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Abstract. Garbage collection (GC) in log-structured file systems (LFS)
is known to cause performance degradation, particularly in write-intensive
scenarios. Existing approaches, such as in-storage migration and hotness-
based grouping, aim to enhance GC efficiency. However, these approaches
lack effective host-device collaboration, leading to either excessive com-
munication overhead from inefficient task offloading or severe write am-
plification due to the log-on-log issue. We present CSGC, a host-device
collaborative GC approach that utilizes computational storage device
(CSD) to optimize GC efficiency. CSGC uses a pipelined CSD-offloaded
migration framework with metadata piggybacking to reduce host-device
communication overhead, along with a separate flash translation layer
(sFTL) to preserve data hotness and mitigate write amplification. Our
evaluations using F2FS and Daisy+ OpenSSD show that CSGC signifi-
cantly improves GC performance, contributing to up to 3.6x and 1.9%
speedup in I/O throughput over vanilla F2FS and IPLFS respectively.

Keywords: Log-structured file system - Garbage collection - Computa-
tional storage device.

1 Introduction

Log-structured file systems (LFSs) are widely adopted in modern storage plat-
forms for their ability to optimize write operations by converting random writes
into sequential ones [16]. The log-structured write approach aligns well with the
characteristics of storage devices, as it significantly reduces the penalties asso-
ciated with random writes and improves overall performance [13]. However, the
inherent design of LFS also necessitates garbage collection (GC) to reclaim space
occupied by obsolete data. In file systems like F2FS, GC involves consolidating
and erasing large data segments, during which valid data are copied elsewhere.
This can result in high write amplification (WA) and severe interference with
foreground I/Os, particularly under write-heavy workloads [20]. The efficiency
of GC in LFS is therefore essential for maintaining predictable performance and
prolonging the lifespan of the underlying storage device.
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To improve GC efficiency, LFS groups incoming I/0 data into different seg-
ments based on their hotness to reduce the amount of valid data in victim seg-
ments during GC [7]. Prior researches have primarily focused on either refining
hotness separation approaches for higher precision and adaptability [14,15,19,23]
or reducing data movement through in-storage migration mechanisms [6,8,17].
While these efforts aim to minimize the volume of migrated data, they encounter
significant challenges due to the internal flash translation layer (FTL) in SSDs,
which also employs log-structured out-of-place updates. This results in the “log-
on-log” problem [10,22,25], where two layers of log-structured storage are stacked
on the flash media, undermining the effectiveness of the applied optimizations
in both hotness separation and data migration. Since the FTL lacks knowledge
of the file system’s layout and, in particular, hotness-based data grouping strat-
egy, FS-level hotness grouping inside the SSD is disrupted [22]. Likewise, the
file system is unaware of the FTL’s data organization, causing inaccuracies in
hotness separation and excessive, unnecessary data movement during FS-level
GC. Effective collaboration between the host and the device is therefore crucial
to addressing these challenges and enabling efficient GC with accurate hotness
awareness and minimized write amplification.

Computational storage devices (CSDs) [5] offer the potential to overcome the
inherent limitations of file system GC by effectively bridging the gap between
the file system and FTL. By integrating host computation logic directly into
storage, GC tasks can be executed closer to the storage media, allowing for
tighter collaboration between the file system and storage device. Despite this
promising potential, achieving efficient collaboration between the host and CSD
for GC remains a non-trivial challenge. To fully harness the potential of CSDs,
the division of labor during GC between the host and storage must be carefully
orchestrated [12,24]. On the one hand, the host is well suited for managing
metadata and utilizing cached metadata in memory for rapid request processing.
On the other hand, CSD excels at handling I/O-intensive tasks with its short
data I/O path. To design an efficient collaborative GC scheme, it is also critical
to minimize communication overhead between the two parties while granting
in-storage GC the ability to track file hotness accurately. Additionally, the in-
storage GC must remain compatible with FTL to ensure that essential storage
functions are preserved.

We present CSGC, a host-device collaborative approach to file system GC
that leverages CSDs to offload critical GC tasks, minimizing both data migration
overhead and host-device communication. CSGC introduces a pipelined CSD-
offloaded migration framework that divides the GC process into data migrations
and metadata synchronization. I/O-intensive data migration tasks are offloaded
to CSDs to shorten the I/O path, while metadata updates are handled by the
host to take advantage of readily available runtime metadata in the host mem-
ory. This collaborative design allows CSGC to organize the entire GC process
into an offload-migrate-update pipeline, enabling parallel processing of different
GC stages on the host and CSD. To minimize communication overhead between
the two sides, CSGC adopts distinct strategies for data migration and metadata
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synchronization. CSGC employs a scatter-gather approach to efficiently collect
data for migration, effectively improving bandwidth utilization, especially when
dealing with fragmented data. For metadata synchronization, CSGC piggybacks
a minimal set of necessary metadata with the migration requests from the host
when triggering GC, and returns updated metadata along with the comple-
tion message when data migration completes, ensuring metadata consistency
while keeping communication overhead minimal. To address the log-on-log is-
sue, CSGC introduces a separate flash translation layer (sFTL), which divides
the physical storage into out-of-place update (OPU) and in-place update (IPU)
partitions. The OPU partition is managed directly by the file system for file
data storage, bypassing the conventional block interface to preserve awareness
of data hotness during garbage collection. In contrast, the IPU partition retains
the block interface for metadata storage, which is particularly useful for handling
in-place metadata updates, preventing unnecessary cascading writes caused by
metadata logging.
This paper’s main contributions are summarized below:

— We present a host-device collaborative GC approach that fully leverages the
strengths of both CSDs and the host through a pipelined CSD-offloaded
migration framework.

— We propose a scatter-gather approach for offloading data migration tasks
coupled with a metadata piggybacking mechanism, enabling efficient data
migration with minimal communication overhead.

— We introduce a separate flash translation layer (sFTL) that partitions phys-
ical storage into IPU and OPU regions, allowing the file system to directly
manage the OPU partition and resolve the log-on-log issue.

— We implement CSGC in F2FS and a hardware-based SSD evaluation plat-
form. Experimental results demonstrate that CSGC substantially mitigates
GC overhead, improving throughput by up to 3.6x and 1.9x compared to
the vanilla F2FS and IPLFS respectively.

2 Background and Related Work

2.1 Garbage Collection in F2FS

F2FS [9] is a log-structured file system tailored specifically for flash-based storage
devices with various flash-optimized designs, including a flash-friendly on-disk
layout, cost-effective index structures, and adaptive multi-head logging strate-
gies. F2FS groups file system blocks into segments. Each segment is typed to
be either data for user data or node for inodes or indices of data blocks®. F2FS
separates data with different hotness by maintaining three log heads for data
and node segments corresponding to three temperatures: hot, warm, and cold.
The temperature of a block is statically determined based on its type and file
attributes when it is allocated from the log head for writes.

3 Unless explicitly clarified, we use “block” to refer to file system blocks instead of
NAND flash blocks in this paper.
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GC is triggered when the number of available segments is lower than a thresh-
old and performed in the unit of a section (consisting of contiguous segments).
A victim section is first selected using the greedy policy in foreground GC or
cost-benefit policy in background GC. Valid blocks within the chosen section are
then identified, read into host memory, and assigned new storage addresses for
migration. The costly identify-read-allocate-write process is repeated for each
block in the section. Once blocks have been relocated, F2FS writes a checkpoint
to persist the change, and the section becomes free for future allocation.

2.2 Improving GC Efficiency

The migration of valid data during GC causes write amplification (WA) and
is the key contributor to its performance overhead; therefore, improving GC
efficiency hinges on optimizing data block migration.

Hotness-based grouping is a common strategy employed at the host level to
reduce the migration cost. Grouping blocks with similar hotness into the same
segment increases the chance that when one block is invalidated, others will
soon follow, thus reducing the number of valid blocks during GC and lowering
WA [21]. Previous works [14, 15,23] adopt advanced hotness grouping strategy
by using update frequencies, block lifespans, and dynamic group sizing based
on statistical models to enhance data separation. However, the log-on-log issue
undercuts the effectiveness of hotness separation: the FTL is agnostic of the FS
hotness separation and may group data in flash storage against the intended will
of the host, undermining the effectiveness of the applied optimizations.

In-storage migration, on the other hand, minimizes host-device data move-
ment by directly migrating blocks within the storage device. Offloading migration
tasks to the storage device can alleviate the I/O pressure and cache pollution
due to the unnecessary detour through host memory in migration. Works [6,17]
based on ZNS interface [2] extend the interface with in-storage migration com-
mands consisting of source and destination addresses. However, their approaches
are restricted by the ZNS interface and incur high communication costs when
data blocks are scattered due to lack of awareness of host file system. IPLFS [§]
supports a vast LBA space (up to 264 LBAs) in FS and FTL to eliminate FS-level
GC by ensuring the FS never exhausts sequentially available addresses during
the SSD’s lifespan. Yet, it struggles to propagate FS-level hotness grouping into
the storage media due to the presence of the FTL, leading to suboptimal GC
performance.

In summary, the lack of a host-device collaborative GC approach in current
studies results in either a host-centric migration that accounts for hotness but
incurs unnecessary host-device data movement overhead or inefficient in-storage
migration that neglects FS hotness separation. To address these challenges, we
aim to propose a collaborative GC approach that integrates F'S hotness aware-
ness with in-storage data migration, minimizing redundant data movements and
improving overall GC efficiency.
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3 Design

We present CSGC, a host-device collaborative GC approach that offloads data
migration tasks to CSD, minimizing data movement overhead and host-device
communication. CSGC employs a pipelined CSD-offloaded migration framework,
with an offloader in the host and an executor in the CSD, leveraging the hardware
advantages on both sides (Section 3.1). The offloader prepares the GC request
and offloads it to the executor, which then migrates the data directly within
storage and returns only the dirty metadata to the offloader for synchroniza-
tion. CSGC organizes the garbage collection process into a pipelined sequence
of operations, enabling parallel execution of I/O-intensive tasks in the CSD and
metadata management on the host (Section 3.2). To minimize communication
overhead, CSGC adopts a scatter-gather approach for data migration and a pig-
gybacking mechanism for metadata synchronization. To address the log-on-log
issue, a separate FTL (sFTL) is proposed to manage the storage space separately
and grant F'S direct control over data to be GC’ed while preserving CSGC'’s ca-
pability to uphold hotness separation (Section 3.3).

3.1 Collaborative Migration

CSGC employs a CSD-offloaded migration framework that capitalizes on the
complementary strengths of the host and CSD for garbage collection. The host,
equipped with extensive metadata caches, efficiently handles allocation and syn-
chronization, while the CSD directly executes migration operations near the
storage media, significantly reducing data movement overhead and host process-
ing load. This strategic division of labor ensures that GC operations are both
streamlined and highly effective.

Figure 1 illustrates the framework of CSGC, comprising an offloader in the
host for GC offloading and metadata synchronization, and an executor in the
CSD for data migration. Upon receiving a GC request, the host invokes the
offloader (1) with a victim segment*. The offloader then initializes the GC request
() it identifies the valid blocks in the victim segment and pre-allocates the
destination addresses for these blocks, which can be quickly finished with the help
of runtime metadata that are likely to be cached in the host memory®. The host
proactively packs the allocated addresses, the identifier of the victim segment,
and the validity bitmap into a CSGC request, and offloads it to CSD (@) to initiate
the in-storage migration process. The GC request is dispatched by the NVMe
controller through a circular queue to the executor, which then performs in-
storage data migration (4). The executor migrates valid blocks using the provided
addresses, significantly reducing data movement latency and alleviating host
I/O pressure. Upon completion, CSD returns a completion message (5) with the

4 Here we assume the unit of GC is a segment for ease of narration; the GC of a section
is discussed in Section 3.2.

5 If metadata is not cached, host will fetch it from storage. Our experiment showed
that the cache hit ratio is high and the fetch cost is negligible.
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Fig. 1: Collaborative migration framework.

updated metadata to host, and the offloader synchronizes the updates (6) with
the in-memory metadata to ensure metadata consistency.

Offloading data migration to CSD emphasizes the need for highly efficient in-
storage execution. CSGC achieves this by leveraging asynchronous data transfer
to overlap data movement with computational tasks, such as block identifica-
tion and metadata processing. During data block migration, the executor sub-
mits data transfer requests asynchronously to the scheduler while simultaneously
preparing the next block for processing. This overlap minimizes idle time, ensur-
ing that processing latency is effectively concealed by concurrent data transfer,
thus improving the utilization of CSD processors.

To enhance migration performance, a coalescing scheduler is deployed in the
CSD to streamline internal data transfer request management during migration.
Since data transfer overhead dominates migration costs while computational
delays are now mitigated by asynchronous execution, the scheduler prioritizes
effective request consolidation. It merges contiguous migration tasks whenever
possible to enhance data transfer efficiency. It employs a lazy submission strategy,
queuing incoming requests and maintaining a submission window anchored at
the queue’s head. When the flash data transfer engine is ready, the scheduler
consolidates requests within the window, submits the merged operation, and
advances the window.

Through the collaborative migration framework, we address the challenge of
offloading GC tasks in a manner that capitalizes on the respective strengths of
the host and CSD. The host offloader utilizes the readily available metadata
in memory to efficiently handle the pre-GC allocation and post-GC metadata
updates. The executor in CSD performs data migration near storage using the
tailored asynchronous data transfer scheduling, improving data movement effi-
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Fig.2: GC execution pipeline.

ciency by eliminating the detour through host memory from the migration path.
Under the current strategic division of GC subtasks, the resources in host and
CSD are both effectively utilized, ensuring a more efficient execution of GC
operations across the system.

3.2 Pipelined GC Execution

As depicted in Figure 2, CSGC organizes the entire GC operation into a pipeline,
effectively overlapping host processing and CSD migration. The GC of a segment
undergoes three main phases: request offloading, data migration, and metadata
synchronization. We organize these stages into an approximate 2-stage pipeline
(the metadata synchronization stage takes little time compared to the whole
GC process). To parallelize GC process with the pipeline, CSGC batches the
cleaning of the segments in one section into a request. By default, a section size
of 8 segments is adopted (the default value in F2FS is 1). During execution, the
offloader and executor operate in parallel: the offloader prepares requests and
synchronizes metadata, while the executor migrates data. This ensures efficient
pipeline utilization and resource sharing without blocking the application for too
long due to prolonged GC latency with the larger section size.

During pipeline execution, the offloader and executor must coordinate to
exchange data migration parameters and ensure metadata synchronization. To
minimize host-device communication traffic, CSGC constructs data migration
requests in a scatter-gather manner and piggybacks the associated up-to-date
metadata with both the request and its completion message. There is thus only
a single round trip between the host and the device when exchanging request
and metadata, ensuring minimal communication overhead.

Scatter-Gather Data Migration. In the request offloading stage, CSGC
employs a scatter-gather (SG) approach to collect data for migration. It con-
solidates the migration of all valid blocks within a victim segment into a single
request to amortize the overhead of request offloading. To enable the SG mi-
gration, the offloader provides address descriptors that guide the executor to
pinpoint both source and destination addresses for the migration. Specifically,
the source address descriptor details the victim segment number along with its
validity bitmap, while the destination address descriptor comprises pre-allocated
addresses for the valid blocks. These hints are embedded in the migration re-
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quest to CSD, allowing the executor to efficiently locate the scattered valid blocks
within the segment and migrate them to the designated addresses.

To facilitate SG migration, destination blocks are pre-allocated in a contigu-
ous address range, known as chunk. Unlike the per-block allocation method in
the original F2FS, our approach avoids the fragmentation typically caused by
simultaneous block allocation requests from multiple threads, which hinders the
efficiency of SG migration. We develop a chunk allocator that secures blocks of
contiguous addresses within the critical section of the allocation process, ensuring
uninterrupted allocation of contiguous blocks. This chunk allocator significantly
reduces address fragmentation, thereby enhancing the efficiency of SG migration.

Piggybacked Metadata Synchronization. In conjunction with SG data
migration, the offloader employs a piggybacked metadata synchronization ap-
proach to ensure FS consistency across host and CSD with minimal communi-
cation overhead. During GC, the executor requires up-to-date reverse index to
map data blocks to their index blocks for index updates to reflect the newly mi-
grated data. To grant the executor access to the latest metadata, the offloader
extracts the necessary reverse indexes from the in-memory metadata and piggy-
backs them with the migration request. This metadata is then transmitted to a
designated area in CSD memory for easy retrieval by the executor when needed.

After GC, the offloader must synchronize metadata changed during migration
back to the host. To minimize the synchronization overhead, the executor adopts
a lazy metadata update strategy. During data migration, the executor adjusts re-
verse indexes and updates index blocks with new addresses while buffering these
changes in the CSD memory. Upon completing the migration, these buffered
updates are attached to the completion message and sent back to the host for
batch synchronization. This approach effectively leverages runtime metadata in
the host’s memory to absorb subsequent changes, reducing overall metadata I/0
traffic. Since the volume of metadata involved in a single GC request is small,
attaching the prefetched and updated metadata to the GC request and comple-
tion message imposes negligible overhead. The metadata piggybacking scheme
minimizes synchronization overhead while leveraging the host’s metadata cache
to maintain a consistent file system view between the host and the CSD with
minimal resource consumption.

3.3 Separate Flash Translation Layer

The separate flash translation layer (sFTL) introduces a decoupled storage man-
agement mechanism to eliminate the redundant logging layer for file data up-
dates within the file system, which accounts for the vast majority of on-disk
data. As shown in Figure 3, F2FS divides the logical storage space into two
areas: a metadata area for file system metadata blocks and a main area for file
blocks, for which in-place updates (IPU) and out-of-place updates (OPU) are
applied respectively. Correspondingly, sFTL splits physical storage into an IPU
partition, which retains the log-structured management, and an OPU partition,
which forgoes FTL-level logging to address the log-on-log issue for the main area.
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Fig. 3: Decoupled storage management through sFTL.

Specifically, the OPU partition directly exposes physical flash storage in the
main area to the file system, bypassing conventional FTL abstractions. This is
achieved via sFTL’s direct LBA-to-PBA mapping, enabling the physical flash
management groups (i.e., NAND blocks) to inherit the hotness characteristics of
their logical counterparts in the file system. With this setup, the file system can
directly employ its logging methods to the flash storage, managing the NAND
pages and NAND blocks through their corresponding storage units in the file
system®. To reclaim space from dirty NAND blocks, the offloaded FS-level GC
replaces the original FTL-level GC. This is equivalent to performing the migra-
tion of both logical F'S blocks and physical NAND pages simultaneously. The
shift of flash management from FTL to FS eliminates redundant FTL logging
and reduces write amplification, optimizing both performance and resource uti-
lization. Although the OPU partition exposes an append-only interface similar to
raw flash media, the FTL keeps an indirect mapping at superblock level for low-
level maintenance such as wear leveling, error correction, etc. This indirection
poses negligible runtime computation and memory overhead due to its coarse
granularity. Since it is not within the topic of interest of this paper, we leave out
the technical details and assume that the file system has direct access to raw
flash for ease of narration. To address in-place metadata updates (e.g., adopted
in F2FS to avoid cascading writes caused by metadata logging), sFTL includes
an IPU partition. The IPU partition is maintained by L2P mapping and internal
FTL-level GC, providing a traditional block interface.

sFTL’s partitioned management of metadata and main area provides a hybrid
interface to the host, eliminating redundant logging layers. This approach not
only resolves inefficiencies stemming from the log-on-log issue but also bridges
the gap between the file system GC and the underlying FTL, facilitating efficient
collaboration between the host and CSD.

5 We align the NAND page size with F2FS blocks and NAND block size with F2FS
segments in our implementation, which is the intended usage of F2FS’s flash-friendly
layout.
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4 Implementation

We integrate CSGC into F2FS (Linux 6.1.54) and introduce a new request flag
in the block layer to mark CSGC requests. The NVMe driver is also modified
to build customized CSGC commands. We implement the executor along with
sFTL in the firmware of Daisy+ OpenSSD [1], a hardware-based SSD evalua-
tion platform featuring a quad-core Cortex-A53 controller and 2GB LPDDR4
DRAM. The OpenSSD uses two 32GB DDR4 DIMMs as the storage backend,
thus offering 64GB of storage space. With 7% over-provisioning, the effective
storage capacity is 59.5GB. We port the page-level FTL from FEMU [11] to
serve as the baseline FTL and simulate flash operations on top of the DRAM
backend. The FTL is configured with 8 channels, each channel comprises 2 dies,
and a NAND block comprises 512 pages, each 4KB in size. It allocates flash
pages in a round-robin fashion across different dies. FTL-level GC is performed
in the unit of a superblock with 16 NAND blocks when available superblocks
drops below 5%. The sFTL is implemented based on the baseline FTL. It fol-
lows the same flash configuration but only applies the L2P mapping and internal
GC for the IPU partition. We use one controller core to handle NVMe requests,
another for flash emulation and internal data transfer scheduling, and the re-
maining two for CSGC executor to concurrently process GC requests. The host
server is equipped with two Intel Xeon Gold 6240 CPUs and 384GB DRAM.
Our implementation includes 4K and 8K lines of code for host-side offloader and
device-side executor and sFTL.

5 Evaluation

5.1 Evaluation Setup

We evaluate CSGC against vanilla F2FS and IPLFS using macrobenchmarks
(Filebench [18], YCSB [3] on MySQL) and microbenchmarks (fio) to assess its
performance across varied workloads. We set F2FS in log-structured mode to
ensure consistent GC activity, with background GC deactivated to focus on
foreground GC. The logical storage partition size is set to the entire storage
capacity. For workloads employing buffered 1/O, memory usage is restricted to
8GB via Cgroup, emulating a realistic memory-to-storage ratio. Unless specified
otherwise, F2FS uses the baseline FTL, IPLFS employs baseline FTL with in-
terval mapping, and CSGC uses sFTL. For F2FS and CSGC, F2FS section size
(granularity of GC) is set to 8 segments. For IPLFS, since the kernel crashes
when the section size exceeds 1 segment [4], we set its section size to 1 segment,
which should have minimal impact on performance given that IPLFS eliminates
FS-level GC. Other configurations are left with their default values.

5.2 Macrobenchmarks

Performance Overview. We evaluate CSGC using fileserver, varmail, YCSB
(A/F), and fio benchmarks, with storage pre-filled to 70%-85% capacity to
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quickly trigger GC. In fileserver, 4 threads randomly create, append (1MB),
write (32KB), read (1MB), and delete files from a set of 54,000 files (1MB each)
for 300 seconds. In varmail, 4 threads randomly delete, create, append (32KB),
and read files from 860,000 files (64KB each) for 300 seconds. In YCSB-A, 32
threads perform 2M operations (50% reads/50% updates) on 1M records (1KB
each). YCSB-F changes the mix to 20% reads/80% read-modify-writes. In fio,
4 threads perform buffered writes (64KB each) totaling 20GB per thread on a
51GB file (85% storage). Two distributions are tested: uniform (fio-uniform) and
Zipfian (fio-skewed, 6 = 1.1).
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Fig. 4: Performance overview.

Figure 4 shows the overall performance of CSGC compared to F2FS and
IPLFS. On average, CSGC outperforms IPLFS by 1.65x and F2FS by 2.76x,
with maximum improvements of 1.9x (YCSB-A) and 3.61x (YCSB-F), respec-
tively. CSGC achieves superior performance in YCSB workloads due to frequent
small random I/Os, which typically cause severe write amplification and GC
overhead. Although IPLFS removes FS-level GC to reduce write amplification,
it incurs great overhead in management of interval mapping (e.g. map node com-
paction) to keep memory usage small, especially with fragmented small I/Os.
Moreover, IPLF'S relies heavily on frequently sending discard commands to the
storage (since it never rewrites the same LBA), which may interfere with normal
I/Os and cause performance degradation.
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Fig.5: (a) Throughput during fileserver benchmark. (b) Average and tail laten-
cies for read and update operations in YCSB-A benchmark.

Throughput and Latency. We evaluate the throughput and latency of
CSGC in fileserver and YCSB-A benchmarks. Figure 5a shows fileserver through-
put over 300 seconds. At about 40 seconds, GC starts and causes significant
performance drops in all systems. However, CSGC recovers quickly and sustains
higher throughput than F2FS and IPLFS. Figure 5b illustrates average and tail
latencies in YCSB-A. By host-CSD collaboration and reduced GC overhead,
CSGC improves average latency by up to 2.7x and tail latency by up to 4.7x
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over F2FS. Tt also outperforms IPLFS by up to 1.4x (average) and 1.7x (tail),
benefiting from simpler FTL design and improved FS data-hotness awareness.

5.3 Microbenchmarks

We use fio to analyze the impact of storage utilization, GC granularity, and write
skewness on CSGC.
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Fig.6: Fio random write throughput (a) and write amplification (b) under dif-
ferent storage utilization.

Influence of Storage Utilization. With other configuration following de-
fault, We vary storage utilization from 60% to 95% and measure throughput and
write amplification (WA) for random writes. Figure 6a shows throughput de-
creases with higher utilization for IPLFS and CSGC, though CSGC consistently
achieves higher performance. Figure 6b explains this by showing CSGC’s consis-
tently lower WA compared to F2FS and IPLFS. Both IPLFS and CSGC remove
one redundant layer of GC, reducing WA significantly versus F2FS. However,
IPLFS has to inform the storage of the invalidated data by discard commands,
which introduces a delay between the invalidation of data at the FS level and
the corresponding invalidation at the FTL level, thus resulting in higher WA
compared to CSGC.
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Fig. 7: Fio performance under different section size. (a) Average block migration
latency during FS GC. (b) Throughput. (¢) Write amplification.

Influence of GC Granularity. We evaluate the impact of section size
(ranging from 1 to 16 segments) on throughput and WA for F2FS and CSGC.
As depicted in Figure 7b, CSGC consistently outperforms F2FS in throughput
across all section sizes. For CSGC, larger sections improve pipeline utilization
and resource sharing during pipeline execution, increasing throughput and de-
creasing average block migration latency (Figure 7a). For vanilla F2FS, through-
put also significantly improves with larger sections, primarily due to reduced WA
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(Figure 7c), which results from better alignment between FS-level and FTL-level
GC granularities [22].
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Fig. 8: Fio performance with different write distributions (uniform, zipfian with

theta = 0.3 - 1.1). (a) Throughput. (b) Write amplification.

Influence of Write Skewness. We evaluate how write skewness affects
throughput and WA by varying the write distribution from uniform to Zipfian
(# = 0.3-1.1). Unlike previous fio tests, where four threads perform a fixed total
of 80GB writes, here each test runs random writes for 300 seconds. Figure 8
shows that all systems exhibit higher throughput and lower WA as skewness
increases, since data becomes more likely to be overwritten, reducing the over-
head of migration. Although CSGC achieves higher throughput than F2FS and
IPLFS, it shows slightly higher WA compared to IPLFS under the uniform dis-
tribution. We attribute this observation to CSGC performing a greater total
amount of writes (108GB compared to IPLFS’s 85GB) during the 300-second
run; initially, WA is low but rises significantly later in the run, leading to higher
cumulative WA. This explanation is supported by Figure 6b, where CSGC shows
lower WA than IPLFS when the total write amount is constrained to 80GB.

6 Conclusion

In this paper, we present CSGC, a host-device collaborative GC approach that
utilizes the strengths of host and computational storage devices to optimize GC
efficiency. CSGC integrates a pipelined CSD-offloaded migration framework, fa-
cilitating efficient task division between the host and CSD. To minimize com-
munication overhead, CSGC employs a scatter-gather data migration and pig-
gybacked metadata synchronization scheme. Moreover, the adoption of separate
flash translation layer (sFTL) grants the file system precise control over stor-
age operations, resolving the log-on-log issue and preserving hotness separation.
Our evaluation based on F2FS and Daisy+ OpenSSD shows that CSGC sig-
nificantly mitigates GC overhead, demonstrating its effectiveness in enhancing
system performance and responsiveness in write-heavy scenarios.
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