to RPQs consist of
endpoint node pairs connected by a path that conforms to the
given regular expression.

Pointer chasing is a fundamental operation in many data struc-
tures such as linked list, skiplist [39], tree [40], and graph [41],
[42]. For graph databases, the overhead of pointer chasing
becomes a performance bottleneck. Because the nodes linked
by pointers are scattered throughout memory, the actual storage
locations of two logically adjacent nodes may be far apart. This
results in a large number of memory accesses being required to
find the next hop, leading to a low cache hit rate.

B. Hybrid Computing Systems and PIM Architecture

Hybrid computing systems have recently become widely
adopted in high-performance computing (HPC) field. These
systems integrate diverse computing units, such as CPUs, GPUs,
and FPGAs, to capitalize on their distinct computational capa-
bilities. To fully harness the strengths of such hybrid systems,
considerable efforts have been devoted to adapting applications
across various domains for execution on such heterogeneous
architectures. For instance, Tallada et al. [43] proposed a runtime
system to enhance CPU-GPU interoperability. Similarly, the
Hybrid KNN-join algorithm [44] leverages both CPU and GPU
features to optimize nearest neighbor searches, while parallel
radix sorting algorithms designed for GPUs [45] demonstrate
substantial improvements in data processing efficiency. All these
systems typically optimize workload division by leveraging the
strengths of each component in hybrid computing system.

The PIM architecture, as a form of hybrid computing sys-
tem, provides a novel approach to enhancing the efficiency of
pointer chasing by enabling its execution directly within memory
devices. The PIM architecture comprises two components: the
host side and the PIM side. The host side features a powerful
CPU with multiple cores, large caches and DRAM, while the
PIM side includes multiple PIM modules. Each PIM module
contains an on-bank general-purpose processor with limited
computing power, alongside smaller caches and local DRAM.
Positioned closer to the memory, PIM processors access data
faster than CPU cores. Moreover, PIM processors facilitate

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:36:57 UTC from IEEE Xplore. Restrictions apply.

1044 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 5, MAY 2025

Fig. 1. UPMEM’s architecture.

Fig. 2. Two ways of partitioning graph.

a range of interactions between the host CPU and the PIM
modules, allowing the host CPU to transmit executable code
to the PIM module, launch the code, and exchange data with the
host. Previous work [20] has revealed that the two components of
the PIM architecture are suited to different workloads. The host
side with a traditional CPU handles skewed workloads optimally
because the temporal and spatial locality in these workloads
improves cache utilization efficiency. On the other hand, the
PIM side with numerous but individually weak computational
modules is well-suited for tasks with uniform distribution, but
falters under skewed workloads.

Currently, UPMEM [34] is the only commercially available
PIM product, featuring processing-in-memory DIMMs. Its ar-
chitecture is presented in Fig. 1. Each PIM module has an
on-bank processor (DRAM Processing Unit) and 64 MB of local
memory (MRAM). A machine can support up to 20 UPMEM
DIMMs, featuring 2560 PIM modules. In this setup, IPC is
achieved by utilizing the CPC through CPU forwarding data.
However, the bandwidth of IPC is expensive. Despite a system
using 16 UPMEM DIMMs providing an intra-PIM bandwidth
of 1.28 TB/s, the bandwidth for IPC communication is less than
2% of the intra-PIM bandwidth, approximately 25 GB/s [46].

C. Graph Partition

Graph partitioning includes two main approaches: vertex par-
titioning and edge partitioning [47], as shown in Fig. 2. Vertex
partitioning aims to divide the set of vertices in a graph into
several parts, where source vertex and its connected edges are
stored together. Edge partitioning, on the other hand, separates

the source vertex from its edges, which makes it appear as
if the vertex is being cut. Our primary concern lies in vertex
partitioning because in most real-world graphs, node degrees
often follow a power-law distribution [48]. This means most
vertices have a small number of edges, while only a few vertices
have very high degrees. Distributing the edges of a vertex across
multiple computing nodes will introduce significant additional
communication overhead, diminishing the benefits of paral-
lelism. In fact, many distributed database architectures [49], [50]
also adopt vertex partitioning.

A common partitioning algorithm is the hash method. The
hash partitioning method uses a hash function to compute a
hash value for each vertex and maps it to a subgraph. Since
the computation of a hash function is O(1), the complexity of
the hash partitioning algorithm is O(|V |) for a graph with V
vertices. Additionally, the hashing algorithm requires no extra
storage space. Although the uniform distribution of the hash
function’s output ensures load balancing for each subgraph, it
lacks consideration for graph locality.

Therefore, many partitioning algorithms for preserving graph
locality have been proposed in recent years [25], [51], [52].
There are two prominent solutions: the greedy method and the
adaptive method.

Linear Deterministic Greedy (LDG) [25] is a good represen-
tative of the greedy method. LDG uses a greedy heuristic that
assigns a vertex to the partition containing most of its neigh-
bors and imposes constraints on partition loads. This method
achieves relatively balanced load distribution while preserving
graph locality. However, the vertex assignment process could be
time-consuming. It involves traversing each vertex’s neighbors,
computing the objective function for placing the vertex in each
partition, and selecting the optimal partition for actual assign-
ment. Moreover, LDG is unsuitable for dynamic graphs, as it
requires prior knowledge of graph structure such as vertex and
edge counts. Fennel [51] is an improvement over LDG designed
for dynamic graph partitioning. It adopts a more sophisticated
scoring function to achieve a trade-off between neighbor co-
location and load balance, with the linear load penalty term
replaced by a power-law relationship. However, the algorithm
does not reduce the partitioning time complexity, and it involves
many parameters, making the search for the optimal partitioning
scheme potentially laborious.

For the adaptive method [52], new vertices are randomly
assigned to computing nodes according to a hash function.
It improves graph partitioning in a scalable manner through
decentralized, iterative vertex migration, generating partitions
with good locality while maintaining balance in terms of struc-
tural changes. This solution supports dynamic graph partitioning
but incurs a significant communication burden during frequent
vertex migrations.

D. Graph Database

A graph database uses the property graph model [53] to
represent graph data. In this model, nodes represent distinct enti-
ties, and edges represent relationships between pairs of entities.
Depending on the scenario, edges can be directed (such as in

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:36:57 UTC from IEEE Xplore. Restrictions apply.

KONG et al.: PimBeam: EFFICIENT REGULAR PATH QUERIES OVER GRAPH DATABASE USING PROCESSING-IN-MEMORY 1045

a citation graph) or undirected (such as in a social relationship
graph). Both nodes and edges can have labels and property-value
pairs to describe their properties. When handling RPQs, paths
composed of entities and relationships are treated as first-class
citizens, and labels and property-value pairs can be seen as
extensions. We can use an adjacency matrix to represent entities
and their relationships in a directed property graph model.

While the Section II-C discusses various graph partitioning
methods based on graph topology, the challenges of graph
storage and database partitioning emerge after the graph has
been partitioned. Even with an optimized graph partitioning
scheme, managing and storing partitioned graphs in a distributed
database system poses inherent challenges. These primarily arise
from the metadata and communication overhead associated with
partitioned subgraphs, as well as the necessity for effective
database partitioning strategies to efficiently store, query, and
update these subgraphs. Among the currently available dis-
tributed graph database products, there are two graph partition-
ing solutions:

1) Primary-secondary replication: Primary-secondary repli-
cation refers to replicating data from a primary database
(primary) to one or more secondary databases (secondary).
The most popular graph database, Neo4j [54], adopts this
solution. In this approach, each computing node stores the
global graph. Nevertheless, the PIM module is constrained
by limited local memory capacity, which renders the stor-
age of the complete global graph nearly unfeasible.

2) Hash partition: This is a widely used method that assigns
graph nodes to computing nodes based on a consistent
hash function. Representative distributed graph databases
include G-Tran [2] and ByteGraph [4]. Although an ex-
cellent hash function can balance the number of nodes
assigned to each PIM module, this random partitioning
method ignores the locality within the graph. The nodes
assigned to a single PIM module may have little relation
to each other. This can lead to severe load imbalance
between PIM modules during RPQs, resulting in high IPC
overhead.

E. Matrix-Based Graph Operations

Most real-world graphs are sparse rather than dense [55],
meaning that the majority of potential edges are absent. Con-
sequently, graphs can be efficiently represented using sparse
matrices, and graph algorithms can be implemented through
operations on these sparse matrices. In graph database scenarios,
graph pattern matching can be translated into a set of matrix
multiplications. The GraphBLAS [56] is an established math-
ematical framework that defines a core set of graph operations
based on matrices. These operations can be leveraged to imple-
ment a wide range of graph algorithms, enabling GraphBLAS
to efficiently analyze complex graph structures. Due to the
high serial and parallel processing performance of matrix-based
operations, RedisGraph uses GraphBLAS to support efficient
graph queries [35].

Similar to RedisGraph, PimBeam’s execution plan can be
abstracted into graph operations based on matrices, aiming to

exploit the parallelism of PIM modules by leveraging the natural
parallelism of matrix operations. Here is a simple path query
example: if we want to find nodes that are 2-hops away from
fixed source nodes (the batch 2-hop path query in Fig. 5(a)), the
matrix-based execution plan would be ans = Q×Adj ×Adj,
where Q is a matrix containing information about source nodes,
adj stands for the adjacency matrix of the graph, and ans is
a matrix containing information about destination nodes. The
rows of the Q identify a query in a batch of queries, and the
columns represent source nodes. The rows of the ans identify a
query in a batch of queries, and the columns represent destination
nodes.

III. DESIGN

In this section, we introduce the design of the PimBeam, sup-
porting efficient batch RPQs and graph updates based on matrix
operations. The key design is a PIM-friendly graph partitioning
algorithm. It aims to minimize communication overhead, ensure
load balancing during path matching, and feature a relatively low
partitioning time.

A. System Architecture

Fig. 3 outlines the overall design of the PimBeam. PimBeam
adopts an adjacency matrix to represent a property graph and
uses sparse matrix-based operations to query the graph. The
graph is partitioned across the host side and the PIM side. By
leveraging both sets of resources, PimBeam achieves efficient
RPQs and graph updates. As shown in Fig. 3, the main com-
ponents of PimBeam include the Query Processor, the Storage
Module, and the PIM Modules.

1) The Query Processor: When processing batch RPQs and
graph updates, the Query Processor generates execution plans
composed of matrix-based operators, and dispatches these oper-
ators to PIM modules for processing. A RPQ will be translated
into a smxm operator for path matching and a reduce operator
for reducing the result. A graph update is abstracted into add
operator and sub operator. We identify the target PIM module
for the given task associated with the specific node through
the node partition vector. Similar to the map-reduce
model, the matrix-based operators are mapped to P PIM mod-
ules for execution. These inherently parallel tasks take advantage
of the high parallel intra-PIM bandwidth.

2) The Storage Module: To fully exploit the potential of
the PIM architecture and achieve efficient path matching, the
graph should be disjointly partitioned across multiple computing
nodes. Specifically, P PIM modules are responsible for the
storage and querying of low-degree nodes, while high-degree
nodes are managed collaboratively by both PIM modules and the
host CPU (detailed in Section III-D). As depicted in Fig. 3, when
processing graph updates, if a vertex appears for the first time in
the edge insertion stream, the Graph Partitioner will recognize
it as a new node and make partitioning decisions based on Graph
Partition Info and PIM Balanced Info (detailed in Section III-B).
The partitioning result is stored in the node partition
vector, allowing subsequent queries to quickly locate which
PIM module the graph node belongs to. In addition, the Node

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:36:57 UTC from IEEE Xplore. Restrictions apply.

1046 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 5, MAY 2025

Fig. 3. The architecture of the PimBeam with P PIM modules.

Fig. 4. Example of partitioning a routing connection graph in property graph
and adjacency matrix view. The label of the node is the network segment, with
two subnets 192.0.0.* and 192.0.1.*. The label of the edge is the channel security.
The channels from nodes 0 to 4, 5 to 8, and 6 to 9 are insecure, while others are
secure.

Migrator is responsible for relocating new high-degree nodes
to the host side and migrating incorrectly partitioned nodes to
appropriate partitions.

3) The PIM Modules: Each PIM module contains an Opera-
tor Processor, a Query Condition Filter, a Local Graph Storage
Module, and a Heterogeneous Graph Storage Module.

The Operator Processor is responsible for parsing and pro-
cessing operators received from the host CPU. For the add and
sub op, the Operator Processor performs relevant updates on
nodes, edges, and properties. For the smxm op, the Operator
Processor produces intermediate results after execution. These
intermediate results then pass through the Query Condition
Filter, which can filter them based on certain labels or property
values. For the reduce op, the Operator Processor needs to
remove duplicate results and then return the final results to the
host side.

According to the Fig. 4, the adjacency matrix is partitioned
by row across 1 + P computing nodes, with each computing

node maintaining a segment of the adjacency matrix. Due to the
good concurrency and scalability of the hash map, each PIM
module uses a hash map to store the corresponding segment
of the adjacency matrix in the Local Graph Storage. The hash
map stores a mapping from row IDs (NodeID) to row data (the
columns, which are the next-hop NodeIDs). However, simple
local graph storage cannot meet the demands of frequent updates
from the host side. By introducing heterogeneous graph storage,
the storage of adjacency matrix segments maintained by the host
CPU is optimized.

In the remainder of this section, we will provide a detailed
description of the PIM-friendly dynamic graph partitioning al-
gorithm (Section III-B), extended RPQs with label filtering (Sec-
tion III-C), and optimizations for graph storage (Section III-D).

B. Graph Partition

PimBeam prioritizes graph partitioning to achieve load bal-
ancing among PIM modules with low overhead while maintain-
ing graph locality. In this section, we propose a PIM-friendly
graph partitioning algorithm consisting of the labor-division
method and the multi-neighbor adaptive method. For the labor-
division method, PimBeam handles high-degree and low-degree
nodes differently to address graph skewness and leverage the
strengths of both the host CPU and the PIM modules. For the
multi-neighbor adaptive method, PimBeam attempts to allocate
nodes to the same PIM module as their highest-degree neighbor
with low overhead, aiming to reduce the IPC overhead during
path matching. Additionally, we developed a load balancing
strategy to prevent certain PIM modules from being overloaded.

1) Labor-Divison Method: To address load imbalance
caused by graph skewness and leverage the strengths of the host
side and the PIM side, we propose a labor-division approach that
the host side handles high-degree nodes and the PIM side deals

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:36:57 UTC from IEEE Xplore. Restrictions apply.

KONG et al.: PimBeam: EFFICIENT REGULAR PATH QUERIES OVER GRAPH DATABASE USING PROCESSING-IN-MEMORY 1047

Fig. 5. The matrix-based execution plan of a batch 2-hop path query.

with low-degree nodes. As depicted in Fig. 4, the out-degrees
of nodes 1 and 2 are relatively high, so they are assigned to the
CPU for processing. The remaining nodes are partitioned into
PIM0 and PIM1.

PimBeam leverages the strengths of both the host side and
the PIM side. The two components of the PIM architecture,
the host side and the PIM side, have different preferences
for workloads. The distributed PIM side prioritizes workloads
with uniformly random memory access to exploit high parallel
intra-PIM bandwidth, while the host side, with its powerful
CPU, prefers continuous and skewed memory access workloads
with good locality. Accordingly, low-degree nodes with fewer
neighbors are likely to be accessed randomly, satisfying the
PIM side’s preference. High-degree nodes tend to be accessed
more frequently, and retrieving the NodeIDs of their numerous
next-hop nodes exhibits sequential memory access, satisfying
the host side’s taste. Therefore, the labor-division method aligns
perfectly with the PIM architecture. Through dispatching path
matching tasks associated with high-degree nodes to the CPU
side and low-degree nodes to the PIM side, the PimBeam can
leverage the advantages of both sets of resources.

The degree of nodes in the graph is not constant. As the
graph grows, a low-degree node might gain more connections
and become a high-degree node. PimBeam can smartly identify
and migrate high-degree nodes to the host side using the Node
Migrator, ensuring a disjoint workload distribution tailored to the
capabilities of the PIM side and the host side. We have designed
a high-degree node identification scheme, with a default high-
degree threshold Th set at 16. Nodes with a degree below Th
have lower access frequencies and are suitable for handling by
PIM modules. During the initial establishment or update phase of
the graph, if the average degree of all nodes in the graph exceeds
4, this graph is considered dense. At this point, we iteratively
increase Th by 16 and measure the completion time of the query
task until we find the optimal threshold or until only the top
0.10% highest-degree nodes remain on the host side. During
this process, the Node Migrator will migrate new high-degree

nodes from the PIM side to the host side. This approach retains
high-degree nodes on the host side while limiting the number
of nodes assigned to the host. It allocates relative low-degree
nodes in the dense graph to the PIM modules, preventing them
from idling. Since PIM modules are now allocated a moderate
workload and no longer process high-degree nodes, the load
imbalance caused by graph skew naturally dissipates.

2) Multi-Neighbor Adaptive Method: To maintain graph lo-
cality with low overhead and support dynamic graph changes,
we propose a multi-neighbor aware partitioning method for as-
signing low-degree nodes among PIM modules and an adaptive
method for node migration to enhance locality.

We first introduce our multi-neighbor aware partitioning
method. When a new graph node is received, we examine its
existing neighbor nodes in the current batch, select the neighbor
with the highest degree located in a PIM, and assign the new node
to the same PIM module. If, during the neighbor traversal, it is
determined that the number of the new node’s neighbors exceeds
the high-degree threshold, the node is assigned to the host side. If
no neighbors are found for the node, a hash algorithm is utilized
to randomly assign it to a PIM module. This approach allows for
node assignment upon the insertion of the first edge, rather than
waiting until the entire graph is constructed, thus meeting the
requirements of dynamic graph partitioning in graph databases.

The time complexity of our method is relatively low. Con-
sidering a straightforward greedy algorithm, it finds the first
neighbor of a given node. The time complexity Cost for parti-
tioning a graph with n nodes is O(n). The multi-neighbor aware
partitioning method appears to have a significantly higher time
complexity at first glance. But since the number of neighbors
a node traverses is at most equal to the threshold th, the added
time complexity is no more than th× Cost. Therefore, the time
complexity of our approach is of the same order as that of the
greedy method.

When performing RPQs, PimBeam employs an adaptive
method to augment graph locality that might be compromised for
low partitioning overhead. During path matching, PIM modules

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:36:57 UTC from IEEE Xplore. Restrictions apply.

1048 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 5, MAY 2025

simultaneously detect incorrectly partitioned nodes that miss
most next-hop nodes in the local PIM module (with a next-hop
hit rate below 25%), effectively overlapping detection overhead
with path matching query processing. The host CPU then mi-
grates these nodes to the partition containing the largest number
of their neighbors among all partitions. With more neighbors on
the same module, PimBeam further enhances graph locality.

It is noteworthy that the labor-division approach
(Section III-B1) facilitates easier partitioning of the graph
on the PIM side, because high-degree nodes have already been
migrated to the host side. Ideally, a graph without high-degree
nodes would fragment into multiple disconnected subgraphs. In
most scenarios, our multi-neighbor aware partitioning method
effectively maintains graph locality among PIM modules,
leaving only a few nodes requiring migration. Ultimately, the
host CPU only needs to deal with a small amount of migration
overhead.

3) Load Balancing: Based on the multi-neighbor aware par-
titioning method, we record the load information of PIM mod-
ules during partitioning, facilitating load balancing among PIM
modules.

During the allocation of graph nodes, we use dynamically
allocated node capacity constraints to enforce load balancing
among PIM modules. We first determine a node_bound, which
is the ideal number of nodes in each PIM for the system under
universal workloads (default is 8192in our system). The dynamic
capacity constraint is set to 1.05x the average number of assigned
nodes among PIM modules. When the average number of nodes
per PIM module exceeds thenode_bound, we gradually increase
the constraint until it reaches a maximum of 1.10x the average
number. The constraint value is re-evaluated after each batch
update. We point out that decreasing the proportion of the
capacity constraint can facilitate load balance but at the expense
of decreased graph locality.

Under the load balancing strategy mentioned above, Pim-
Beam may encounter some new nodes that cannot be assigned to
their target PIM modules due to exceeding constraints. When this
occurs, we apply our multi-neighbor aware partitioning method
among the remaining PIM modules that have not exceeded the
capacity constraint. This approach avoids assigning most of the
graph nodes to a few PIM modules, thereby preventing load
imbalance, while keeping a reasonable proportion of subgraph
locality.

Eventually, our PIM-friendly graph partitioning algorithm
achieves load balance among PIM modules and maintains graph
locality with low overhead and low partitioning time. Addition-
ally, it is flexible enough to support dynamic graphs in graph
databases.

C. Query With Label Filtering

Simply performing path queries from a fixed start node in a
breadth-first search manner is only a basic part of RPQs, and the
forms of regular paths can be very diverse. A common extension
to regular path queries involves filtering by edge labels and
node labels, as illustrated in Fig. 5(b). By incorporating node
property filter matrices or edge property filter matrices into the

query process, path matching with filtering conditions can be
easily extended based on a matrix-based approach. PimBeam
stores property values and entities together, transforms complex
properties into simple values through mapping, and leverages the
inherent advantages of the PIM side to achieve efficient query
filtering.

For graphs with labels and property values, PimBeam adopts
a method where property values and entities are stored together.
This allows for seamless access to properties when finding nodes
or edges during the next-hop discovery process. Property values
can be compared with filtering conditions to determine whether
the current edge or node matches the query criteria. For complex
property values, PimBeam maps them into numerical values,
allowing PIM modules to focus solely on basic path searches
and simple condition comparisons. In this manner, the entire
filtering process only requires the time for condition comparison
in PimBeam, eliminating the need for additional property value
lookup time.

PimBeam’s filtering operation can reduce the communication
overhead. Regardless of filtering labels of nodes or edges, each
hop of path matching yields fewer intermediate results compared
to the original queries. Moreover, as the query hops increase,
the number of filtered-out nodes grows exponentially, leaving
relatively few results. Similarly, after the PIM modules complete
the reduction, the host side will receive fewer final results from
the PIM side. Therefore, in the case of label filtering queries, the
CPC and IPC overheads are reduced. This avoids the disadvan-
tage of lower CPC and IPC bandwidth in the PIM architecture,
making the PIM modules highly suitable for handling label
filtering queries.

By storing data efficiently and leveraging the advantage of
reduced communication overhead through filtering, PimBeam
is ideally suited for handling queries with label filtering and can
effectively manage complex RPQs.

D. Heterogeneous Graph Storage

In PimBeam, every computing node needs to manage graph
nodes assigned to it and maintain an adjacent matrix segment to
store these graph data. PIM modules can leverage high parallel
intra-PIM bandwidth to provide high performance for querying
and updating low-degree nodes. While high-degree nodes on the
host side can benefit from cache locality, efficiently accessing
them still poses a challenge. Furthermore, updating high-degree
nodes remains difficult due to the substantial memory manage-
ment involved. This challenge exerts significant pressure on the
host CPU. To alleviate this load, PimBeam uses heterogeneous
graph storage for high-degree nodes, achieving efficient query
and update simultaneously by amortizing the host side’s update
cost to the PIM side.

When querying high-degree nodes, PimBeam can effectively
leverage cache locality. On the host side, the most efficient
approach for graph querying is to store the next-hop data of
high-degree nodes in a contiguous memory array. Fig. 6 demon-
strates our organization of high-degree nodes. For each of these
nodes, we allocate an array cols_vector to store the next-hop
NodeIDs, with unused positions filled with -1. Consequently,

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:36:57 UTC from IEEE Xplore. Restrictions apply.

KONG et al.: PimBeam: EFFICIENT REGULAR PATH QUERIES OVER GRAPH DATABASE USING PROCESSING-IN-MEMORY 1049

Fig. 6. Heterogeneous graph storage for high-degree nodes.

when accessing a high-degree node, PimBeam needs only a
single memory fetch to obtain its next-hop data, greatly enhanc-
ing memory access locality on the host side.

When inserting or deleting an edge where the row is a high-
degree node, PimBeam must traverse corresponding cols_vector
to determine if the edge already exists. To avoid time-consuming
traversals, PimBeam maintains two supplementary hash maps on
the PIM side for storing high-degree nodes: elem_position_map
and free_list_map, as depicted in Fig. 6. The elem_position_map
in PIM modules stores the mapping from the edge to its position
in cols_vector on the host side. We can effectively distribute
the edges originating from high-degree nodes across different
PIM modules using their hash values, thus preventing any PIM
module from becoming overloaded. The free_list_map stores
free positions in cols_vector. For each insertion or deletion of a
〈row, col〉 tuple where a high-degree node is the row, we need
to pop an available position from or push a newly freed position
back into the free_list_map.

For example, inserting an edge 〈1, 2〉 as shown in Fig. 6
follows these steps: First, the edge 〈1, 2〉 is hashed and assigned
to PIM 0. PIM 0 queries its elem_position_map to confirm that
the edge does not exist. Then, free_list_map pops an available
position 1, and it is returned as pos to the host side. Next, PIM 0
updates elem_position_map by inserting (edge = 〈1, 2〉, pos =1
). Finally, the host CPU writes 2 to position 1in the cols_vector
of row 1. This way, for graph updates, the host CPU only needs
to perform the simple task of writing data to a specific position
within the cols_vector, while the PIM side undertakes complex
operations such as edge retrieval and space management.

Ultimately, this forms a heterogeneous graph storage for high-
degree nodes, where the CPU side utilizes sequential access for
memory locality, and the PIM side handles the majority of the
update expenses.

IV. EVALUATION

A. Experiment Setup

1) Datasets: We evaluate our PimBeam using 15 datasets
from the Stanford Network Analysis Platform (SNAP) [57]

and a social network graph with properties from the Linked
Data Benchmark Council Social Network Benchmark (LDBC
SNB) [58]. These datasets are widely recognized in prior re-
search on graph databases [59], [60], [61], offering diverse
graph structures and realistic properties for evaluation. Given the
definition of RPQs, we treat all the datasets as directed graphs.

SNAP [57] is a general-purpose network analysis and graph
mining library that includes many real-world graphs from var-
ious domains, such as citation networks, web graphs, product
co-purchasing networks, and road networks. Trace IDs #1-#15 in
Table I show these 15 large-scale graphs from SNAP, each with
more than 200 K nodes.

LDBC SNB [58] is a benchmark designed to evaluate graph
database performance in social network scenarios, supporting
the generation of property graph datasets of varying sizes. We
generated a dataset with the scale factor set to 30, which has
157,444 nodes and 6,017,657 edges, making it a fairly dense
graph compared with the SNAP datasets. We selected the node
label language and the edge label location for label filtering
RPQ experiments. The language label has 71 different values,
and the location label has 1,343 different values.

2) Compared Systems: We select RedisGraph [35] as the
baseline system for the pure CPU approach. RedisGraph is the
first queryable property graph database that uses matrices to
represent adjacency matrices and leverages linear algebra for
querying graphs. It provides a fast and efficient way to store,
manage, and process graphs [62]. To the best of our knowledge,
RedisGraph is the only state-of-the-art baseline focus on accel-
erating RPQs for comparison.

We select PIM-hash, PIM-greedy, PIM-LDG, and PIM-only
as comparative systems for PIM approaches. The PIM-hash
system distributes low-degree nodes in the graph to PIM modules
using a hash function, as hash partitioning schemes are widely
adopted in distributed graph databases [2], [4]. The PIM-greedy
system employs a radical greedy method proposed by [63].
Specifically, when a new node is received, it is assigned to the
PIM module of its first neighbor. If the first neighbor remains
unassigned, hash partitioning is used. The PIM-LDG system
adopts the partitioning strategy from LDG [25], which considers
the weighted degree information of all neighboring nodes within
each PIM module. New nodes are assigned to the PIM module
with the highest score, while the module capacity is capped
at 1.1x the average number of nodes. The PIM-only system
adopts the proposed dynamic graph partitioning method but
excludes the involvement of the host CPU for high-degree nodes.
In contrast, all other compared systems employ our proposed
labor-division approach, in which highly connected nodes are
handled by the CPU, and low-degree nodes are allocated to the
PIM side.

3) Configuration: We conduct our experiments on a dual-
socket server equipped with two Intel(R) Xeon(R) Silver 4216
CPUs and 20 UPMEM DIMMs. Each CPU has 16 cores, oper-
ates at 2.10 GHz, and features a 22 MB L3 cache. The server
has six memory channels per socket: two DDR4-3200 64 GB
memory modules occupy one channel, while the remaining five
channels are populated with ten UPMEM DIMMs. Each UP-
MEM DIMM has two ranks, each containing 64 PIM modules,

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:36:57 UTC from IEEE Xplore. Restrictions apply.

1050 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 5, MAY 2025

TABLE I
THE REAL-WORLD GRAPHS FROM SNAP DATASET USED IN OUR EXPERIMENTS

Fig. 7. Run-time of short k-hop path queries (log scale). Datasets #1-#3 and #13-#15 contain no high-degree nodes, so the results of PIM-only are identical to
those of PimBeam.

for a total of 2560 PIM modules. PimBeam and other PIM-based
approaches utilize one dedicated CPU core and 64 PIM modules.
RedisGraph is evaluated under two configurations: single-core
and 32-core, the latter utilizing all available CPU cores.

4) Workload Setup: For simplicity, the edge stream of each
dataset is processed in random order to construct the initial
graph. Our evaluation mainly focuses on typical RPQs, specifi-
cally the k -hop path queries with a fixed starting node. Starting
nodes are randomly selected, and RPQs are processed in batches
with a batch size of 64K. We perform extended label filtering
RPQs on the social network dataset of LDBC SNB. To show
graph update performance, we randomly select 64K edges for
insertions and deletions.

B. Performance of Short Path RPQs

Fig. 7 shows the run-time for processing short k-hop path
queries on PimBeam, PIM-hash, PIM-greedy, PIM-LDG, PIM-
only, and RedisGraph with 1 core and 32 cores. Across 15

real-world graphs in the SNAP datasets, PimBeam performs
the best, achieving a 3.59x speedup over the state-of-the-art
database RedisGraph-1core on average, as shown in Table II.
By assigning path matching tasks to PIM modules and reducing
data movement, PimBeam breaks the memory wall bottleneck
during path matching, achieving high performance. Compared to
other PIM-based schemes, PimBeam also has advantages, being
0.84%, 15.60%, 22.56%, and 10.86% faster than PIM-LDG,
PIM-greedy, PIM-hash and PIM-only, respectively (derived
from Table II).

The query advantage decreases as the number of hops in-
creases. Specifically, the advantage of PimBeam is more pro-
nounced when path hops are smaller, as IPC cost is lower at
this time. Particularly, when k = 1, IPC expense is zero, and
the query process only involves CPC expense, without needing
reduction. At this point, PimBeam has the greatest advantage,
being faster than RedisGraph-1core on all datasets with an
average speedup of 6.06x (shown in Table II). And RedisGraph

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:36:57 UTC from IEEE Xplore. Restrictions apply.

KONG et al.: PimBeam: EFFICIENT REGULAR PATH QUERIES OVER GRAPH DATABASE USING PROCESSING-IN-MEMORY 1051

TABLE II
MINIMUM, MAXIMUM, AND MEAN SPEEDUP OF PIM-BASED SCHEMES ON 15

SNAP DATASETS FOR SHORT k-HOP QUERIES (k = 1, 2, 3)

executed with 32 cores only exhibits a minor performance im-
provement over 1 core, since the query load is low and multi-core
competition incurs noticeable overhead. As a result, PimBeam
is faster than RedisGraph-32cores across all datasets, achieving
an average speedup of 5.83x. As k increases, even though our
partitioning ensures graph locality, there are still some cases
where the next-hop of some nodes are not within the current
PIM module. At this time, the number of nodes queried in the
next-hop grow exponentially, rapidly increasing IPC overhead.
Therefore, as shown in Table II, for k = 2 and k = 3, the average
speedup of PimBeam over RedisGraph-1core decreases to 2.17x
and 2.53x. In comparison to RedisGraph-32cores, the average
speedup of PimBeam decreases to 1.54x and 1.30x, respectively.

The skewness of the dataset affects the performance of
PimBeam. For datasets with lower skewness, such as datasets
#1-#3, PimBeam demonstrates significant advantages, achiev-
ing a run-time at least 4.32x that of RedisGraph (shown in
Fig. 7(b) for dataset #1). Under these circumstances, PimBeam
also achieves at least a 3.59x speedup over RedisGraph-32cores
(shown in Fig. 7(b) for dataset #2). When it comes to highly
skewed datasets, PimBeam performs worse than RedisGraph-
1core in few cases. This is observed only in dataset #9, #11,
and #12 when k = 3 . And it shows weaknesses compared to
RedisGraph-32cores on more datasets, especially datasets #11
and #12 under 3-hop queries (depicted in Fig. 7(c)). Leveraging
all powerful CPU cores and the 44MB L3 cache clearly benefits
RedisGraph-32cores in handling skewed datasets. Fortunately,
the performance of PimBeam is faster than RedisGraph in most
cases, demonstrating that our partitioning scheme effectively
maintains graph locality in most scenarios.

Compared to PIM-hash, PimBeam has shorter query times.
As derived from Table II, for k = 1, 2, 3, the improvements are
23.93%, 17.97%, and 13.04%, respectively. The hash partition
scheme only balances the number of nodes between PIM mod-
ules, but it cannot maintain the locality of the graph. PimBeam,
on the other hand, addresses the skewness problem of the graph
by being aware of node distribution, achieving load balancing
between PIM modules.

Compared to PIM-greedy, PimBeam also has obvious advan-
tages. It improves by 18.15%, 11.06%, and 13.04% for k =
1, 2, 3, respectively (derived from Table II). This indicates that

PimBeam’s partitioning method of choosing the PIM module
with the highest-degree neighbor of a node is more reasonable
than simply using the radical greedy method. From another per-
spective, for a randomly ordered input edge stream, PIM-greedy
essentially assigns new nodes randomly to the PIM module of
one of their neighbors, while PimBeam selects the neighbor with
the highest degree. Therefore, in the vast majority of cases, the
query performance of PimBeam is comparable to or better than
that of PIM-greedy. In fact, across all experiments, PimBeam’s
performance is only 4.28% lower than PIM-greedy for k = 3 on
dataset #9, and 3.17% and 27.70% lower for k = 1 on datasets
#7 and #9, respectively. In other cases, PimBeam consistently
outperforms PIM-greedy.

Compared to PIM-LDG, PimBeam is slightly ahead. For k =
1, 2, 3, it improves by -1.32%, 1.38%, and 4.74%, respectively
(derived from Table II). PIM-LDG, by examining the weighted
degrees of all neighbors of a node in every PIM module, theo-
retically maintains the best graph locality among all schemes.
Therefore, it performs the best in 1-hop scenario. As the number
of query hops increases, PimBeam’s node migration strategy
further enhances the locality of subgraphs. Consequently, the
performance of PIM-LDG starts to fall behind that of PimBeam.
Moreover, traversing neighbor nodes and calculating the score
function in each PIM module takes too long, making its graph
construction time significantly longer than the PimBeam (de-
tailed time analysis in Section IV-I).

Compared to PIM-only, PimBeam demonstrates significant
advantages through its labor-division strategy. For k = 1, 2, 3,
it achieves improvements of 9.08%, 12.44%, and 10.86%, re-
spectively (derived from Table II). This is primarily because
PIM-only does not involve host CPU in the query process. While
the PIM side is well-suited for handling pointer chasing, it strug-
gles with high-degree nodes, whose neighbors are frequently
accessed. In such cases, the weaker cores on the PIM side are
clearly outperformed by the powerful CPU with a large cache,
particularly in highly skewed datasets (e.g., datasets #8, #9, and
#11in 3-hop queries, as depicted in Fig. 7(c)).

C. Performance of Long Path RPQs

For long path queries, we only perform k-hop path queries
on the road network graph (datasets #1-#3), since every PIM
module has limited memory. The results are shown in Fig. 8.
High skewness or dense graphs could lead to insufficient mem-
ory when querying long path queries, making it infeasible to
execute such queries on these types of graphs. As k increases
from 4 to 6 and 8, PimBeam achieves a 4.80x, 4.55x, and 4.24x
speedup over RedisGraph-1core, respectively. When compared
to RedisGraph-32cores, PimBeam achieves speedup of 3.59x,
3.54x, and 3.29x, respectively. It can be observed that the per-
formance of PimBeam deteriorates compared to RedisGraph (1
core and 32 cores) as k increases. Compared with the other three
PIM-based schemes (PIM-hash, PIM-greedy, PIM-LDG), Pim-
Beam improves performance by 13.50%, 6.93%, and 5.22% on
average, respectively. The advantage of PimBeam also shrinks
as k increases. The reason is that the number of matching paths
grows exponentially with k. On the one hand, this leads to an

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:36:57 UTC from IEEE Xplore. Restrictions apply.

1052 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 5, MAY 2025

Fig. 8. Run-time of multiple k-hop path queries (log scale).

TABLE III
NORMALIZED RUN-TIME ACROSS DIFFERENT THRESHOLDS

increase in IPC overhead; on the other hand, it results in a large
number of query results, making reduction a bottleneck.

D. High-Degree Node Threshold Selection

We explore various high-degree thresholds on SNAP datasets
containing nodes with degrees exceeding 16 (datasets #4-#12).
Thresholds of 8, 16, 32, 64, 256, and infinity are evaluated for
high-degree nodes, with the results presented in Table III. As the
threshold increases from 8 to infinity, the run-time exhibits two
distinct patterns: it either initially decreases and then increases,
or it continuously increases.

For most datasets (e.g., datasets #4, #5, #8), the run-time
follows the first pattern. At lower thresholds, a significant portion
of the workload is assigned to host CPU, resulting in slower
overall query times. As the threshold increases, part of this
workload shifts to the PIM modules, reducing the burden on the
host and subsequently decreasing run-time. However, when the
threshold reaches the upper limit, the run-time increases again.
This is due to the limited cache capacity on the PIM side, which
is less efficient at handling high-degree nodes. Consequently, the
system’s performance becomes constrained by the PIM side. Op-
timal run-time is achieved only at intermediate threshold values,
where the workload is balanced between the host and PIM sides.
For these graphs, our threshold selection method successfully
identifies the minimum run-time point for all datasets except for
dataset #8.

For other graphs (datasets #6, #9, #11), the run-time
continuously increases as the threshold rises. This reveals
the load distribution between the host and PIM sides is

more balanced at a threshold of 8 compared to 16. Nev-
ertheless, with a difference of less than 3%, the default
threshold of 16 remains a reasonable choice, offering satisfac-
tory performance.

Dataset #8 poses a unique challenge, as our threshold selec-
tion method fails to identify its optimal threshold. This dataset
contains several ultra-high-degree nodes with degrees exceeding
10,000 yet lacks overall density. Under random graph construc-
tion, the early insertion of these ultra-high-degree nodes often
causes the threshold to increase, thus preventing the selection of
the optimal threshold of 16. Identifying an effective threshold
selection method for datasets with such complexity and variabil-
ity remains intrinsically challenging. Nevertheless, our method
demonstrates robust performance across the majority of datasets,
achieving results within 5% of the optimum.

E. Performance of IPC Communication

One of the factors for evaluating the effectiveness of partition-
ing schemes is the IPC cost. Fig. 9 shows the fraction of total
run-time for IPC operations of PIM-based schemes process-
ing 3-hop queries. Among all PIM-based schemes, PimBeam
exhibits the lowest average IPC fraction of total run-time, at
only 9.35%, compared to PIM-greedy and PIM-LDG, which
account for 9.50% and 9.54%, respectively. The higher IPC cost
of PIM-greedy can be attributed to its classification strategy,
which only considers the first neighbor node. For PIM-LDG, the
relatively high communication overhead in some datasets (e.g.,
dataset #9) is likely due to the absence of a dynamic node mi-
gration strategy. As a result, the lack of subsequent adjustments
to the partitioning state leads to increased communication costs.
PIM-hash, on the other hand, distributes all nodes randomly,
resulting in significantly higher communication overhead in
many datasets, particularly in complex situations (especially
datasets #5 and #8). Consequently, PIM-hash achieves the worst
performance, with an average IPC fraction of 22.68%.

F. Load Distribution

We further analyze the load distribution between the host
and the PIM side during path matching. Fig. 11 presents the
query load distribution for PimBeam when processing 3-hop
queries on datasets containing high-degree nodes. The host
manages 0.33% to 4.44% of the query workload for high-degree
nodes, with the low-degree node workload offloaded to the
PIM side. Combined with the experimental results on threshold

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:36:57 UTC from IEEE Xplore. Restrictions apply.

KONG et al.: PimBeam: EFFICIENT REGULAR PATH QUERIES OVER GRAPH DATABASE USING PROCESSING-IN-MEMORY 1053

Fig. 9. The fraction of total run-time for IPC operations of different architectures processing 3-hop queries.

Fig. 10. Run-time of k-hop path queries on the social network graph generated by LDBC SNB with label filtering (log scale).

Fig. 11. Load distribution for host and PIM sides executing 3-hop queries
across SNAP datasets with high-degree nodes.

exploration (Section IV-D), it can be concluded that the PIM
side is ill-suited for handling high-degree nodes. Therefore, our
labor-division scheme combines complementary capabilities of
the PIM and host sides, significantly alleviating the load on the
PIM side.

G. Performance of Label Filtering RPQs

We conduct typical and label filtering RPQs on the social net-
work graph generated by LDBC SNB. The results are shown in
Fig. 10. When typical RPQs are performed, PimBeam achieves a
9.18x and 32.78x speedup over RedisGraph-1core for 2-hop and
3-hop queries, respectively. Compared to RedisGraph-32cores,
PimBeam also demonstrates a 1.21x and 3.66x speedup for
2-hop and 3-hop queries, respectively. It can be observed that
RedisGraph-32cores effectively leverages the advantages of
multi-core parallelism on relatively dense graphs like social
networks. However, due to the lower skewness of this graph,
PimBeam still exhibits a more pronounced advantage over Re-
disGraph.

When executing filtering node label language, we select to fil-
ter the Chinese-speaking population (property_value =′ zh′),
which accounts for 17.4% of the entire social network. Pim-
Beam significantly reduces the query time for 2-hop and 3-hop
queries, with performance being 11.61x and 29.43x that of
RedisGraph-1core filtering the same property value. Compared

to RedisGraph-32cores, PimBeam achieves 2.43x and 3.53x
speedup for 2-hop and 3-hop queries, respectively, demonstrat-
ing strong superiority.

When executing filtering edge label location, we set 2 regular
paths to pass through edges with property values greater than
200 and 1000, which respectively correspond to retaining most
and fewer of the typical RPQ results. When retaining most of the
results, PimBeam’s execution speed increased by 16.86%, while
retaining fewer property values led to a substantial increase of
71.89%. On average, PimBeam’s performance reached 29.78x
and 8.14x that of RedisGraph performed at 1-core and 32-core.
We can find that the more nodes or edges are filtered out, the
shorter PimBeam’s query time is. In contrast, RedisGraph’s per-
formance declines due to the introduction of matrix operations
related to labels and property values.

In summary, PimBeam is capable of simultaneously filtering
nodes and edges across multiple PIM modules, greatly improv-
ing filtering efficiency. Moreover, filtering can reduce CPC and
IPC overhead, making PimBeam significantly outperform in the
extended RPQ tasks.

H. Performance of Graph Updates

Fig. 12 shows the run-time for graph updates, inserting 64 k
edges and deleting 64 k edges, on 15 real-world graphs from the
SNAP datasets. Compared to RedisGraph-1core, the insertion
throughput of PimBeam is up to 67.36x and 26.45x on average.
The deletion throughput is up to 87.02x, and the average is
32.22x. Exempt from IPC and reduction stages, the graph update
workloads can fully utilize the intra-PIM bandwidth, resulting
in exceptional performance.

For the graphs with no high-degree nodes (datasets #1-#3
and #13-#15), the advantage of PimBeam is very large, with
at least 18.17x and 23.38x boosts for insertions and deletions,
respectively. For the graphs with a high proportion of data stored

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:36:57 UTC from IEEE Xplore. Restrictions apply.

1054 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 5, MAY 2025

Fig. 12. Run-time of graph updates (log scale).

Fig. 13. Graph partitioning time for different PIM-based architectures (log scale).

on the host side (datasets #5, #6, #10, and #11) or with very
high-degree nodes (dataset #8), the load of the host becomes the
bottleneck of graph updates. Leveraging heterogeneous graph
storage for high-degree nodes, PimBeam can well amortize the
host side’s update cost to the PIM side, and still achieve good
graph update performance, with an average speedup of 13.24x
and 14.47x for insertions and deletions, respectively.

I. Graph Partition Time

Before conducting RPQs and update experiments, it is neces-
sary to load the edge stream and construct the initial state of the
graph. The graph construction time includes the time for graph
partitioning and the time for inserting all nodes and edges into
subgraphs in computing nodes. An ideal partitioning method
should achieve high-quality partitioning results while featuring
a low partitioning time. Fig. 13 compares the graph construction
times of PimBeam with PIM-hash, PIM-greedy, and PIM-LDG
schemes.

We consider PIM-greedy as the baseline, as it is the fastest
method for partitioning while ensuring some graph locality.
In contrast, PIM-hash achieves the fastest graph construction
speed, reducing time by 20.18%, as it only hashes the NodeID
of a new node to assign its PIM module, with no regard for graph
locality.

PimBeam identifies the neighbor of a new node with the
highest degree, but since the number of neighbors traversed
does not exceed the high-degree node threshold, the additional
partitioning time is only a constant factor. This results in Pim-
Beam’s graph construction time being 78.24% longer than that
of PIM-greedy. Given that PimBeam reduces the average time
by 15.60% compared to PIM-greedy for typical RPQs within
3-hop paths (shown in Table II), this additional construction
time is acceptable. PIM-LDG, which traverses neighbors and
considers the linear weighted degrees of neighboring nodes

in all partitions, is highly time-consuming, increasing time by
144.28% compared to PIM-greedy. Considering that the query
efficiency of PIM-LDG is slightly inferior to that of PimBeam,
PimBeam offers the best overall performance.

J. Performance With Different Number of PIM Modules

It might be intuitive to assume that the speedup ratio of
PimBeam could improve with an increasing number of PIM
modules, given that the UPMEM machine is equipped with
2560 modules. To investigate this, we measured the run-time
of PimBeam for 3-hop queries using 32, 64, 128, and 256 PIM
modules, as shown in Fig. 14(a).

The results show that increasing the number of PIM mod-
ules has minimal impact on run-time: the longest run-time
(with 256 modules) is only 6.41% longer than the shortest
run-time (with 32 modules). While increasing the number of
PIM modules reduces the workload per module, it simul-
taneously increases the likelihood that next-hop nodes will
be distributed across multiple PIM modules. This increases
IPC overhead, which offsets the benefits of having more PIM
workers. This insight suggest that the number of PIM mod-
ules should be allocated judiciously based on the character-
istics of the specific task. Indiscriminately utilizing a large
number of PIM workers could result in inefficient resource
utilization.

Graph construction time is also affected by the number of
PIM modules, as shown in Fig. 14(b). As the number of PIM
modules increases, the graph construction time continuously
decreases. This is because with more PIM modules, each module
has fewer nodes to insert, thereby reducing the load for spatial
retrieval and management. However, 64 marks a turning point:
with 32 PIM modules, the construction time is 12.67% longer
than that with 64; whereas with 128 and 256 PIM modules, the

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:36:57 UTC from IEEE Xplore. Restrictions apply.

KONG et al.: PimBeam: EFFICIENT REGULAR PATH QUERIES OVER GRAPH DATABASE USING PROCESSING-IN-MEMORY 1055

Fig. 14. Run-time and partitioning time for 3-hop queries in PimBeam across varying PIM module numbers (log scale).

time reductions are only 1.93% and 3.12%, respectively, which
is almost negligible.

On the other hand, each PIM module in the UPMEM machine
has a fixed memory capacity of 64 MB. For skewed graphs with
a large number of nodes and edges, such as dataset #4, using
fewer PIM modules (such as 16) may lead to memory overflow
in some high-load PIM modules during multi-hop query phases.

In conclusion, we consider 64 PIM modules to be a relatively
balanced choice, and the number of PIM modules can be appro-
priately increased based on the task load.

V. CONCLUSION

This paper introduces PimBeam, a state-of-the-art PIM-based
graph database management system for accelerating path match-
ing. PimBeam successfully supports efficient batch of typical
and extended RPQs and graph updates while having low parti-
tioning time. The dynamic graph partitioning algorithm in Pim-
Beam successfully tackles graph skewness and preserves graph
locality with low overhead. With PIM-friendly graph partition-
ing, PimBeam addresses the challenges of load imbalance and
the communication bottleneck during performing RPQs. The
optimizations for graph storage enable frequent graph updates by
amortizing the host side’s update cost to the PIM side. Evaluation
on multiple datasets against RedisGraph and other PIM-based
partitioning algorithms shows superiority of PimBeam. It can
achieve high path matching and graph update performance while
have relative fast graph construction.

REFERENCES

[1] M. Besta et al., “The graph database interface: Scaling online transactional
and analytical graph workloads to hundreds of thousands of cores,” in Proc.
Int. Conf. High Perform. Comput. Netw. Storage Anal., 2023, pp. 1–18.

[2] H. Chen et al., “G-tran: A high performance distributed graph database
with a decentralized architecture,” in Proc. VLDB Endowment, vol. 15,
no. 11, pp. 2545–2558, 2022.

[3] W. Martens, M. Niewerth, T. Popp, S. Vansummeren, and D.
Vrgoc, “Representing paths in graph database pattern matching,”
2022, arXiv:2207.13541.

[4] C. Li et al., “Bytegraph: A high-performance distributed graph database in
bytedance,” in Proc. VLDB Endowment, vol. 15, no. 12, pp. 3306–3318,
2022.

[5] Y. Tian, “The world of graph databases from an industry perspective,”
ACM SIGMOD Rec., vol. 51, no. 4, pp. 60–67, 2023.

[6] S. Abiteboul and V. Vianu, “Regular path queries with constraints,” in Proc.
16th ACM SIGACT-SIGMOD-SIGART Symp. Princ. Database Syst., 1997,
pp. 122–133.

[7] R. Ronen and O. Shmueli, “SoQL: A language for querying and creating
data in social networks,” in Proc. IEEE 25th Int. Conf. Data Eng., 2009,
pp. 1595–1602.

[8] U. Leser, “A query language for biological networks,” Bioinformatics,
vol. 21, no. suppl_2, pp. ii33–ii39, 2005.

[9] X. Wang et al., “FPIRPQ: Accelerating regular path queries on knowledge
graphs,” World Wide Web, vol. 26, no. 2, pp. 661–681, 2023.

[10] M. Arenas, C. Gutierrez, D. P. Miranker, J. Pérez, and J. F. Sequeda,
“Querying semantic data on the web?,” ACM SIGMOD Rec., vol. 41, no. 4,
pp. 6–17, 2013.

[11] S. L. Xi, A. Augusta, M. Athanassoulis, and S. Idreos, “Beyond the wall:
Near-data processing for databases,” in Proc. 11th Int. Workshop Data
Manage. New Hardware, 2015, pp. 1–10.

[12] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A modern
primer on processing in memory,” in Emerging Computing: From Devices
to Systems: Looking Beyond Moore and Von Neumann. Berlin, Germany:
Springer, 2022, pp. 171–243.

[13] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Proc. 42nd Annu.
Int. Symp. Comput. Archit., 2015, pp. 105–117.

[14] B. Asgari et al., “FAFNIR: Accelerating sparse gathering by using efficient
near-memory intelligent reduction,” in Proc. 2021 IEEE Int. Symp. High-
Perform. Comput. Archit., 2021, pp. 908–920.

[15] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing for
in-memory analytics frameworks,” in Proc. IEEE 2015 Int. Conf. Parallel
Archit. Compilation, 2015, pp. 113–124.

[16] C. Giannoula et al., “SynCron: Efficient synchronization support for
near-data-processing architectures,” in Proc. 2021 IEEE Int. Symp. High-
Perform. Comput. Archit., 2021, pp. 263–276.

[17] Y. Huang et al., “A heterogeneous PIM hardware-software co-design
for energy-efficient graph processing,” in Proc. 2020 IEEE Int. Parallel
Distrib. Process. Symp., 2020, pp. 684–695.

[18] M. Zhang et al., “Graphp: Reducing communication for pim-based graph
processing with efficient data partition,” in Proc. 2018 IEEE Int. Symp.
High Perform. Comput. Archit., 2018, pp. 544–557.

[19] S. Cai, B. Tian, H. Zhang, and M. Gao, “PimPam: Efficient graph pat-
tern matching on real processing-in-memory hardware,” in Proc. ACM
Manage. Data, vol. 2, no. 3, pp. 1–25, 2024.

[20] H. Kang et al., “PIM-tree: A skew-resistant index for processing-in-
memory,” 2022. [Online]. Available: https://arxiv.org/abs/2211.10516

[21] H. Kang et al., “PIM-trie: A skew-resistant trie for processing-in-memory,”
in Proc. 35th ACM Symp. Parallelism Algorithms Archit., 2023, pp. 1–14.

[22] Y. Hua et al., “RADAR: A skew-resistant and hotness-aware ordered index
design for processing-in-memory systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 35, no. 9, pp. 1598–1614, Sep. 2024.

[23] X. Zhao, S. Chen, and Y. Kang, “Load balanced PIM-based graph pro-
cessing,” ACM Trans. Des. Automat. Electron. Syst., vol. 29, pp. 1–22,
2024.

[24] M. Onizuka, T. Fujimori, and H. Shiokawa, “Graph partitioning for
distributed graph processing,” Data Sci. Eng., vol. 2, pp. 94–105,
2017.

[25] I. Stanton and G. Kliot, “Streaming graph partitioning for large distributed
graphs,” in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2012, pp. 1222–1230.

[26] T. Kawamoto, M. Tsubaki, and T. Obuchi, “Mean-field theory of graph
neural networks in graph partitioning,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 4366–4376.

[27] B. Hendrickson and T. G. Kolda, “Graph partitioning models for parallel
computing,” Parallel Comput., vol. 26, no. 12, pp. 1519–1534, 2000.

[28] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the internet topology,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 29, no. 4, pp. 251–262, 1999.

[29] M. E. Newman, “Power laws, pareto distributions and zipf’s law,” Con-
temporary Phys., vol. 46, no. 5, pp. 323–351, 2005.

[30] E. Papalexakis, B. Hooi, K. Pelechrinis, and C. Faloutsos, “Power-hop:
A pervasive observation for real complex networks,” PLoS One, vol. 11,
no. 3, 2016, Art. no. e0151027.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:36:57 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/2211.10516

1056 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 5, MAY 2025

[31] Newton, V. Singh, and T. E. Carlson, “Pim-graphscc: Pim-based graph
processing using graph’s community structures,” IEEE Comput. Archit.
Lett., vol. 19, no. 2, pp. 151–154, Jul./Dec. 2020.

[32] J. Mondal and A. Deshpande, “Managing large dynamic graphs effi-
ciently,” in Proc. 2012 ACM SIGMOD Int. Conf. Manage. Data, 2012,
pp. 145–156.

[33] A. G. Labouseur et al., “The G* graph database: Efficiently managing
large distributed dynamic graphs,” Distrib. Parallel Databases, vol. 33,
pp. 479–514, 2015.

[34] UPMEM, “UPMEM technology,” 2024. Accessed: Jul. 19, 2024. [Online].
Available: https://www.upmem.com/technology/

[35] P. Cailliau et al., “Redisgraph graphblas enabled graph database,” in
Proc. 2019 IEEE Int. Parallel Distrib. Process. Symp. Workshops, 2019,
pp. 285–286.

[36] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi, “Answering
regular path queries using views,” in Proc. IEEE 16th Int. Conf. Data Eng.,
2000, pp. 389–398.

[37] L. Libkin and D. Vrgoč, “Regular path queries on graphs with data,” in
Proc. 15th Int. Conf. Database Theory, 2012, pp. 74–85.

[38] A. Koschmieder and U. Leser, “Regular path queries on large graphs,”
in Proc. 24th Int. Conf. Sci. Statist. Database Manage., Springer, 2012,
pp. 177–194.

[39] J. Zhang et al., “S3: A scalable in-memory skip-list index for key-value
store,” in Proc. VLDB Endowment, vol. 12, no. 12, pp. 2183–2194, 2019.

[40] J. Hu, Z. Wei, J. Chen, and D. Feng, “RWORT: A read and write optimized
radix tree for persistent memory,” in Proc. IEEE 41st Int. Conf. Comput.
Des., 2023, pp. 194–197.

[41] S. Assadi, G. Kol, R. R. Saxena, and H. Yu, “Multi-pass graph stream-
ing lower bounds for cycle counting, max-cut, matching size, and other
problems,” in Proc. IEEE 61st Annu. Symp. Found. Comput. Sci., 2020,
pp. 354–364.

[42] K. Yang, X. Ma, S. Thirumuruganathan, K. Chen, and Y. Wu, “Random
walks on huge graphs at cache efficiency,” in Proc. ACM SIGOPS 28th
Symp. Operating Syst. Princ., 2021, pp. 311–326.

[43] M. Gonzalez Tallada and E. Morancho, “Heterogeneous programming
using openmp and cuda/hip for hybrid CPU-GPU scientific applications,”
Int. J. High Perform. Comput. Appl., vol. 37, no. 5, pp. 626–646, 2023.

[44] M. Gowanlock, “Hybrid KNN-join: Parallel nearest neighbor searches ex-
ploiting CPU and GPU architectural features,” J. Parallel Distrib. Comput.,
vol. 149, pp. 119–137, 2021.

[45] S.-Y. Xiao, C.-L. Li, B.-Y. Guo, and H. Xiao, “A radix sorting parallel
algorithm suitable for graphic processing unit computing,” Concurrency
Comput. Pract. Experience, vol. 33, no. 6, 2021, Art. no. e5818.

[46] Z. Zhou, C. Li, F. Yang, and G. Sun, “Dimm-link: Enabling efficient inter-
dimm communication for near-memory processing,” in Proc. 2023 IEEE
Int. Symp. High-Perform. Comput. Archit., 2023, pp. 302–316.

[47] Z. Abbas, V. Kalavri, P. Carbone, and V. Vlassov, “Streaming graph
partitioning: An experimental study,” in Proc. VLDB Endowment, vol. 11,
no. 11, pp. 1590–1603, 2018.

[48] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Densifica-
tion and shrinking diameters,” ACM Trans. Knowl. Discov. Data, vol. 1,
no. 1, pp. 2–es, 2007.

[49] L.-Y. Ho, J.-J. Wu, and P. Liu, “Distributed graph database for large-scale
social computing,” in Proc. 2012 IEEE 5th Int. Conf. Cloud Comput., 2012,
pp. 455–462.

[50] D. Dai, W. Zhang, and Y. Chen, “IOGP: An incremental online graph
partitioning algorithm for distributed graph databases,” in Proc. 26th Int.
Symp. High-Perform. Parallel Distrib. Comput., 2017, pp. 219–230.

[51] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “Fennel:
Streaming graph partitioning for massive scale graphs,” in Proc. 7th ACM
Int. Conf. Web Search Data Mining, 2014, pp. 333–342.

[52] L. Vaquero, F. Cuadrado, D. Logothetis, and C. Martella, “Adaptive
partitioning for large-scale dynamic graphs,” in Proc. 4th Annu. Symp.
Cloud Comput., 2013, pp. 1–2.

[53] R. Angles, “The property graph database model,” in Proc. Alberto Mendel-
zon Workshop Foundations Data Manage., 2018, 2100, pp. 1–10.

[54] Neo4j, Neo4j - graph database platform. Accessed: Jul. 19, 2024. [Online].
Available: https://neo4j.com/

[55] I. J. Farkas, I. Derényi, A.-L. Barabási, and T. Vicsek, “Spectra of “real-
world” graphs: Beyond the semicircle law,” Phys. Rev. E, vol. 64, no. 2,
2001, Art. no. 026704.

[56] J. Kepner, D. Bader, A. Buluç, J. Gilbert, T. Mattson, and H. Meyerhenke,
“Graphs, matrices, and the graphblas: Seven good reasons,” Procedia
Comput. Sci., vol. 51, pp. 2453–2462, 2015.

[57] J. Leskovec and S. Group, “Stanford network analysis project (SNAP),”
2024. Accessed: Jul. 24, 2024. [Online]. Available: http://snap.stanford.
edu/snap/

[58] LDBC Council, “Ldbc social network benchmark (SNB),” 2024.
Accessed: Jul. 24, 2024. [Online]. Available: https://ldbcouncil.org/
benchmarks/snb/

[59] D. Michail, J. Kinable, B. Naveh, and J. V. Sichi, “Jgrapht—a Java library
for graph data structures and algorithms,” ACM Trans. Math. Softw.,
vol. 46, no. 2, pp. 1–29, 2020.

[60] G. Bagan, A. Bonifati, R. Ciucanu, G. H. Fletcher, A. Lemay, and N.
Advokaat, “gMark: Schema-driven generation of graphs and queries,”
IEEE Trans. Knowl. Data Eng., vol. 29, no. 4, pp. 856–869, Apr. 2017.

[61] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “GraphPIM: En-
abling instruction-level PIM offloading in graph computing frameworks,”
in Proc. 2017 IEEE Int. Symp. High Perform. Comput. Archit., 2017,
pp. 457–468.

[62] R. Labs, “New redisgraph 1.0 achieves 600x faster performance for
graph databases,” 2023. Accessed: Jul. 24, 2024. [Online]. Avail-
able: https://redis.com/blog/new-redisgraph-1-0-achieves-600x-faster-
performance-graph-databases/

[63] R. Ma et al., “Accelerating regular path queries over graph database with
processing-in-memory,” in Proc. 61st ACM/IEEE Des. Automat. Conf.,
2024, pp. 1–6.

Weihan Kong is currently working toward the PhD
degree in Shanghai Jiao Tong University. His re-
search interests include hybrid memory system and
processing-in-memory.

Shengan Zheng received the BS and PhD degrees
from Shanghai Jiao Tong University, in 2014 and
2019, respectively. He is currently an assistant profes-
sor with Shanghai Jiao Tong University. His research
interests include memory systems, storage systems,
and distributed systems.

Yifan Hua (Student Member, IEEE) is currently
working toward the PhD degree with Shanghai Jiao
Tong University, China. His research interests include
nonvolatile memory systems, processing-in-memory
systems, and hybrid memory management.

Ruoyan Ma is currently working toward the master’s
degree in Shanghai Jiao Tong University. His research
interests include machine learning system and near
data processing.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:36:57 UTC from IEEE Xplore. Restrictions apply.

https://www.upmem.com/technology/
https://neo4j.com/
http://snap.stanford.edu/snap/
http://snap.stanford.edu/snap/
https://ldbcouncil.org/benchmarks/snb/
https://ldbcouncil.org/benchmarks/snb/
https://redis.com/blog/new-redisgraph-1-0-achieves-600x-faster-performance-graph-databases/
https://redis.com/blog/new-redisgraph-1-0-achieves-600x-faster-performance-graph-databases/

KONG et al.: PimBeam: EFFICIENT REGULAR PATH QUERIES OVER GRAPH DATABASE USING PROCESSING-IN-MEMORY 1057

Yuheng Wen is currently working toward the PhD
degree in Shanghai Jiao Tong University. His research
interests include near data processing and processing-
in-memory systems.

Guifeng Wang is currently working toward the PhD
degree in Shanghai Jiao Tong University. His research
interests include computational storage and key-value
store.

Cong Zhou is currently working toward the PhD
degree with Shanghai Jiao Tong University, China.
His research interests include near-memory comput-
ing and distributed memory systems.

Linpeng Huang (Senior Member, IEEE) received
the MS and PhD degrees in computer science from
Shanghai Jiao Tong University in 1989 and 1992, re-
spectively. He is a professor of computer science with
the department of computer science and engineering,
Shanghai Jiao Tong University. His research interests
include distributed systems and service oriented com-
puting.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2025 at 07:36:57 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

