
Accelerating Verifiableueries over Blockchain Database System

Using Processing-in-memory

YIFAN HUA, Peking University, Beijing, China

SHENGAN ZHENG, Department of Computer Science and Engineering, Shanghai Jiao Tong University,

Shanghai, China

WEIHAN KONG, Shanghai Jiao Tong University, Shanghai, China

DONGLIANG XUE, computer, Shanghai Jiao Tong University, Shanghai, China

KE XI, Xinjiang Electronics Research Institute Co., Ltd., Urumqi, China

YUHENG WEN, Shanghai Jiao Tong University, Shanghai, China

LINPENG HUANG, Shanghai Jiao Tong University, Shanghai, China

HONG MEI, Peking University, Beijing, China

Blockchain database systems, such as Ethereum and vChain, sufer from limited memory bandwidth and high memory access

latency when retrieving user-requested data. Emerging processing-in-memory (PIM) technologies are promising to accelerate

users’ queries, by enabling low-latency memory access and aggregated memory bandwidth scaling with the number of PIM

modules. In this paper, we present Panther, the irst PIM-based blockchain database system supporting eicient veriiable

queries. Blocks are distributed to PIM modules for high parallelism with low inter-PIM communication cost, managed by a

regression-based model. For load balance across PIM modules, data are adaptively promoted and demoted between the host

and PIM sides. In multiple datasets, Panther achieves up to 23.6× speedup for veriiable queries and reduces metadata storage

by orders of magnitude compared to state-of-the-art designs on real PIM hardware.

CCS Concepts: · Hardware → Emerging architectures; · Computer systems organization → Multicore architectures; Other

architectures; · Software and its engineering → Distributed memory.

Additional Key Words and Phrases: Processing in memory, Blockchain, Merkle hash tree, Pointer chasing, Veriiable query

1 Introduction

With the widespread adoption of blockchain for data-intensive applications such as inance, supply chain, and
health care [3, 25, 30, 32, 37, 41ś43, 47], there is a growing demand from users to query data stored in blockchain
database systems. Two types of queries [29, 44] are commonly performed. The irst is a single-query to get a single
data object from a block. The second is a multi-query to retrieve multiple data objects from blocks within a time
range. The blockchain system returns user-requested data along with their proofs by traversing Merkle Hash Tree
(MHT) indexes [19, 31, 33]. The proofs are used to verify whether these data have been tampered with. Pointer

New Paper, Not an Extension of a Conference Paper.

Authors’ Contact Information: Yifan Hua, Peking University, Beijing, China, huayifan@pku.edu.cn; Shengan Zheng, Shanghai Jiao Tong

University, Shanghai, China, shengan@sjtu.edu.cn; Weihan Kong, Shanghai Jiao Tong University, Shanghai, China, weihankong@sjtu.edu.cn;

Dongliang Xue, Shanghai Jiao Tong University, Shanghai, China, xuedongliang010@sjtu.edu.cn; Ke Xi, Xinjiang Electronics Research Institute

Co., Ltd., Urumqi, China, 601784808@qq.com; Yuheng Wen, Shanghai Jiao Tong University, Shanghai, China, wenyuheng@sjtu.edu.cn;

Linpeng Huang, Shanghai Jiao Tong University, Shanghai, China, lphuang@sjtu.edu.cn; Hong Mei, Peking University, Beijing, China,

meih@pku.edu.cn. Hong Mei, Linpeng Huang and Shengan Zheng are corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2025 Copyright held by the owner/author(s).

ACM 1544-3973/2025/9-ART

https://doi.org/10.1145/3768318

ACM Trans. Arch. Code Optim.

https://orcid.org/0000-0002-2321-367X
https://orcid.org/0000-0003-2485-760X
https://orcid.org/0009-0007-6922-1740
https://orcid.org/0000-0003-0140-3074
https://orcid.org/0009-0009-2821-3095
https://orcid.org/0009-0000-4971-8855
https://orcid.org/0000-0002-1531-7962
https://orcid.org/0000-0003-2380-3976
https://doi.org/10.1145/3768318
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3768318&domain=pdf&date_stamp=2025-09-16

2 • Y. Hua et al.

chasing [11, 20, 38, 45, 49] incurred by traversing MHT indexes exhibits irregular and unpredictable memory
access patterns, leading to a poor cache hit rate and excessive memory accesses. The increasing performance gap
between processor speeds and memory access speeds (i.e., the memory wall [1, 2, 34, 35]) renders pointer chasing
the dominant performance bottleneck when traversing MHT indexes. Therefore, current blockchain database
systems, such as Ethereum [42] and vChain [44], sufer from limited memory bandwidth and high memory access
latency when retrieving user-requested data and proofs.
By embedding processors in memory, processing-in-memory (PIM) technologies [8, 10, 16, 18, 24, 26, 36] are

promising to mitigate these performance bottlenecks, by enabling low-latency memory access and aggregated
memory bandwidth scaling with the number of PIM modules. The PIM system consists of two parts: the host side
and the PIM side. The host side involves powerful CPU cores and the PIM side includes a set of PIM modules with
wimpy cores. The host side dispatches batches of data processing tasks to PIM modules and collects results from
the PIM side. The PIM modules process these tasks within the memory modules that integrate computational
resources, reducing data movement to the host CPU for processing. Therefore, PIM has potential to accelerate
veriiable queries over blockchain database systems by exploiting the high parallelism between PIM modules and
accelerating pointer chasing.
Prior works [5, 6, 12, 22, 27] use PIM to accelerate queries over traditional key-value database systems. They

partition the key space into multiple disjoint key ranges, and distribute data and their ordered indexes (e.g.,
skiplist and B+-tree) within these key ranges to PIM modules. Hash tables are employed on the host side to
manage distributed data stored in PIM modules. For processing users’ requests, previous works irst locate the
PIM module containing the requested data through hash tables on the host side, and then traverse the ordered
indexes in PIM modules to retrieve the requested data. For load balance across PIM modules under skewed
workloads, hot data are promoted from the PIM side to the host side during runtime.

Unfortunately, directly applying techniques from existing PIM-based key-value database systems to blockchain
database systems faces three challenges. (1) The hash-based management for distributed data in PIM modules
overlooks the temporal characteristics of blockchain data distribution and results in signiicant metadata cost.
Prior works employ hash tables for managing distributed data, assuming that the data distribution does not follow
a consistent pattern during runtime. The hash tables consume signiicant storage space. However, in blockchain,
data blocks exhibit a temporal distribution pattern, as the time interval between block generation is determined
by the underlying consensus protocol. For example, the Ethereum system [42] generates a block about every
twelve seconds. This gives us an opportunity to accelerate veriiable queries and lower metadata cost by building
a regression function between timestamps and block heights (i.e., block IDs) for managing distributed data blocks
in PIM modules. (2) The key-range-based partitioning method for traditional indexes (e.g., skiplist and B+-tree)
is unsuitable for MHT indexes in blockchain database systems, since traditional indexes are not used for data
veriication while MHT indexes are. Prior works distribute data within a key range to the same PIM module
and build an ordered index for data within key ranges in each PIM module. However, in blockchain, data are
grouped into blocks, and data within a key range exist in multiple blocks. Each block constructs an MHT index
for data indexing and veriication. Hash values in an MHT are calculated by data in the block and used for data
veriication. If MHT indexes are built by data within key ranges across blocks rather than data within each block,
the blockchain fails to verify data since the hash values in MHTs are modiied. As a result, the index partitioning
scheme should be redesigned in blockchain database systems with consideration for data veriication. (3) Prior
works only promote hot data to the host side without demoting cold data back to PIM modules during runtime,
resulting in a large amount of data and signiicant load on the host side. This leaves PIM modules underutilized
and lowers parallelism between the host and PIM sides. Thus, the method for achieving load balance across PIM
modules should adapt to data hotness changes.

This paper presents Panther, the irst PIM-based blockchain database system that supports eicient veriiable
single-queries andmulti-queries. Panther incorporates a regression-basedmodel rather than hash tables to manage

ACM Trans. Arch. Code Optim.

Accelerating Verifiable ueries over Blockchain Database System Using Processing-in-memory • 3

distributed data blocks in PIM modules. The model extracts the mapping relationship between timestamps and
block heights through a piecewise linear function to locate data blocks in PIM modules, accelerating veriiable
queries and lowering metadata cost. In addition, Panther employs a subtree-based MHT index partitioning
mechanism to distribute data and indexes in blockchain systems across PIM modules. Data and index nodes used
for data indexing and veriication in each MHT subtree are stored in the same PIM module to lower inter-PIM
communication cost. MHT subtrees are evenly distributed to PIM modules for high parallelism and load balance
across PIM modules, as each PIM module stores a similar amount of data. In this way, the MHT index partitioning
mechanism achieves high parallelism across PIM modules and incurs low inter-PIM communication cost. To
overcome the limitation of existing data promotion strategy for load balance across PIM modules, Panther
adaptively promotes hot data to the host side and demotes cold data to the PIM side with data hotness changes
during runtime. Concisely, this paper makes the following contributions:

• We introduce Panther, a PIM-based blockchain database system supporting eicient veriiable single-queries
and multi-queries. To the best of our knowledge, Panther is the irst design to accelerate queries and data
veriication over blockchain database systems using PIM.

• We propose a regression-based model for managing distributed data in PIM modules, accelerating veriiable
queries and reducing metadata cost by leveraging the temporal characteristics of blockchain.

•We design a subtree-based MHT index partitioning mechanism to distribute data and indexes across PIM
modules, enabling high parallelism with low inter-PIM communication cost.

• We present an adaptive data promotion and demotion mechanism to reduce load imbalance across PIM
modules with data hotness changes during runtime.

•We evaluate Panther on real PIM hardware. In multiple datasets, Panther achieves up to 23.6× speedup for
single-query, 19.6× speedup for multi-query, 16.1× speedup for blockchain construction, and reduces metadata
storage by 1 to 2 orders of magnitude compared to state-of-the-art blockchain database systems.

2 Background and motivation

This section provides background on blockchain database system, pointer chasing, PIM system architecture, and
prior PIM-based key-value database systems. We analyze the limitations of previous works and summarize our
motivations to design a PIM-based blockchain database system.

2.1 Blockchain database system

Blockchain [3, 25, 30, 32, 37, 41ś43, 46] has become a promising distributed ledger technology for multiple parties
to engage and share a decentralized tamper-proof database, recording the transactions between these parties in
timestamped and chronologically linked data blocks. Figure 1 shows the overview of a Merkle-based blockchain
database system consisting of three actors: miner node, full node, and light node. The miner node is responsible
for packaging data into blocks, appending new blocks to the blockchain, and synchronizing new blocks to other
nodes in the blockchain system. The light node has limited storage and only stores block headers containing

metadata such as timestamps and root hash values of blocks. It requests data stored in the full node (1). Two
types of queries are commonly performed [29, 44]. The irst is a single-query to get a single data object from a
block. The second is a multi-query to retrieve multiple data objects from blocks within a time range. Each data
object in the blockchain is modeled as a tuple in the form of �� = ⟨�� ,�� ,��⟩ [4, 44], where �� is the timestamp of
the block containing the object, �� is the attribute set of the object, and�� is the keyword set of the object. The
full node stores both block headers and bodies and is responsible for processing query requests from the light

node (2). The full node irst locates the requested block height (i.e., block ID) using the block’s timestamp, and
then retrieves the requested data object within the block using the data object’s keyword. Current blockchain
systems employ traditional indexes (e.g., skiplist in vChain [44]) for inter-block indexing and Merkle Hash Tree

ACM Trans. Arch. Code Optim.

4 • Y. Hua et al.

Miner node

Full node

Light node

 ①
 Query

 ②
Search

 ③
(Data, Proof）

......

n-1 n n+1

Merkle Hash Tree (MHT)

 ④
Verify

If RootHash_Light = RootHash_Full?

Package

Sync

Sync

H1 H2

H5

H7

D1 D2 D3 D4

Block body

Data

Block header

Timestamp

RootHash
…

MHT

Block height:

H6

H3 H4

Fig. 1. Blockchain database system.

(MHT) (e.g., Merkle patricia trie in Ethereum [42]) for intra-block data indexing and veriication. In an MHT,
apart from the index function of tree, the leaf nodes contain the hash values of the data (e.g., �3 = ℎ��ℎ(�3)).
The internal nodes include the hash values of their child nodes (e.g., �5 = ℎ��ℎ(�1| |�2)). If the data is tampered
with, the tampering will be forwarded up to the upper-level hash values and inally to the root hash (i.e., �7).
MHT enables the proof of existence for requested data. For example, to prove �3, the sibling hashes along the
search path (i.e., �4 and �5) are returned as the proof. The full node returns the requested data and proof to the

light node (3). The light node can verify the requested data �3 by reconstructing the root hash using the proof
(i.e., �������ℎ_���� = ℎ��ℎ(�5| |ℎ��ℎ(ℎ��ℎ(�3) | |�4))) and comparing it with the �������ℎ_���ℎ� stored in the

block header (4). If the two values are equal, the returned data is trusted.
Data blocks in blockchain systems exhibit a temporal distribution pattern, as the time interval between block

generation is determined by the underlying consensus protocol. Blockchain systems adopt an append-only ledger
structure in which transactions are grouped into sequentially generated blocks. These blocks are strictly ordered
in time and form a linear chain structure with well-deined temporal semantics. Block production in blockchain
systems is governed by consensus protocols that regulate the inter-block interval in a predictable mannerÐsuch
as every 10 minutes in Bitcoin (Proof of Work), every 12 seconds in Ethereum (Proof of Stake), every 1 second in
BNB Smart Chain (Proof of Staked Authority), etc.

2.2 Pointer chasing and PIM system

Pointer chasing [11, 20, 38, 45, 48] is a fundamental operation in many data structures [13, 15, 23, 27, 28, 40] such
as tree, linked list, skiplist, and graph. Since nodes linked by pointers may be stored in memory far away from
each other, pointer chasing has a poor cache hit rate and requires a signiicant number of memory accesses to
look for the next hop. The increasing performance gap between processor speeds and memory access speeds (i.e.,
the memory wall [1, 2, 34, 35]) renders pointer chasing the dominant performance bottleneck for Merkle-based
blockchain database systems when traversing MHT indexes.

The emergence of Process-in-memory (PIM) technologies [8, 10, 16, 18, 24, 26, 36] introduce a new paradigm
that can enhance the eiciency of pointer chasing by allowing it to be executed within the memory devices. As
shown in Figure 2, the PIM system consists of two parts: the host side and the PIM side. The host side involves
powerful CPU cores, caches, and memory. The PIM side includes multiple PIM modules. Each PIM module is
composed of a data processor unit (DPU) with weaker computing capability than CPU, and capacity-limited

ACM Trans. Arch. Code Optim.

Accelerating Verifiable ueries over Blockchain Database System Using Processing-in-memory • 5

Host sideCPU cores and caches

PIM core and caches

Memory

… PIM side

Processor package

PIM module 1

Memory Memory

PIM core and caches

Memory

PIM module N

Fig. 2. PIM system architecture.

caches and memory. PIM cores are closer to memory and access memory faster than CPU cores. The host
side dispatches data processing tasks to PIM modules and gathers the results after the PIM modules inish the
computation. The PIM modules process these tasks within the memory modules that integrate computational
resources, reducing data movement to the host CPU for processing. The two components of the PIM system,
the host side and the PIM side, prefer diferent kinds of workloads [22, 23, 39]. The distributed PIM side prefers
uniformly random workloads and sufers from the load imbalance under skewed workloads. In contrast, the host
side prefers skewed workloads since the spatial and temporal locality characteristics in these workloads lead to
better CPU cache eiciency.
Currently, UPMEM [8] (2.1 GHz CPUs on the host side and 350 MHz DPUs on the PIM side) is the only

commercially-available PIM product. Compared with a conventional machine equipped with DDR4-2666, UPMEM
has higher data processing parallelism and lower memory access latency since a large number of DPUs are
embedded in memory. However, the existing UPMEM system has high overheads for host side calling PIM
modules, host-PIM communication, and inter-PIM communication. The memory bandwidth of a conventional
8GB DDR4-2666 DIMM is 21 GB/s. The latency of a CPU core accessing the conventional DDR4-2666 memory for
a 64-bit memory word is roughly 90 ns. In the existing UPMEM system, the memory bandwidth is 630 MB/s in a
PIM module at a DPU frequency of 350 MHz. The aggregate intra-PIM bandwidth is linear with the number of
PIM modules. An 8GB UPMEM DIMM has 128 DPUs and its aggregate intra-PIM bandwidth is up to 79 GB/s.
The latency of a PIM core accessing the PIM’s memory for a 64-bit memory word in existing UPMEM is 14 ns.
Therefore, the DPUs in UPMEM access memory faster than CPUs since they are closer to memory. In addition,
if the system achieves load balance among all PIM modules, UPMEM can provide higher aggregate intra-PIM
memory bandwidth than conventional DDR4-2666. Despite the DPUs in UPMEM accessing memory faster than
CPUs, the latency for the host side calling DPUs in UPMEM is 0.5 milliseconds, which is much higher than the
memory access latency. Invoking a DPU includes transferring input data to the DPU, initiating computation
(dpu_launch()), and synchronizing for results. Besides, the interaction between user-space applications and the
DPU system involves runtime libraries (e.g., libdpu) and system-level calls, which introduce additional software
stack overhead, including context switching and queue management. The existing UPMEM system only ofers
25 GB/s host-PIM communication bandwidth, which is smaller than the aggregate intra-PIM bandwidth. The
existing UPMEM system does not support direct communication between PIM modules due to the scarce on-chip
routing resources. The communication between PIM modules relies on host-PIM communication to exchange
data, which involves loading data from one PIM module to the host’s cache and then storing it to the destination
PIM module. Considering the poor host-PIM communication ability, inter-PIM communication can easily become

ACM Trans. Arch. Code Optim.

6 • Y. Hua et al.

Key-value data

Applications

Query (Key) Return (Data)

Hash tables

Ordered index

PIM module 1

…

PIM module N

PIM side

Host sideResult merger

Key-value data

Ordered index

Fig. 3. PIM-based key-value database system.

the performance bottleneck. The existing UPMEM system only ofers 25 GB/s total host-PIM and inter-PIM
communication bandwidth.

2.3 PIM-based key-value database systems

Prior works [5, 6, 21, 22, 27] use PIM to accelerate queries over traditional key-value database systems, as shown
in Figure 3. They partition the key space into multiple disjoint key ranges, and distribute data and ordered indexes
(e.g., skiplist and B+-tree) within these key ranges to PIM modules. Hash tables are employed on the host side
to manage distributed data stored in PIM modules. To beneit from the parallelism across PIM modules and
amortize the communication cost between PIM modules (inter-PIM) and between the host side and the PIM side
(host-PIM), requests are dispatched to PIM modules in batches. For processing users’ requests, prior works irst
locate the PIM module containing the requested data through hash tables on the host side, and then traverse the
ordered indexes in PIM modules to retrieve the requested data. After retrieving requested data from PIM modules,
these data are transmitted to the host side, merged by the result merger, and returned to applications. Prior works
can be divided into two categories based on the methods for partitioning the key space and constructing ordered
indexes: range partition [5, 6, 27] and node distribution [21, 22].
Range partition. Range partition designs [5, 6, 27] statically partition the entire key space into disjoint coarse-
grained ranges with the same length, maintained by each PIM module. Each PIM module builds an independent
ordered index based on their key-value pairs. The search path from top to bottom for each index operation
is integral in one PIM module, without communication overhead between PIM modules. Since the system
performance is determined by the busiest PIM module, for workloads that request for uniformly random keys,
each PIM module handles a similar number of requests and range partition designs achieve high parallelism.
However, for skewed workloads that concentrate on keys in a small subset of the partitions, some PIM modules
are overwhelmed while the rest PIM modules are idle, resulting in load imbalance across PIM modules.
Node distribution. Node distribution designs [21, 22] aim to mitigate the load imbalance issue in range partition.
Since the coarse granularity approach to partition the key space in range partition designs sufers from load
imbalance, node distribution designs partition the key space into multiple disjoint ine-grained ranges across PIM
modules. Since ine-grained key ranges are distributed across PIM modules, the search path from top to bottom

ACM Trans. Arch. Code Optim.

Accelerating Verifiable ueries over Blockchain Database System Using Processing-in-memory • 7

for each index operation is sliced into many segments in diferent PIM modules. At the end of each segment, index
operations are redispatched to diferent PIM modules to the next segment, requiring inter-PIM communication.
Frequently requested data are promoted from the PIM side to the host side for better load balance. However,
promoting a large amount of data to the host side increases the load on the host side and leaves PIM modules
underutilized.
In general, range partition designs [5, 6, 27] sufer from load imbalance across PIM modules under skewed

workloads. Batches of requests concentrate on hot data in a small number of PIM modules, resulting in large
gaps in the time taken by diferent PIM modules to process requests. Node distribution designs [21, 22] focus
on addressing the load imbalance issue by adopting ine-grained methods for partitioning the key space and
promoting hot data from the PIM modules to the host side. However, ine-grained key range partitioning results
in high inter-PIM communication cost. Additionally, a large amount of data promoted to the host side increases
the load on the host side and leaves PIM modules underutilized.

2.4 Existing partitioning and load balancing schemes in non-PIM distributed systems

Prior (non-PIM) designs adopt three schemes to distribute blockchain data to distributed devices: static sharding [9],
dynamic sharding [14], and full replication [30].
Static sharding is one of the most common partitioning approaches in blockchain systems. Static sharding

uses a ixed hash function to distribute data across distributed devices, with each shard being responsible for a
subset of the overall data. Once the shards are allocated, the system does not dynamically adjust them based
on changing workloads. Static sharding provides an easy-to-implement and scalable solution for large-scale
distributed blockchains, but does not incorporate any load balancing schemes. It allows for parallel processing
across diferent shards, leading to improved throughput and reduced bottlenecks in transaction processing.
However, static sharding sufers from skewed access patterns with load imbalances across shards and lacks
runtime adaptability. As some shards may experience higher transaction volumes than others, this can lead to
uneven resource utilization and potential bottlenecks, thus degrading system performance. Additionally, static
sharding lacks the ability to adapt to changing network conditions or data access patterns.
Compared with static sharding, dynamic sharding introduces lexibility in the partitioning process. In dy-

namic sharding, the system can adjust the number and size of the shards based on memory access patterns
by migrating hot data across distributed devices. This dynamic reconiguration helps in balancing the load
more eiciently across the system, allowing it to respond to luctuating demands in real-time. However, the
complexity of managing dynamic shards increases the system’s overhead. Maintaining data consistency and
ensuring balanced shard distribution during dynamic adjustments introduce additional challenges, such as the
need for complex coordination mechanisms, increased computational overhead, and substantial data migration
costs across distributed devices.
Full replication is an approach in which every node in the blockchain network stores a complete copy of the

entire blockchain’s data. Every node keeps a full record of all blocks and transactions. Although this approach
guarantees high data availability and redundancy, it results in signiicant storage requirements for each node,
especially as the blockchain grows over time. Full replication ensures that every node has access to the complete
state of the blockchain, enabling high reliability and fault tolerance. It also simpliies the process of verifying
transactions, as each node independently validates the entire blockchain. However, the main limitation of full
replication is its lack of scalability. Storing a full copy of the blockchain can become computationally expensive
and ineicient, particularly as the size of the blockchain increases. This strategy is less suited for large-scale
blockchains due to the heavy storage demands and the limited ability to handle high transaction volumes.

ACM Trans. Arch. Code Optim.

8 • Y. Hua et al.

2.5 Motivation

PIM has potential to accelerate veriiable queries over blockchain database systems. However, directly applying
techniques from existing PIM-based key-value database systems and non-PIM distributed systems to blockchain
database systems faces several challenges. We summarize our motivations as follows.

First, the hash-based management for distributed data stored in PIMmodules, designed for PIM-based key-value
database systems, does not leverage the temporal characteristics of blockchain data distribution and results in
signiicant metadata overhead. State-of-the-art works employ hash tables for managing distributed data in PIM
modules, assuming that the data distribution does not follow a consistent pattern during runtime. The hash tables
record the positions of data stored in PIM modules, facilitating data migration between PIM modules. The hash
tables consume signiicant storage space. For example, the size of hash tables in [12] is approximately 10% of the
total size of all key-value data. However, in blockchain systems, data blocks exhibit a temporal distribution pattern,
as the time interval between block generation is determined by the underlying consensus protocol. For example,
the Ethereum system [42] generates a block about every twelve seconds. This gives us an opportunity to build a
regression function between timestamps and block heights for locating the block containing the requested data,
supporting single-queries and multi-queries and lowering metadata overhead. Thus, the management technique

for distributed data stored in PIM modules should be redesigned to leverage the temporal characteristics of blockchain.

Second, the key-range-based partitioning method for traditional indexes (e.g., skiplist and B+-tree) is not
suitable for Merkle-based indexes in blockchain systems, since traditional indexes are not used for data veriication
while MHT indexes are. Prior works partition the key space into multiple disjoint key ranges, and distribute
data within a key range to the same PIM module for enhanced node locality. An ordered index is built for data
within key ranges in each PIM module. In blockchain, however, data are grouped into blocks. Data within a key
range exist in multiple blocks. Each block constructs an MHT [19, 31, 33] for data indexing and veriication. Hash
values in an MHT are calculated by data in the block and used for data veriication. If data within a key range
are distributed to the same PIM module and MHT indexes are built by data within key ranges across blocks
rather than data within each block, the blockchain fails to verify data since the hash values in MHTs are modiied.
Furthermore, the MHT nodes returned as proof should be considered when enhancing node locality in each
PIM module. Therefore, the index partitioning scheme in blockchain database systems should be redesigned with

consideration for data veriication.

Third, in prior works, the technique for achieving load balance across PIM modules results in excessive data
and signiicant load on the host side. Since the load imbalance issue is attributed to hot data in PIM modules,
state-of-the-art designs promote hot data from the PIM side to the host side and process requests for these hot
data on the host side. Although promoting hot data lowers the number of requests processed in busy PIM modules
and mitigates the load imbalance risk, previous designs do not consider the hotness changes of data. They only
promote data that becomes hot to the host side and do not demote data that becomes cold to PIM modules during
runtime, resulting in a large amount of data on the host side and leaving PIM modules underutilized. As a result,
the method for achieving load balance across PIM modules should adapt to data hotness changes during runtime.

Fourth, existing blockchain partitioning and load balancing schemes in non-PIM distributed systems all have
limitations and cannot be directly transferred to PIM systems due to diferences in memory access models,
communication bandwidth between distributed devices, computing capabilities of processing units, and storage
capacity among distributed devices. Static sharding sufers from skewed access patterns with load imbalances
across shards and lacks runtime adaptability. Evenmore critically, compared to traditional distributed architectures,
the adverse efects of load imbalance are signiicantly ampliied in PIM-based systems. This is primarily due to
the fact that the computational capacity of a single PIM core is substantially weaker than that of a CPU core. As a
result, PIMmodules with heavier loads process requests much slower than those with lighter loads, and the overall
system performance is dominated by the slowest module, consistent with the bottleneck efect. Furthermore, the

ACM Trans. Arch. Code Optim.

Accelerating Verifiable ueries over Blockchain Database System Using Processing-in-memory • 9

storage capacity of an individual PIM module is typically much smaller than that of a conventional distributed
node. Consequently, load imbalance may not only degrade processing throughput but can also lead to data
overlow in heavily loaded PIM modules, threatening the stability and correctness of the system. Dynamic
sharding dynamically migrates data across distributed devices under diferent access patterns, thus achieving
better load balance than static sharding. However, the load balancing scheme is not well-suited to PIM-based
systems due to fundamental diferences in the data access and inter-device communication models. Speciically,
in PIM architectures, all requests must be dispatched from the host to individual PIM modules, and inter-PIM
communication must be mediated by the host. For example, transferring data from one PIM module to another
requires a two-phase processÐdata must irst be promoted to the host side and then demoted to the target PIM
module. This indirection introduces substantial communication overhead due to the limited host-PIM bandwidth,
which is typically constrained to roughly 12.2 MB/s for each PIM module on average, signiicantly lower than
the several or tens of GB/s inter-device bandwidth typically observed in distributed network environments.
This limitation stems from the scarcity of on-chip communication resources in PIM systems. Moreover, the
computational capability of PIM cores is signiicantly weaker than that of conventional CPU cores, making it
challenging to support complex coordination protocols that are often required by dynamic sharding mechanisms
such as rebalancing decisions. As a result, the overhead of dynamic coordination outweighs its potential beneits
in the context of PIM, highlighting the need for lightweight, static, and topology-aware partitioning and load
balancing strategies tailored to the architectural constraints of PIM systems. Full replication requires a large
amount of storage space as the size of the blockchain increases. This method is highly unsuitable for PIM systems,
as the storage capacity of a single PIM module is only 64 MB, which is insuicient to accommodate all the data in
a blockchain.

3 Design

This section introduces the overview of Panther and the three key designs incorporated in Panther. Panther is
a PIM-based blockchain database system supporting eicient single-queries and multi-queries. To exploit the
temporal characteristics of blockchain, Panther incorporates a lightweight regression-based model for distributed
data management. To preserve the data veriication function of blockchain and enhance MHT node locality in
each PIM module, Panther presents a subtree-based MHT index partitioning method. For load balance across
PIM modules, Panther designs an adaptive data promotion and demotion mechanism.

3.1 Performance modeling of PIM-based blockchain systems

PIM has the potential to accelerate veriiable queries over blockchain database systems. We derive a general
formula for average access latency as a function of key system parameters when processing a batch of query
requests. The notations used in this section are summarized in Table 1. The total latency for processing a batch of
requests consists of the inter-block indexing latency and the maximum intra-block indexing latency on both the
host and PIM sides, as shown in Formula 1.

� =������ +���{�ℎ��� ,����} (1)

The total inter-block indexing latency is calculated by the sum of inter-block indexing latency for each request,
as shown in Formula 2.

������ =

�����ℎ︁

�=1

������_� (2)

Since MHT nodes are connected by hash pointers, traversing MHTs on the host side involves both memory
accesses for pointer chasing and hash computations performed by the CPU. For each query request, Panther

ACM Trans. Arch. Code Optim.

10 • Y. Hua et al.

Table 1. Notations in this section

Notation Deinition

������ The total latency for inter-block indexing

�ℎ��� The total latency for traversing the promoted MHTs on the host side

���� The total latency for traversing the MHTs on the PIM side

�����ℎ The number of requests in a batch

����_��� The latency of a single memory access by the CPU

����_��� The latency of a single memory access by the PIM

����_ℎ��ℎ The latency for the CPU to compute a single hash function

����_ℎ��ℎ The latency for the PIM to compute a single hash function

�ℎ��� The average MHT size on the host side

���� The average MHT size on the PIM side

�ℎ��� The number of requests processed on the host side

����_��� The number of requests processed by the busiest PIM module

����_���� The latency for communication between PIM modules

performs log �ℎ��� pointer chasing operations. Therefore, the total latency for traversing the promoted MHTs on
the host side is calculated by Formula 3.

�ℎ��� = (����_��� +����_ℎ��ℎ) × log �ℎ��� × �ℎ��� (3)

On the PIM side, traversing MHTs involves both memory accesses for pointer chasing and hash computations
performed by PIM cores. For each query request, Panther performs log ���� pointer chasing operations. The total
latency of MHT traversal on the PIM side is determined by the busiest PIM module, i.e., the one processing the
largest number of query requests. Moreover, the communication latency between PIM modules, incurred during
cross-module MHT traversal, should also be taken into account. Therefore, ���� is calculated by Formula 4.

���� = (����_��� +����_ℎ��ℎ) × log ���� × ����_��� +����_���� (4)

Panther incorporates several techniques to enhance the performance of the blockchain database system.
Section 3.3 presents the regression-based model for distributed data management, aiming to lower the inter-block
indexing latency and metadata cost. Section 3.4 introduces the subtree-based MHT index partition mechanism
to minimize the communication cost between PIM modules. Section 3.5 shows the adaptive data promotion
and demotion mechanism that balances the load across PIM modules, thereby reducing the number of requests
handled by the busiest PIM module.

3.2 Overview of Panther

Figure 4 presents the overview of Panther. To achieve high parallelism across PIM modules and enhance MHT
node locality within each PIM module, blocks are evenly distributed to PIM modules. On the PIM side, data and
MHT of each block are stored in PIM modules. For workloads that request data with uniformly random keys,
each PIM module handles a similar number of requests and the blockchain system exhibits high parallelism.
However, for skewed workloads that concentrate on some hot data, the blockchain system may sufer from load
imbalance across PIM modules. To address the load imbalance issue, Panther adaptively promotes MHT branches
containing hot data to the host side and demotes MHT branches containing cold data to the PIM side with data
hotness changes during runtime. This mechanism is detailed in Section 3.5 and is represented by orange dotted

ACM Trans. Arch. Code Optim.

Accelerating Verifiable ueries over Blockchain Database System Using Processing-in-memory • 11

Host side

PIM side

Input: Timestamp

PIM module 1

…

PIM module N

…

Inter-block index

Output: Block height

MHT root array

Applications

Query (Timestamp, Keyword) Return (Data, Proof)

Panther

Input: Keyword

Promoted data

and MHT branches

Output: (Data, Proof)

Input: Keyword

Data and MHTs

…

Result merger

Data and MHTs

…

Data promotion and demotion

Fig. 4. Overview of Panther. Black arrows represent the data flow of query processing, while orange bidirectional doted

arrows indicate the paths of data promotion and demotion.

bidirectional arrows in Figure 4. The MHT branches include the MHT nodes on the search path for data indexing
and the proof nodes for data veriication. On the host side, Panther employs a regression-based inter-block
index to leverage the temporal characteristics of blockchain, automatically mapping the relationship between
timestamps and block heights for managing distributed data blocks. Compared with hash tables in prior works,
the regression-based inter-block index requires less storage space for locating the block containing the requested
data. Since block heights in blockchain are successive integers and the MHT root of each block is frequently
used for data indexing and veriication, MHT roots are stored in an array on the host side to optimize CPU cache
locality.
The data low of query processing is represented by black arrows in Figure 4. For processing a batch of

single-queries and multi-queries from applications for data objects, Panther irst uses timestamps of the blocks
containing the requested data objects as input to retrieve the block heights through the regression-based inter-
block index. Then, Panther uses the block heights as subscripts in the MHT root array to retrieve the MHT roots
of these blocks. After that, Panther uses keywords of the requested data objects to traverse MHTs on the PIM
side and the host side in parallel. Finally, the requested data and their proofs are merged on the host side and
returned to applications.

ACM Trans. Arch. Code Optim.

12 • Y. Hua et al.

Timestamp

Block height

p1

p2

p3 p4
p5

p6

h3

t3

h6

t6

p7

boundary

(a) The dynamic piecewise linear regression

 of inter-block index.

(b) The MHT root array.

ε

MHT

root

MHT

root
… MHT

root

[0] [1]Block height: [n]

ε

Fig. 5. The regression-based model for managing distributed data on the host and PIM sides.

3.3 Regression-based model for distributed data management

To better leverage the temporal characteristics of blockchain and lower the metadata overhead, Panther incorpo-
rates a lightweight regression-based model to manage distributed data on the host and PIM sides. The main idea
is to dynamically extract the mapping relationship between timestamps and block heights through a piecewise
linear function as shown in Figure 5(a), and store the MHT root of each block in an array as shown in Figure 5(b).
In Figure 5(a), the regression-based inter-block index consists of multiple linear regression functions. The

error bound � of each segment ensures that all data in the inter-block index can be retrieved, including the
occurrence of outliers that deviate from the normal distribution. The upper and lower boundaries are deined
as the regression function plus and minus the error bound, respectively. For example, Points 1, 2, and 3 are
within the two boundaries (the red dotted lines) of the irst linear regression function (the green dotted line). As
point 4 lies outside the two boundaries, a new linear regression function is generated. Panther maintains the
parameters of each segment, including the starting point, the slope, and the intercept. Since the timestamp values
are increasing integers, Panther uses the binary search method to quickly locate the requested segment � . Using
the timestamp � and the parameters of the segment, the predicted block height ����ℎ (�) is calculated by

����ℎ (�) = � × � .����� + � .��������� (5)

Recall that the actual block height ������ℎ (�) is retrieved within in a range (i.e., error bound �) from the ����ℎ (�).

������ℎ (�) ∈ [����ℎ (�) − �, ����ℎ (�) + �] (6)

The regression-based model uses a simple linear function to map timestamps to block heights. This model
is fully characterized by just two parameters, slope and intercept, which provide an � (1)-space representation
of the mapping throughout the block range. From an information-theoretic perspective, this linear model can
be viewed as a lossy compressed representation of the full timestamp-to-height mapping. Compared to an
explicit lookup table that stores each (timestamp, block height) pair at � (�) space cost, our approach achieves
signiicant compression while preserving suicient accuracy for practical applications. This eiciency is enabled
by the temporal regularity inherent in blockchain systems, which is a consequence of consensus protocols

ACM Trans. Arch. Code Optim.

Accelerating Verifiable ueries over Blockchain Database System Using Processing-in-memory • 13

(e.g., Proof of Work in Bitcoin or Proof of Stake in Ethereum) enforcing a roughly ixed block interval. This
results in a strong linear correlation between timestamps and block heights. Our model captures the dominant
low-entropy componentÐthe global linear trendÐwhile discarding the high-entropy residuals, which arise from
stochastic block discovery delays, network variability, and transient diiculty adjustments. These residuals
are typically zero-mean, weakly correlated, and high in entropy, making them costly to compress efectively.
Our model intentionally discards them, embodying a classic rate-distortion trade-of in source coding. The
łratež is minimized (only two loat parameters), while the łdistortionž relects the approximation error from
ignoring residuals. Crucially, this distortion is acceptable in our target scenarios, such as transaction conirmation
time estimation, macro-level on-chain trend analysis, or approximate cross-chain alignmentÐuse cases where
ine-grained precision is unnecessary, and the global temporal structure is suicient.

The novelty of our approach lies in its explicit exploitation of the structural regularity inherent to blockchain
systemsÐspeciically, the approximate linearity between timestamps and block heightsÐto construct an extremely
compact representation with � (1) space complexity. While general-purpose lossless compression algorithms
such as LZ77 or Hufman coding can be applied to (timestamp, block height) pairs, these methods are domain-
agnostic. As a result, they are incapable of identifying and isolating the dominant linear trend present in the
data. Although they may yield reasonable compression ratios, their space complexity remains � (�), albeit with
a reduced constant factor. Moreover, such approaches require storing and fully decompressing the entire dataset
to perform mapping operations, which limits their practicality for real-time query scenarios. In contrast, our
minimal representation not only reduces storage cost but also enables constant-time (� (1)) evaluation of the
timestamp-to-height mapping via a simple linear function. This computational eiciency is a direct consequence
of our model-based compression strategy, which is fundamentally unachievable with conventional compression
techniques that depend on full-data reconstruction. The efectiveness of this minimal representation is grounded in
information theory: the low entropy of the linear trend relative to the high entropy of the residuals. Source coding
theory indicates that the minimal achievable rate for a given average distortion is deined by the rate-distortion
function. Our ixed-rate (2 parameters), model-based approach provides a practical and highly eicient operating
point on this curve for the speciic source (blockchain timestamp/height data) and the acceptable distortion level
pertinent to our target applications. The minimal representation of the mapping is unequivocally the pair of
regression coeicients (slope, intercept). This constitutes a highly eicient, domain-aware, model-driven lossy
compression scheme that exploits the fundamental linear structure inherent in blockchain timestamp data ś a
direct consequence of the consensus mechanism’s target block rate. Framing our approach within source coding
theory strengthens it by highlighting the exploitation of low-entropy structural regularity (the linear trend) and
the inherent rate-distortion trade-of involved in discarding high-entropy residuals. Achieving � (1) storage and
� (1) query complexity through this domain-speciic insight, distinct from generic � (�) compression methods,
constitutes a core aspect of our method’s novelty and eiciency.

In Figure 5(b), since data blocks are generated in sequence and block heights are successive integers, the MHT
root with pointers to its child nodes in each block is sequentially stored in the MHT root array to optimize cache
locality. After obtaining the required block heights from the inter-block index, Panther uses the block heights as
subscripts in the MHT root array to retrieve the MHT roots of these blocks, and traverses the MHTs and the
promoted MHT branches from the roots for data indexing and veriication.

The regression-based model supports single-queries for data at a speciic time and multi-queries for data within
a time range. Compared with hash-table-based designs in prior works, the regression-based model requires less
storage space to store parameters of the inter-block index and has better cache eiciency for managing distributed
data blocks stored on the host and PIM sides. Note that the proposed regression-based model is not speciic to
Ethereum and can be readily applied to other blockchain systems such as Bitcoin, BNB Smart Chain, etc.

ACM Trans. Arch. Code Optim.

14 • Y. Hua et al.

H14 H18

Root

Requested node on the search path Proof node

: Search path

H20

D5: Requested data

H13 H2

H8

D8

H6 H7

D6 D7

H3 H15

D3

H17H16

H4

D4

a

H5

D5

H9 H19

H10

D10

H11

D11

H12

D12

D9

b w

n s

H0

D0

H1

D1

D2
d t

a u

g
l t

d l

d s

e i

g n t

Fig. 6. Subtree-based MHT index partition. The black dashed box represents the host side and the dashed boxes with other

colors represent diferent PIM modules.

3.4 Subtree-based MHT index partition

The index partitioning method for MHT in each block aims to distribute data and MHT indexes across PIM
modules to achieve high parallelism with low inter-PIM communication cost. We observe that when retrieving a
requested data object and its proof, all MHT nodes on the search path or used as proof reside within a single
MHT subtree. Besides, nodes within other subtrees that do not contain the requested data are neither required
on the search path nor as proof. Based on these observations, Panther stores all nodes in an MHT subtree for
data indexing and veriication within the same PIM module. This enhances node locality in each PIM module and
reduces inter-PIM communication cost, as both the requested data object and proof nodes are retrieved from a
single PIM module. MHT subtrees are evenly distributed across PIM modules to achieve high parallelism.
Figure 6 illustrates the subtree-based MHT index partitioning scheme and the data indexing and veriication

process. MHT combines two functions: data indexing and data veriication. For data indexing, Panther uses the
keyword traversing the MHT from root to leaf to retrieve the requested data (e.g., using the keyword "ball" to
retrieve the requested data D5), indicated by the red arrows. For data veriication, all sibling nodes along the
search path are returned as proof. Thus, all ancestor nodes (blue nodes) and their sibling nodes (yellow nodes)
are required when retrieving the requested data. To retrieve any data in the MHT, the MHT root node and its
child nodes within the black dashed box are required either on the search path or as proof. These frequently
required nodes are stored on the host side to leverage the large CPU caches for better cache locality. In an MHT,
there are multiple subtrees whose subtree root is the child node of the MHT root. Nodes within these subtrees
that do not contain the requested data are neither required on the search path nor as proof (e.g., nodes in the
green and purple dashed boxes are not required when searching for D5). These subtrees are stored in diferent
PIM modules for high parallelism across PIM modules. Since diferent subtrees may contain diferent amounts of
data, for load balance across PIM modules, Panther records the size of data stored in each PIM module and adopts
a greedy strategy to store the subtrees from largest to smallest in the PIM modules with the least amount of data.
In this way, each PIM module stores a similar amount of data. Additionally, for each requested data object, all

ACM Trans. Arch. Code Optim.

Accelerating Verifiable ueries over Blockchain Database System Using Processing-in-memory • 15

required nodes on the search path or as proof are retrieved from a single PIM module, reducing the inter-PIM
communication cost.

Designed based on the required nodes for data indexing and veriication functions of MHT, the subtree-based
MHT index partitioning mechanism preserves the data veriication function without modifying hash values in
each MHT, and achieves high parallelism across PIM modules with low inter-PIM communication cost.

3.5 Adaptive data promotion and demotion

Load imbalance across PIM modules is a common issue for PIM-based systems under skewed workloads, where
requests concentrate on hot data objects stored in a small number of PIM modules. To address the load imbalance
issue, Panther dynamically promotes hot data to the host side and demotes cold data to the PIM side with data
hotness changes during runtime. Data objects along with their MHT branches, including the MHT nodes on
the search path for indexing and the proof nodes for verifying the data objects, are adaptively promoted and
demoted between the host and PIM sides. This approach signiicantly reduces the communication cost between
the two sides for processing queries, as the requested data and proof nodes are retrieved from one side. To avoid
promoting excessive data to the host side, which would leave PIM modules underutilized, Panther bases its data
promotion and demotion strategy on the request processing time on the host side (�ℎ���) and the PIM side (����).

Case 1: If �ℎ��� < ���� , �ℎ��� is completely overlapped by ���� since the two sides process requests in parallel.
Panther promotes recently requested data objects to the host side but does not demote any data object to the
PIM side, as the load on the host side is not heavy. Given that the performance bottleneck on the PIM side is
determined by the busiest PIM module (i.e., the PIM module that processes the highest number of requests), data
promotion is greedily applied to PIM modules in sequence from busy to idle.

Case 2: If�ℎ��� ≥ ���� , the load on the host side is heavy. To prevent the load on the host side from continually
increasing, Panther demotes multiple cold data objects to the PIM side when promoting a hot data object to the
host side. Data promotion and demotion decisions are made based on whether they reduce the load imbalance
across PIM modules. The performance bottleneck on the PIM side is determined by the busiest PIM module. Since
the block generation interval is determined by the underlying consensus protocol and the number of data objects
per block remains relatively stable (i.e., the temporal characteristics of data distribution inherent to blockchain
database systems), diferent requests have a similar resource requirement. Therefore, the demotion mechanism is
designed based on the number of requests processed on the host and PIM sides. The maximum load across PIM
modules before data promotion and demotion is represented by the number of requests processed by the busiest
PIM module.

������� = ���(��������) (7)

where ������� is the maximum load across PIM modules, and ���(��������) is the number of requests processed
by the busiest PIM module before data promotion and demotion. Demoting multiple least-frequently-requested
data objects, with a similar number of requests as the promoted data object, from the host side to their PIM
modules increases the loads of these PIM modules. Assume that the loads of � PIM modules increase.

����� = ���(��) + ���(��) (8)

where � = 1, 2, . . . , �. ����� is the load of each PIM module, ���(��) is the number of requests processed by each
PIM module before data demotion, and ���(��) is the number of requests for the data objects demoted to each
PIM module. The maximum load ���� ′��� across these PIM modules is represented by the number of requests
processed by the busiest PIM module after data promotion and demotion.

���� ′��� =���{����1, ����2, ..., �����} (9)

ACM Trans. Arch. Code Optim.

16 • Y. Hua et al.

If ���� ′��� < ������� , Panther promotes the hot data object and demotes the cold data objects since the load
imbalance across PIM modules is reduced. Otherwise, Panther does not perform data promotion and demotion.

The data promotion and demotion adapt to data hotness changes and to the degree of parallelism between the
host and PIM sides, reducing the load imbalance across PIM modules and achieving high parallelism between the
host side and the PIM side.

4 Evaluation

In this section, we evaluate the performance of Panther against state-of-the-art traditional and PIM-based
blockchain database systems in multiple datasets. Since the traditional design is unable to run on the PIM
hardware, as in previous works [5, 6, 12, 22, 39], it runs on traditional hardware for comparison with ive PIM-
based designs, thereby demonstrating the ability of PIM to alleviate the memory bottleneck. Panther is then
compared with the other four PIM-based designs on the PIM hardware to highlight the efectiveness of our novel
contributions.

4.1 Experimental setup

Datasets. Three real-world datasets are used in the experiments. (1) Ethereum (ETH) [42]: The ETH dataset
is extracted from the Ethereum system from September 2 to September 11, 2024. It contains 72,000 blocks
with 10 million transaction records. Each record is in the form of ⟨���������, ������, ���������⟩, where
������ is the transfer amount and ��������� are the addresses of senders and receivers. The block size is
around 100 kilobytes and the MHT size is a few kilobytes. (2) Bitcoin [30]: The Bitcoin dataset is extracted
from the Bitcoin system from June 12 to September 11, 2024. It contains 13,393 blocks with 44 million trans-
action records. Each record is in the form of ⟨���������, ������, ���������⟩, where ������ is the transfer
amount and ��������� are the addresses of senders and receivers. The block size is a few megabytes and the
MHT size is around 100 kilobytes. (3) Foursquare (4SQ) [50]: The 4SQ dataset includes 1 million user check-in
records with timestamps. Records within every 30 seconds are packed in a block. Each record is in the form of
⟨���������, [���������, ��������], �ℎ���-�� �����′� ��������⟩.
Compared systems.We use the blockchain database system in Ethereum [42] as a baseline system without using
PIM. To demonstrate the efectiveness of our proposed techniques, we implement four PIM-based blockchain
database systems employing techniques in previous works to replace one of our techniques in Panther. (1) HT-
Chain: HT-Chain employs the hash tables in [12] to replace the regression-based model for managing distributed
data on the host and PIM sides. Hash tables are built on the host side to locate the PIM module containing
the requested data. (2) SDB-Chain: SDB-Chain employs the block-based index partitioning technique in [23]
to replace the subtree-based MHT index partition. Data blocks are randomly distributed to PIM modules. (3)
SDN-Chain: SDN-Chain employs the node-based index partitioning technique in [21] to replace the subtree-based
MHT index partition. Index nodes of each MHT are randomly distributed to PIM modules. (4) PP-Chain: PP-Chain
employs the data promoting technique proposed in [22] to replace the adaptive data promotion and demotion.
Hot data objects are promoted from the PIM side to the host side for load balance across PIM modules, without
data demotion from the host side to the PIM side. (5) SS-Chain: SS-Chain employs the static sharding scheme [9]
widely used in distributed architectures. Static sharding uses a ixed hash function to distribute data across
distributed devices, with each shard being responsible for a subset of the overall data. (6) DS-Chain: DS-Chain
employs the dynamic sharding scheme [14] widely used in distributed architectures. Dynamic sharding adjusts
the number and size of the shards by migrating hot data across distributed devices. For fair comparison, all
PIM-based and baseline designs adopt the same blockchain structure, operate on identical datasets, use identical
metrics to quantitatively assess their performance, and use similar computing and storage resources.

ACM Trans. Arch. Code Optim.

Accelerating Verifiable ueries over Blockchain Database System Using Processing-in-memory • 17

ETH Bitcoin 4SQ

1 2 3 4 5 6 7 8

0

10

20

30

Error bounds

L
a
te

n
c
y
 (

s
)

(c) Single-query performance

0

2

4

6

M
e
ta

d
a
ta

 s
iz

e
 (

K
B

)

1 2 3 4 5 6 7 8

Error bounds

(b) Metadata size(a) Model query performance

1 2 3 4 5 6 7 8

Error bounds

0

100

200

300
L
a
te

n
c
y
 (

m
s
)

400 8

0

50

100

150

200

L
a
te

n
c
y
 (

s
)

1 2 3 4 5 6 7 8

Error bounds

(d) Multi-query performance

Fig. 7. The impact of error bounds in Panther.

Testbed. Our testbed machine is a dual-socket server with two Intel(R) Xeon(R) Silver 4216 CPUs [7], each
equipped with 16 cores at 2.10 GHz and 22 MB cache. Each socket has four memory channels: four DDR4-
2666 DIMMs [17] are installed on two channels and four UPMEM DIMMs [8] are on the other two channels.
Each UPMEM DIMM has 128 PIM modules. Since the baseline design is unable to run on PIM hardware, for
fair comparisons, PIM-based designs and the baseline design utilize similar computing and memory resources.
Panther and other PIM-based designs utilize one dedicated CPU core, one UPMEM DIMM, and one DDR4-2666
DIMM. The baseline design utilizes 32 CPU cores and two DDR4-2666 DIMMs.
Workload setup. In all experiments, we irst construct the blockchain using data in each dataset, then evaluate
the blockchain system performance by running 10 million query operations. Each batch contains 100 thousand
queries. The query keywords are selected from the most frequently requested 10 thousand keywords. Each
single-query retrieves one data object from a block, and each multi-query retrieves data objects from 2 to 128
blocks within a time range.

4.2 Impact of error bounds

We evaluate the impact of various error bounds in our regression-based model for distributed data management.
Figure 7(a) illustrates the average latency for each batch of queries to retrieve the requested MHT roots by
querying the regression-based model. The blockchain using the ETH and 4SQ datasets consumes less time
to retrieve MHT roots of the requested blocks than the blockchain using the Bitcoin dataset. This is because
the relationship between timestamps and block heights in ETH and 4SQ is more regular than that in Bitcoin,
contributing to less time to determine the block height using the timestamp as input. The model query latency
for ETH and 4SQ remains constant as the error bound increases, since the timestamp and block height follow
a linear regression. The model query latency for Bitcoin increases as the error bound grows, since more block
traversals are needed within a larger error bound. Figure 7(b) shows the metadata size of the regression-based

ACM Trans. Arch. Code Optim.

18 • Y. Hua et al.

101

102

104

103

105

L
a
te

n
c
y
 (

s
)

ETH Bitcoin 4SQ

Dataset

Panther Baseline SDB-Chain

SDN-Chain

HT-Chain

PP-Chain SS-Chain DS-Chain

Fig. 8. Blockchain construction performance.

101

102

103

M
e
ta

d
a
ta

 s
iz

e
(K

B
)

100

ETH Bitcoin 4SQ

Dataset

Panther Baseline SDB-Chain

SDN-Chain

HT-Chain

PP-Chain SS-Chain DS-Chain

Fig. 9. Metadata storage space.

model. The blockchain using the 4SQ dataset has the smallest metadata size, as the 4SQ dataset has the fewest
blocks. The blockchain using the Bitcoin dataset has the largest metadata size, as the inter-block index uses the
greatest number of linear regression functions to map the relationship between timestamps and block heights.
The single-query and multi-query performance for each batch of requests are shown in Figure 7(c) and Figure 7(d),
respectively. Since the model query time is far smaller than the MHT traversal time, the latency for processing
each batch of single-query and multi-query requests remains almost constant as the error bound increases. For
the remaining experiments in this paper, we present our results with an error bound value of 1.

4.3 Blockchain construction performance

Figure 8 illustrates the blockchain construction latency for the three datasets. Baseline consumes 2.3x to 16.1x
more time than PIM-based designs to construct blockchains, as it does not leverage the high parallelism and
fast memory access of PIM modules. SDN-Chain consumes the most time among all PIM-based designs. This is
because data and nodes of MHT in each block are distributed to multiple PIM modules, contributing to signiicant
communication cost between PIM modules. The latency for HT-Chain to construct blockchain is 36.2% higher
than SDB-Chain and 51.7% higher than PP-Chain and Panther on average, due to the additional time to build hash
tables on the host side for managing data in PIM modules. SS-Chain and DS-Chain exhibit comparable execution
times, as the load balancing scheme has negligible impact on the blockchain construction phase. Compared with
Panther and PP-Chain, SDB-Chain consumes 11.8% more time on average for blockchain construction. The data
block distribution strategy in SDB-Chain does not leverage the parallelism between the host and PIM sides,
leading to high MHT construction cost on the PIM side. Panther and PP-Chain consume the same time, as the
adaptive data promotion and demotion are triggered during the workload runtime rather than the blockchain
construction process.

4.4 Metadata storage space

The metadata sizes of state-of-the-art blockchain database systems are shown in Figure 9. Baseline requires
no metadata to manage distributed data since it does not utilize PIM devices. HT-Chain requires the largest
metadata storage space due to the large hash tables used to record the mapping relationship between timestamps
and block heights, as well as the PIM modules that store the requested blocks. DS-Chain introduces additional
metadata overhead to track data migration trajectory. Compared with HT-Chain and DS-Chain, the metadata
size of Panther is reduced by 1 to 2 orders of magnitude, since the regression-based model leverages the temporal
characteristics of blockchain for distributed data management. SDB-Chain, SDN-Chain, PP-Chain, and SS-Chain
have the same metadata size as Panther, as they employ the same regression-based model introduced in this
paper to manage distributed data on the host and PIM sides.

ACM Trans. Arch. Code Optim.

Accelerating Verifiable ueries over Blockchain Database System Using Processing-in-memory • 19

100

101

103

102

L
a
te

n
c
y
 (

s
)

(a) Single-query performance (b) Multi-query performance

100

101

103

102

104

L
a
te

n
c
y
 (

s
)

ETH Bitcoin 4SQ

Dataset

ETH Bitcoin 4SQ

Dataset

Panther Baseline SDB-Chain

SDN-Chain

HT-Chain

PP-Chain SS-Chain DS-Chain

Fig. 10. uery performance.

4.5 uery performance

Figure 10(a) and Figure 10(b) show the average latency for processing each batch of veriiable single-queries and
multi-queries, respectively. The query latency includes the full node’s query processing latency and the light
node’s data veriication latency. Panther consumes the least time and achieves up to 23.6x and 19.6x speedups
over state-of-the-art designs for processing single-queries and multi-queries, respectively. The speedup stems
from three key optimizations. First, Panther signiicantly reduces the inter-PIM communication overhead to
retrieve requested data. This is achieved via our subtree-based MHT index partitioning mechanism (introduced
in Section 3.4), which ensures that all nodes of an MHT subtree used for indexing and veriication are stored
within the same PIM module. Second, Panther lowers the inter-block indexing cost. This is because our proposed
regression-based model (introduced in Section 3.3) provides better cache locality compared to traditional hash
table-based approaches. Third, Panther fully leverages parallelism across PIM modules and between the host
and PIM sides, enabled by our adaptive data promotion and demotion mechanism (introduced in Section 3.5),
which mitigates load imbalance across PIM modules and between the host and PIM sides. SDN-Chain consumes
the most time for processing veriiable queries due to the signiicant inter-PIM communication cost to retrieve
requested data and proofs. SS-Chain sufers from signiicant load imbalance across PIM modules, resulting
in inferior performance compared to both PP-Chain and DS-Chain. While DS-Chain adopts a load balancing
mechanism to enhance parallelism across PIM modules, its performance still lags behind PP-Chain. This is
primarily because data migration in DS-Chain is mediated by the host, introducing considerable communication
overhead due to the limited host-PIM bandwidth. HT-Chain consumes 40.3% and 58.3% more time than Panther
for processing single-queries and multi-queries respectively, since the regression-based model in Panther has
better cache eiciency than hash tables in HT-Chain. SDB-Chain consumes 2.1x and 2.6x more time than Panther
for processing single-queries and multi-queries, respectively. This is because SDB-Chain stores all contents of a
block in one PIM module, reducing the parallelism across PIM modules. The latency for PP-Chain to process
single queries and multi-queries is 6.2x and 7.9x higher than that for Panther, respectively. PP-Chain promotes
excessive data to the host side, which leaves PIM modules underutilized.

5 Conclusion

This paper presents Panther, the irst PIM-based blockchain database system that supports eicient veriiable
single-queries and multi-queries. Panther incorporates three key designs: (1) a regression-based model that
leverages the temporal characteristics of blockchain for distributed data management; (2) a subtree-based MHT
index partitioning scheme that achieves high parallelism across PIM modules with low inter-PIM communication

ACM Trans. Arch. Code Optim.

20 • Y. Hua et al.

cost; and (3) an adaptive data promotion and demotion mechanism that mitigates load imbalance across PIM
modules. In multiple datasets, Panther achieves up to 23.6× speedup for single-query, 19.6× speedup for multi-
query, 16.1× speedup for blockchain construction, and reduces metadata storage by orders of magnitude compared
to state-of-the-art designs.

Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC) (Grant No. 62227809), National
Key Research and Development Program of China (Grant No. 2023YFB4502902), National Natural Science
Foundation of China (NSFC) (Grant No. 62332012, 62302290), the Fundamental Research Funds for the Central
Universities, and Key Research and Development Program of Xinjiang Uygur Autonomous Region (Grant No.
2023B01027, 2023B01027-1), Xinjiang Uygur Autonomous Region Science and Technology Innovation Team
Project (2024TSYCTD0007).

References

[1] McKee. S. A. 2004. Relections on the memory wall. In Proceedings of the 1st conference on Computing frontiers. 162.

[2] Wulf. W. A and McKee. S. A. 1995. Hitting the memory wall: Implications of the obvious. ACM SIGARCH computer architecture news 23,

1 (1995), 20ś24.

[3] S. Aggarwal and N. Kumar. 2021. Hyperledger. Advances in computers (2021), 323ś343.

[4] J. Chang, B. Li, J. Lin, et al. 2023. Anole: A Lightweight and Veriiable Learned-Based Index for Time Range Query on Blockchain

Systems. In International Conference on Database Systems for Advanced Applications. 519ś534.

[5] J. Choe, A. Crotty, T. Moreshet, M. Herlihy, and R. I. Bahar. 2022. HybriDS: Cache-Conscious Concurrent Data Structures for Near-Memory

Processing Architectures. In Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures. 321ś332.

[6] J. Choe, A. Huang, T. Moreshet, M. Herlihy, and R. I. Bahar. 2019. Concurrent Data Structures with Near-Data-Processing: an Architecture-

Aware Implementation. In Proceedings of the 31st ACM Symposium on Parallelism in Algorithms and Architectures. 297ś308.

[7] Intel Corporation. 2023. Intel Xeon Silver 4216 Processor. https://ark.intel.com/content/www/us/en/ark/products/192444/intel-xeon-

silver-4216-processor-16-5m-cache-2-10-ghz.html

[8] UPMEM Corporation. 2021. UPMEM DIMM. https://www.upmem.com/technology

[9] Kokoris-Kogias E, Jovanovic P, Gasser L, et al. 2018. Omniledger: A secure, scale-out, decentralized ledger via sharding. In IEEE

symposium on security and privacy. 583ś598.

[10] A. Fatima, S. Liu, K. Seemakhupt, R. Ausavarungnirun, and S. Khan. 2023. vPIM: Eicient Virtual Address Translation for Scalable

Processing-in-Memory Architectures. In Proceedings of the 60th ACM/IEEE Design Automation Conference. 1ś6.

[11] Weisz. G, Melber. J, Wang. Y, et al. 2016. A study of pointer-chasing performance on shared-memory processor-FPGA systems. In

Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 264ś273.

[12] Y. Hua, S. Zheng, W. Kong, C. Zhou, K. Huang, R. Ma, et al. 2024. RADAR: A Skew-resistant and Hotness-aware Ordered Index Design

for Processing-in-memory Systems. IEEE Transactions on Parallel and Distributed Systems 35, 9 (2024), 1598ś1614.

[13] Hu. J, Wei. Z, Chen. J, et al. 2023. RWORT: A Read and Write Optimized Radix Tree for Persistent Memory. In Proceedings of the IEEE

41st International Conference on Computer Design. 194ś197.

[14] Wang J and Wang H. 2019. Monoxide: Scale out blockchains with asynchronous consensus zones. In 16th USENIX symposium on

networked systems design and implementation. 95ś112.

[15] Zhang. J, Wu. S, Tan. Z, et al. 2019. S3: A scalable in-memory skip-list index for key-value store. In Proceedings of the VLDB Endowment.

2183ś2194.

[16] J. Jang, H. Kim, and H. Lee. 2023. Characterizing Memory Access Patterns of Various Convolutional Neural Networks for Utilizing

Processing-in-Memory. In International Conference on Electronics, Information, and Communication. 1ś3.

[17] JEDEC. 2017. DDR4 SDRAM Speciication. https://www.jedec.org/standards-documents/docs/jesd79-4b

[18] T. Jeong and E. Y. Chung. 2024. PipePIM: Maximizing Computing Unit Utilization in ML-Oriented Digital PIM by Pipelining and Dual

Bufering. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 43, 12 (2024), 4585ś4598.

[19] S. Jing, X. Zheng, and Z. Chen. 2021. Review and Investigation of Merkle Tree’s Technical Principles and Related Application Fields. In

International Conference on Artiicial Intelligence, Big Data and Algorithms. 86ś90.

[20] Yang. K, Ma. X, Thirumuruganathan. S, et al. 2021. Random walks on huge graphs at cache eiciency. In Proceedings of the ACM SIGOPS

28th Symposium on Operating Systems Principles. 311ś326.

[21] H. Kang, P. B. Gibbons, G. E. Blelloch, L. Dhulipala, Y. Gu, and C. McGufey. 2021. The Processing-in-Memory Model. In Proceedings of

the 33rd ACM Symposium on Parallelism in Algorithms and Architectures. 295ś306.

ACM Trans. Arch. Code Optim.

https://ark.intel.com/content/www/us/en/ark/products/192444/intel-xeon-silver-4216-processor-16-5m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192444/intel-xeon-silver-4216-processor-16-5m-cache-2-10-ghz.html
https://www.upmem.com/technology
https://www.jedec.org/standards-documents/docs/jesd79-4b

Accelerating Verifiable ueries over Blockchain Database System Using Processing-in-memory • 21

[22] H. Kang, P. B. Gibbons, G. E. Blelloch, L. Dhulipala, Y. Gu, C. McGufey, et al. 2022. PIM-tree: A Skew-resistant Index for Processing-in-

Memory. In Proceedings of the VLDB Endowment 16, 4. 946ś958.

[23] H. Kang, Y. Zhao, P. B. Gibbons, G. E. Blelloch, L. Dhulipala, Y. Gu, C. McGufey, et al. 2023. PIM-trie: A Skew-resistant Trie for

Processing-in-Memory. In Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures. 1ś14.

[24] J. H. Kim, S. Kang, S. Lee, H. Kim, W. Song, Y. Ro, et al. 2021. Aquabolt-XL: Samsung HBM2-PIM with in-memory processing for ML

accelerators and beyond. In IEEE Hot Chips 33 Symposium. 1ś26.

[25] J. Leng, M. Zhou, J. L. Zhao, Y. Huang, and Y. Bian. 2022. Blockchain Security: A Survey of Techniques and Research Directions. IEEE

Transactions on Services Computing 15, 4 (2022), 2490ś2510.

[26] C. Li, Z. Zhou, S. Zheng, J. Zhang, Y. Liang, and G. Sun. 2024. SpecPIM: Accelerating Speculative Inference on PIM-Enabled System via

Architecture-Datalow Co-Exploration. In Proceedings of the 29th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems. 950ś965.

[27] Z. Liu, I. Calciu, M. Herlihy, and O. Mutlu. 2017. Concurrent Data Structures for Near-Memory Computing. In Proceedings of the 29th

ACM Symposium on Parallelism in Algorithms and Architectures. 235ś245.

[28] Vilim. M, Rucker. A, and Olukotun. K. Aurochs. 2021. An architecture for datalow threads. In Proceedings of the ACM/IEEE 48th Annual

International Symposium on Computer Architecture. 402ś415.

[29] V. Mardiansyah, A. Muis, and R. F. Sari. 2023. Multi-State Merkle Patricia Trie (MSMPT): High-Performance Data Structures for

Multi-Query Processing Based on Lightweight Blockchain. IEEE Access 11 (2023), 117282ś117296.

[30] S. Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf

[31] M. Niaz and G. Saake. 2015. Merkle Hash Tree based Techniques for Data Integrity of Outsourced Data. GvD (2015).

[32] J. K. Oladele, A. A. Ojugo, C. C. Odiakaose, F. U. Emordi, R. A. Abere, et al. 2024. BEHeDaS: A Blockchain Electronic Health Data System

for Secure Medical Records Exchange. Journal of Computing Theories and Applications 1, 3 (2024), 231ś242.

[33] T. Osterland, G. Lemme, and T. Rose. 2021. Discrepancy Detection in Merkle Tree-Based Hash Aggregation. In IEEE International

Conference on Blockchain and Cryptocurrency. 1ś9.

[34] Jain. P, Jain. A, Nrusimha. A, et al. 2020. Checkmate: Breaking the memory wall with optimal tensor rematerialization. In Proceedings of

Machine Learning and Systems. 497ś511.

[35] Yang. S. P, Kim. M, Nam. S, et al. 2023. Overcoming the memory wall with CXL-EnabledSSDs. In 2023 USENIX Annual Technical

Conference. 601ś617.

[36] J. Park, S. Lee, and J. Lee. 2023. NTT-PIM: Row-Centric Architecture and Mapping for Eicient Number-Theoretic Transform on PIM. In

Proceedings of the 60th ACM/IEEE Design Automation Conference. 1ś6.

[37] Y. Peng, M. Du, F. Li, R. Cheng, and D. Song. 2020. FalconDB: Blockchain-based Collaborative Database. In Proceedings of the 2020 ACM

SIGMOD International Conference on Management of Data. 637ś652.

[38] Zhang. Q, Song. H, Zhou. K, et al. 2024. A prefetching indexing scheme for in-memory database systems. Future Generation Computer

Systems 156 (2024), 179ś190.

[39] Ma. R, Zheng. S, Wang. G, et al. 2024. Accelerating Regular Path Queries over Graph Database with Processing-in-Memory. In Proceedings

of the 61st ACM/IEEE Design Automation Conference. 1ś6.

[40] Assadi. S, Kol. G, Saxena. R. R, et al. 2020. Multi-pass graph streaming lower bounds for cycle counting, max-cut, matching size, and

other problems. In Proceedings of the IEEE 61st Annual Symposium on Foundations of Computer Science. 354ś364.

[41] L. Tseng, X. Yao, S. Otoum, M. Aloqaily, and Y. Jararweh. 2020. Blockchain-based database in an IoT environment: challenges,

opportunities, and analysis. Cluster Computing 23 (2020), 2151ś2165.

[42] G. Wood. 2014. Ethereum: A secure decentralised generalised transaction ledger. https://ethereum.github.io/yellowpaper/paper.pdf

[43] H. Wu, Z. Peng, S. Guo, Y. Yang, and B. Xiao. 2022. VQL: Eicient and Veriiable Cloud Query Services for Blockchain Systems. IEEE

Transactions on Parallel and Distributed Systems 33, 6 (2022), 1393ś1406.

[44] C. Xu, C. Zhang, and J. Xu. 2019. VChain: Enabling Veriiable Boolean Range Queries over Blockchain Databases. In Proceedings of the

2019 International Conference on Management of Data. 141ś158.

[45] Huang. Y, Zhu. H, and Li. Y. 2018. Performance Improvements by Deploying L2 Prefetchers with Helper Thread for Pointer-Chasing

Applications. International Journal of Performability Engineering 14, 10 (2018), 2312.

[46] Hua. Y, Huang. K, Zheng. S, et al. 2021. PMSort: An adaptive sorting engine for persistent memory. Journal of Systems Architecture 120

(2021), 102279.

[47] Hua. Y, Huang. K, Zheng. S, et al. 2021. Redesigning the Sorting Engine for Persistent Memory. In Database Systems for Advanced

Applications: 26th International Conference. 393ś412.

[48] Hua. Y, Zheng. S, Yin. J, et al. 2023. Bumblebee: A MemCache design for die-stacked and of-chip heterogeneous memory systems. In

2023 60th ACM/IEEE Design Automation Conference. 1ś6.

[49] Hua. Y, Zheng. S, Kong. W, et al. 2025. Phoenix: A Dynamically Reconigurable Hybrid Memory System Combining Caching and

Migration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 44, 3 (2025), 1126 ś 1140.

ACM Trans. Arch. Code Optim.

https://bitcoin.org/bitcoin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

22 • Y. Hua et al.

[50] D. Yang, D. Zhang, and B. Qu. 2016. Participatory Cultural Mapping Based on Collective Behavior Data in Location-Based Social

Networks. ACM Trans. Intell. Syst. Technol 7, 3 (2016), 1ś23.

Received 27 February 2025; revised 22 July 2025; accepted 10 September 2025

ACM Trans. Arch. Code Optim.

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Blockchain database system
	2.2 Pointer chasing and PIM system
	2.3 PIM-based key-value database systems
	2.4 Existing partitioning and load balancing schemes in non-PIM distributed systems
	2.5 Motivation

	3 Design
	3.1 Performance modeling of PIM-based blockchain systems
	3.2 Overview of Panther
	3.3 Regression-based model for distributed data management
	3.4 Subtree-based MHT index partition
	3.5 Adaptive data promotion and demotion

	4 Evaluation
	4.1 Experimental setup
	4.2 Impact of error bounds
	4.3 Blockchain construction performance
	4.4 Metadata storage space
	4.5 Query performance

	5 Conclusion
	Acknowledgments
	References

