
TxISC: Transactional File Processing in
Computational SSDs

Penghao Sun1, Shengan Zheng2�, Kaijiang Deng1, Guifeng Wang1, Jin Pu1,
Jie Yang3, Maojun Yuan3, Feng Zhu3, Shu Li3, Linpeng Huang1�

1Shanghai Jiao Tong University
2MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University

3Alibaba Group
�{shengan, lphuang}@sjtu.edu.cn

Abstract—Computational SSDs implement the in-storage com-
puting (ISC) paradigm and benefit applications by taking over
I/O-intensive tasks from the host. Existing works have proposed
various frameworks aiming at easy access to ISC functionalities,
and among them generic frameworks with file-based abstractions
offer better usability. However, since intermediate output by
ISC tasks may leave files in a dirty state, concurrent access
to and the integrity of file data should be properly managed,
which has not been fully addressed. In this paper, we present
TxISC, a generic ISC framework that coordinates the host kernel
and device firmware to offer a versatile file-based programming
model. Under the hood, TxISC turns each invocation of an ISC
task into a transaction with full ACID guarantee, fully covering
concurrency control and data protection. TxISC implements
transactions at low cost by leveraging the out-of-place write
characteristic of NAND flash. Evaluation on full-stack hardware
shows that transactions incur almost no runtime performance
penalty compared with existing ISC architectures. Application
case studies demonstrate that the programming model of TxISC
can be used to offload complex logic and deliver significant
speedup over host-only solutions.

Index Terms—in-storage computing, computational SSD,
transaction, programming model

I. INTRODUCTION

In-storage computing (ISC) takes advantage of computing
resources within a storage device to perform computation
tasks in the host’s stead. By offloading data processing to
where data reside, ISC significantly shortens the I/O path,
benefiting data-intensive applications. As of today, NAND
flash-based solid state drives (SSDs) are the preferred vehicle
of the ISC paradigm [1]. Indeed, ultra fast NAND flash is
one of the major drivers behind ISC, since faster storage
media amplifies the impact of software stack overhead and bus
transfer latency on end-to-end performance [2]. Additionally,
to relieve the host of the “erase before write” idiosyncracy
of NAND flash, modern SSDs are already packing reasonable
computing power in order to run the flash translation layer
(FTL), making them ideal candidates to take over simple data
processing jobs from host applications [3], [4].

Accessible use of ISC-enabled SSDs, or computational
SSDs, calls for the development of easy-to-use ISC frame-
works. Prior works explored application-specific architectures
[5]–[8] and generic programming frameworks [9]–[13]. Al-
though the former boasts superior performance in their respec-

tive domains, wide adoption is limited due to lack of generality
[14]. Generic frameworks, on the other hand, allow users
to offload arbitrary ISC tasks by providing general-purpose
programming models. Among them, file-based programming
models [11]–[13] provide better usability than block-based
ones [9], [10] since most existing applications also interact
with the SSD through file system abstractions, instead of
directly accessing raw block devices.

However, allowing ISC tasks to manipulate files inside the
SSD introduces another party that can alter data at runtime. It
is thus crucial to provide system-level support of concurrency
control and data protection since intermediate output by ISC
tasks may leave files in a dirty state. In this regard, it is
desirable to have ACID semantics for ISC tasks similar to
database transactions. Although prior solutions have provided
preliminary support of isolation among ISC tasks by means
of, for example, separating the control plane and data plane
[11], [12], ISC tasks interrupted by system crashes can still
cause file data corruption. While it is also possible to leave
the responsibility of ACID to applications by using techniques
such as logging or copy-on-write, the excessive data copies
could offset the benefit of adopting ISC in the first place [15].
Our goal in this paper, therefore, is to design a generic ISC
framework with built-in support of file transactions.

We present TxISC, a generic ISC framework that coordi-
nates the host kernel and device firmware to offer a versatile
file-based programming model. User-defined ISC tasks can
access file data inside the SSD through POSIX-like APIs
while remaining agnostic to the file system in use. Under
the hood, TxISC turns each invocation of an ISC task into a
transaction with full ACID guarantee. TxISC creates exclusive
snapshots for files that an ISC task accesses. Changes made
to the file snapshots remain private until the task commits.
By leveraging the out-of-place write property of NAND flash,
TxISC ensures uncommitted changes can be rolled back on
aborting or recovery. When a task commits, data changes
are applied by updating the L2P table atomically to prevent
intermediate changes from becoming visible. For durability,
TxISC persists a minimal amount of mapping information that
can be used to rebuild the L2P table that correctly reflects
committed changes upon recovery.

We implement TxISC on full-stack hardware evalua-



tion platform. Microbenchmark and application case studies
demonstrate that TxISC can provide transaction support with
almost no runtime performance penalty compared with ex-
isting ISC architectures. Furthermore, offloading computation
to TxISC provides 14%-74% improvement over host-only
solutions in various I/O-intensive workloads. To the best of
our knowledge, TxISC is the first ISC framework that features
full-fledged ACID support for offloaded tasks.

This paper makes the following contributions:
• We present TxISC, a versatile ISC framework that co-

ordinates the host kernel and device firmware to allow
offloaded computation tasks to access data with easy-to-
use file abstractions.

• TxISC turns each invocation of a user-defined ISC task
into a transaction with full ACID guarantee. Intermediate
changes to file data are made to exclusive file snapshots
and remain private until committing. Should the task fail,
uncommitted changes can be rolled back. For committed
tasks, TxISC ensures that data changes are applied atom-
ically and durably.

• We implement TxISC on real hardware and evaluate
it with microbenchmark and application case studies,
demonstrating low runtime cost of transaction support
and significant speedup over baseline systems.

II. BACKGROUND AND RELATED WORK

A. SSD Basics

Solid state drives (SSDs) are built on arrays of NAND
flash chips. Since programmed (written) flash pages must be
erased before they can be programmed again, SSDs pack an
embedded controller to run the flash transaction layer (FTL)
[16]. When serving block write requests from the host, the
FTL always allocates new flash pages and maps logical block
addresses (LBAs) to new physical page addresses (PPAs) with
the L2P table, thus avoiding frequent erase operations. When
free flash pages deplete, garbage collection is triggered, during
which the FTL identifies valid pages using the reverse P2L
mapping stored alongside user data in the OOB area.

B. Computational SSDs

With the I/O latency of SSDs approaching sub-10µs domain,
software stack overhead becomes amplified [2]. In-storage
computing offers a potential solution. Fortunately, SSDs are a
natural fit with the ISC paradigm, since the device controller
already comes with moderate computing power [3] due to
increasingly heavy firmware tasks (wear levelling, data reten-
tion handling [17], etc.). FPGAs and other domain-specific
accelerators [11] have also found their way into ISC-enabled
SSDs, or computational SSDs.

Prior attempts toward computational SSD system can be
classified into domain/application-specific architectures [5]–
[8] and generic frameworks [9]–[13]. Although the former
can generally deliver superior performance by incorporating
highly customized software and hardware optimizations for
the targeted applications (e.g., information retrieval [5], neural
network training [6], [7], data analysis in HTAP [8]), they lack

ApplicationsUser space

VFS

File Systems
Kernel

Daemon
NVMe Driver

Kernel space

Task invocation File I/Os

ISC 

Runtime

TxFTL

NAND Flash

Computational

SSD

Block

I/Os

File mapping

File API

Fig. 1. TxISC architecture.

flexibility in terms of use cases and may require complete
revamp as the underlying application evolves.

On the other hand, generic computational SSD frameworks
[9]–[13] allow users to better take advantage of the pro-
grammability of computational resources within the storage
device, albeit to varying extents. Among them, Willow [9] and
Summarizer [10] adopt the raw block interface, where the user
specifies input/output data with their LBAs. Such interface
aligns well with existing NVMe infrastructure, but is arguably
hard to use by application developers. Direct exposure of
the block address space is also prone to data security issues.
Insider [11], Metal FS [12] and λ-IO [13] build on file system
abstractions, providing a more user-friendly interface.

Nevertheless, one critical functionality yet to be offered by
existing solutions is transaction support for the offloaded ISC
tasks. Such support is important since allowing ISC tasks to
mutate data in-storage brings the risk of data corruption when
multiple tasks and host applications share the same dataset,
or when on-going tasks are interrupted by system crashes. It
is thus ideal to have ACID semantics support for ISC tasks
similar to database transactions. Therefore, our goal in this
work is to build a generic computational SSD framework,
offering transactional file processing capability.

III. DESIGN

We present TxISC, a computational SSD framework that
allows users to offload data processing to the storage device.
TxISC coordinates the device firmware and the host kernel
and provides a file-based transactional programming model.
As shown in Figure 1, its main components include:

1) The device-side ISC runtime, providing offloaded ISC
tasks with basic programming support such as memory alloca-
tion and access to on-device file data through POSIX-like APIs
(both synchronous and asynchronous APIs are supported). An
ISC task is simply a C function that can be loaded into the
device and invoked by host applications on demand.

2) The device-side TxFTL, extending the conventional FTL
in SSDs to handle file I/O requests from ISC tasks. By
carefully managing the translation from file offsets or LBAs
to target PPAs, TxFTL enforces atomicity of data updates,
consistency of the file system, isolation among ISC tasks and
host applications, and durability of committed changes.



1 // host-side application
2 int file_checksum_host() {
3 int id[2], status, checksum = -1;
4 // declare ISC context
5 ISCCtx c;
6 // register input and output files
7 id[0] = isc_register_file(&c, "/in/path", "r");
8 id[1] = isc_register_file(&c, "/out/path", "w");
9 // add other arbitrary arguments

10 isc_put_args(&c, id, 2 * sizeof(int));
11 // call ISC task
12 status = isc_run_task(&c, CHECKSUM_TASK_HANDLE);
13 // return checksum on success and -1 otherwise
14 if (status == SUCCESS)
15 isc_get_ret(&c, &checksum, sizeof(int));
16 return checksum;
17 }
18 // device-side task implementation
19 void file_checksum_device(ISCCtx *c) {
20 int id[2], size, checksum;
21 // retrieve arguments and allocate buffer memory
22 isc_get_args(c, id, 2 * sizeof(int));
23 size = isc_file_size(id[0]);
24 void *buf = isc_malloc(size);
25 // read input file data and calculate checksum
26 isc_file_read(id[0], buf, size);
27 checksum = calculate_checksum(buf, size);
28 // write checksum to output file
29 isc_file_write(id[1], &checksum, sizeof(int));
30 // return calculated checksum
31 isc_put_ret(c, &checksum, sizeof(int));
32 }

Listing 1. An example: computing file checksum.

3) The host-side kernel daemon, exposing TxISC function-
alities to host applications. The kernel daemon also interfaces
with the VFS layer to retrieve file mappings when necessary.

Below in this section, we detail the user programming model
of TxISC and how the components work together to ensure
transactional file access at low cost.

A. Programming Model

TxISC provides a transactional programming model, where
each invocation of an ISC task is treated as a transaction.
Specifally, TxISC offers the following ACID semantics:

• Atomicity (Section III-C): Changes to files are committed
atomically. Ongoing ISC tasks and host applications will
not see partially updated data from each other.

• Consistency (Section III-D): On the host side, the kernel
daemon interacts with the VFS layer only. Inside the
device, only data blocks can be accessed by ISC tasks,
and file system metadata remains intact. TxISC is thus
agnostic to the specific file system in use (ext4, f2fs, etc.),
and can inherit the file system’s consistency guarantee.

• Isolation (Section III-B): ISC tasks and host applications
can make changes to a file concurrently, as long as
changed data do not overlap. Furthermore, each ISC task
operates on exclusive file snapshots created on invocation.
Before the task commits, its changes to file data remain
private. Should there be conflicting changes (i.e., when
modified ranges overlap), the task that arrives later can

optionally retry or abort and have all data changes rolled
back.

• Durability (Section III-D): Once a task commits, its
changes to file data are guaranteed to have been persisted
and can survive system failures.

We demonstrate the use of TxISC with a simple in-storage
file checksum calculation example in Listing 1. Host-side
application code (file_checksum_host) can register in-
put/ouput files and add other arguments to an ISC context,
which represents an instance of an ISC task invocation.
Later, the host calls isc_run_task to trigger the ISC task.
Once it returns, the task is guaranteed to have completed.
The user can then check whether the task was successfully
committed and take actions accordingly. Device-side task code
(file_checksum_device) runs inside the computational
SSD. The task can read/write files using POSIX-like inter-
faces, allocate scratchpad memory from the on-board RAM,
perform computation in-storage, and pass return values to
the host. When the function returns, the task completes and
changes are committed according to the ACID semantics
described above.

B. Isolating File Access

To enforce isolated file I/Os among ISC tasks and host
applications, TxISC creates a snapshot for each file that is to
be accessed by an ISC task upon its invocation. The snapshot
remains exclusive to the task before the task commits.

Based on the observation that writing flash pages does not
overwrite existing data, TxISC extends the address mapping
facilities in the FTL to maintain file snapshots at low cost.
As shown in Figure 2, per-file snapshot info is stored in a
snapshot descriptor, which is associated with one and only
one file. Multiple tasks can process a file simultaneously by
sharing a snapshot descriptor. A snapshot descriptor holds two
mapping structures: (1) An array of file extents queried from
the VFS by the kernel daemon when the user registers a file to
the ISC context. The extents map pages that contain untouched
file data when an ISC task starts. (2) Delta mapping entries
used to track file data changed by ISC tasks or the host. The
entries are organized in a red-black tree, indexed by file offset.
With such information, TxFTL can isolate file accesses from
the host and ISC tasks, as described below.

Handling in-storage file I/Os. To keep partially committed
data invisible to the host and other ISC tasks, in-storage file
writes do not directly update the L2P table. Instead, pages
allocated for the newly written data are tracked using the
delta mapping entries. Besides the flash page address and the
corresponding file range, a delta mapping entry also records
the ID of the task from which the data originated and a
timestamp (ts). For illustration, in Figure 2, the ISC task
with ID 20 is to write data block 2 of file foo (TxISC
supports file I/O with arbitrary size and offset; here we assume
block-aligned I/O for ease of illustration). TxFTL first searches
the delta mapping entries in the file’s snapshot descriptor
for overlapping ranges. If one such entry is found, there is
potential data conflict. TxFTL then checks whether the delta



File content 0

NAND flash

Snapshot descriptor

Task #20 Task #21

1 2 3

30 31 32 33 34 35 36

Extent array

off len lba
0 4 12
… … …

…

…

lba ppa
12 30
13 31
14 32
15 34
… …

L2P table

write(foo, 2) read(foo, 2)

Block data type

File
File (dirty)
Regular data

Delta mapping

tree

off len ppa
2 1 36

id
20

ts
100

foo

Fig. 2. Isolating file access through snapshot descriptor.

mapping is from another task by comparing the task ID.
Should the IDs differ, the task that arrives later aborts or retries
due to conflicting file writes. Otherwise, TxFTL allocates flash
pages to house the new data and inserts a new delta mapping
entry or modify existing entries accordingly.

Concurrent ISC tasks can avoid reading dirty data with the
help of delta mapping. In Figure 2, another task with ID 21
tries to read block 2 of file foo that has been written by
task 20. TxFTL searches the delta mapping tree for entries
that cover data block 2. Although one such entry is found
in Figure 2, it originated from task 20 and is thus omitted.
TxFTL then retrieves the address of the flash page that contains
untouched file data from the extent array and the L2P table,
thus correctly reading clean file data.

Handling host file I/Os. With TxISC, host applications
retain the ability to access files via the normal I/O path, which
eventually takes the form of block I/Os to the computational
SSD. Internally, TxFTL takes extra care to prevent data races
from the host. When the user registers a file, TxFTL sets a
flag bit in each L2P table entry covered by the file extents
(not shown in Figure 2), indicating that the LBA belongs
to a file snapshot. TxFTL can then identify host writes to
LBAs that are part of a file snapshot by checking the bit
in the L2P entry. If the bit is set, the L2P entries are not
updated directly. Instead, a delta mapping entry with a special
task ID representing the host is inserted to the corresponding
snapshot descriptor. However, since file systems do not always
write data in place (e.g., log-structured file systems), only
intercepting host writes inside the device is not enough.
Therefore, on the host side, the kernel daemon keeps track
of file ranges written by host programs for a registered file by
instrumenting relevant syscalls and maintaining an extent tree-
like structure for the file in the VFS layer. This information
is later used for checking conflicting writes when the task is
committed. For reads, it suffices to simply identify I/O requests
that target LBAs in a snapshot and retrieve the latest flash
pages from the delta mappings generated by the host.

C. Atomic Task Committing

TxISC ensures transaction atomicity by making file data
changes from an ISC task visible to other parties atomically

when a task commits. Specifally, TxFTL tracks the status of
ongoing tasks with a global task table. Each task table entry
contains a timestamp representing the time at which the task
is committed. When a task completes (its C routine returns),
it is staged for committing. TxFTL first requests up-to-date
file extents (in case of log-structured file systems) and file
ranges written by the host from the kernel daemon to check
for conflicting writes. If no conflicts are found, the commit
timestamp in the corresponding task table entry is set to
the current time, marking a successful commit. Afterwards,
TxFTL applies the delta mapping entries to the L2P table and
persists P2L mappings to dedicated flash pages for garbage
collection needs. TxFTL uses locks to ensure atomicity of the
propagated changes. Since this is a pure DRAM operation, the
locking period is short. Once the L2P table have been updated,
the task’s changes to file data become globally visible.

D. Crash Recovery

For durability and crash consistency, the global task table
and delta mapping entries need to survive power losses.
TxISC achieves this by putting them in a DRAM region
backed by capacitors so that they can be flushed to flash
in the event of a power loss. Note that modern SSDs are
already widely using capacitors for data reliability [18]. During
recovery, TxISC rebuilds the L2P table by scanning on-disk
P2L mappings and the delta mappings. When scanning the
delta mappings, those with the special task ID representing
the host are always applied. By doing so, TxISC inherits the
file system’s consistency guarantees. Those with normal task
IDs are applied if and only if the recorded timestamp is earlier
than the commit timestamp in the task table because an entry
with a timestamp later than the commit timestamp points to
pages containing uncommitted data. After this process, the
L2P table is restored to a consistent state, with all writes by
committed tasks applied and all writes by uncommitted tasks
rolled back.

IV. IMPLEMENTATION

We build a TxISC prototype on full-stack hardware (refer
to Table I for full configurations). We implement the kernel
daemon in Linux 5.10.186. For computational SSD, we use
the Daisy+ OpenSSD platform [19]. Since the OpenSSD does
not come with real NAND flash, the storage space is backed
by two 32GB DDR4 DIMMs. To more realistically reflect the
performance of NAND flash-based SSDs, we port the page-
level FTL with flash emulation capability from the FEMU
emulator [20] and extend it to integrate TxFTL functionalities.
The OpenSSD has a quad-core ARM Cortex-A53 controller
(as part of a Zynq Ultrascale+ SoC). In our current imple-
mentation, flash latency emulation occupies a controller core,
and NVMe request handling and TxFTL use another dedicated
core, leaving 2 cores for ISC tasks. Our implementation of
TxISC includes 331 lines and 9754 lines of host-side and
device-side code, respectively.



TABLE I
EVALUATION SYSTEM CONFIGURATIONS.

Platform Item Configuration

Host
CPU 2× Intel Xeon Gold 6240
Memory 384GB DDR4
OS Ubuntu 22.04 LTS (Linux 5.10.186)

Device

CPU 4× Cortex-A53 @ 1.5GHz
Memory 2GB LPDDR4
Host interface NVMe over PCIe 3.0 ×8
Storage backend 2× 32GB DDR4 DIMM

Flash layout
16KB page, 512 pages per block,
547 blocks per die, 2 dies per
channel, 8 channels

Flash latency 80µs read, 400µs write, 4ms erase

V. EVALUATION

In this section, we present the evaluation results of our
TxISC prototype, focusing on the performance cost of our
FTL-level extensions, and the expressiveness of the proposed
programming model for offloading I/O-intensive tasks in real-
world applications.

A. Setup and Methodology

Full configurations of our evaluation platform are listed in
Table I. As discussed in Section IV, NAND flash behavior
is emulated using a page-level FTL [20]. We configure the
flash layout to emulate 7% over provisioning. To evaluate the
overhead of transaction support and file request handling, we
compare TxISC with two baseline ISC architectures:

• FileISC uses the same file-based programming model
as TxISC but removes transaction support. Changes to
file data from ISC tasks are committed directly to the
L2P table. Insider [11] and λ-IO [13] adopt similar
architectures in their device-side design.

• BlockISC further removes file abstractions from FileISC.
ISC tasks can access flash data with raw block addresses.
Willow [9] and Summarizer [10] follow this design.

We also include the host-only solution where applicable in the
experiments.

We evaluate TxISC and the baselines with microbench-
marks and application case studies. In microbenchmarks, we
characterize the overhead of transaction support by testing
in-storage I/O performance. For real-world applications, we
follow the programming model of TxISC and offload data-
intensive tasks to the computational SSD device to measure
performance gains.

B. Transaction Overhead

Figure 3 shows the aggregate bandwidth of in-storage
random file I/Os with different read/write ratios and queue
depths. I/O size is set to 16KB to align with the underlying
flash page size. We use random I/Os with small request size
to evaluate transaction overhead because such workloads put
the most pressure on TxFTL.

In TxISC, transaction support only affects I/O performance
when the workload has write requests. However, with flash
emulation enabled, the performance degradation is negligible

R100/W0 R50/W50 R0/W100
0

50
100
150
200

Th
ro

ug
hp

ut
 (M

B/
s)

W
ith

 F
la

sh
 E

m
u.

Queue Depth 1

BlockISC
FileISC
TxISC

R100/W0 R50/W50 R0/W100
0

500

1000

1500
Queue Depth 32

R100/W0 R50/W50 R0/W100
0

500

1000

1500

Th
ro

ug
hp

ut
 (M

B/
s)

W
ith

ou
t F

la
sh

 E
m

u.

R100/W0 R50/W50 R0/W100
0

500

1000

1500

Fig. 3. In-storage 16KB random file I/O performance.

compared with FileISC and BlockISC (within 0.3%), even
in 100%-write workloads. This confirms that maintaining
file snapshots and delta mappings does not incur significant
performance penalty when serving in-storage I/Os. In terms of
on-board memory cost, each delta mapping entry has a fixed
size of 22B in the current implementation (1B task ID, 4B
offset, 1B length interpreted as the number of continuous flash
pages, 4B PPA, 4B timestamp, 8B tree node) and accounts for
the vast majority of runtime memory consumption. Each entry
can map up to 128 flash pages. With 16KB flash pages, the
memory overhead is 0.001% to 0.134% of written data.

To fully stress the software stack, we disable flash emulation
by establishing a direct mapping between LBAs and the DDR4
backend address space and removing all latency simulations.
This setup pushes pressure on the device firmware to the
extreme. In the 100%-write workload with queue depth set
to 1, we see a 4.3% and 5.2% performance drop compared
with FileISC and BlockISC, respectively. This is because this
workload represents the worst-case scenario for TxISC since
each request will generate a new delta mapping entry, quickly
populating the delta mapping tree. Limiting the I/O queue
depth to 1 amplifies the impact as the extra bookkeeping work
will be entirely on the critical path of the I/O request. In line
with our analysis, the performance gap between FileISC and
BlockISC drops to 2.4% and 3.2% when write proportion is
reduced to 50%. With queue depth set to 32, the performance
penalty disappears since the bottleneck shifts to the hardware
as I/O queues become deeper. Since most real-world work-
loads have mixed read/write profiles and exploit parallel I/Os,
we conclude that TxISC can provide transaction support at
low runtime cost.

C. Application Case Studies

We evaluate the performance of TxISC using three appli-
cations with distinct I/O and computation profiles: bitmap
decompression, graph BFS and LSM tree compaction. The
results are reported in Figure 4. We also break down the appli-
cations’ execution time into I/O and computation in Figure 5.
We do not include BlockISC here because all applications use
files as input and output.

Bitmap decompression. This application reads a com-
pressed bitmap file and decompresses it into another file. We
use the same file format as in [11] and [13]. In TxISC, the
entire decompression process is offloaded to the computational



Bitmap decompression Graph BFS LevelDB compaction
0

1

2
No

rm
al

ize
d 

th
ro

ug
hp

ut
Host
FileISC
TxISC

Fig. 4. Application throughput.

SSD. Here we use a synthetically generated bitmap file (16MB
in size) that decompresses into 256MB. This application fea-
tures strictly sequential read/write from/to a single input/output
file with little computation required.

By processing data in-storage, TxISC enjoys faster access to
the storage media than the host, thus outperforming the host-
only solution by 1.74×. Compared with FileISC, TxISC is able
to maintain 99.6% of the throughput, again demonstrating the
low performance cost of transaction mechanisms. Since there
is no data dependency between consecutive outputs, all tested
systems can leverage buffered and asynchronous I/O, pushing
I/O overhead down to 22%-24%.

Graph BFS. This application performs a breadth-first
search on a graph. The graph is stored in a file using the CSR
format. We use the LiveJournal social network from SNAP
[21] as the dataset. This application is a typical pointer-chasing
workload with small, random I/Os and moderate computation.

In the host-only solution, I/O time takes up to 95% of the
program execution time due to random I/O pattern and data
dependency. However, we do not see higher performance gains
from offloading compared to bitmap decompression. This is
because non-I/O part of the application becomes slower inside
the SSD, such as maintaining the set of visited vertices and
updating the neighbor list. Since there is no write involved,
TxISC exhibits the same performance as FileISC.

LevelDB compaction. This application offloads SSTable
compaction in LevelDB. We implement SSTable file parsing
and formatting inside the SSD and expose a compaction
ISC task to the host. The task takes the SSTable files to
be compacted as input, performs compaction in-storage, and
returns the list of newly generated SSTable files. We use
LevelDB’s built-in db bench utility and the default test suite.
This application needs to read and write multiple files and
perform a considerable amount of computation along the way.

TxISC can finish a compaction operation 14% faster than
the host. Although 81% of compaction time is spent on I/O
when handled by the host, the wimpy CPU in the SSD shifts
bottleneck to computation, where I/O only takes 13%. The
final performance improvement is thus not as significant. Nev-
ertheless, faster compaction contributes to a 27% improvement
in the 99th percentile tail latency of random insertions. We do
not observe any performance degradation in TxISC compared
with FileISC since the extra overhead in transaction handling
is masked by the large amount of computation.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foun-
dation of China (NSFC) (Grant No. 62332012, 62227809,

Host FileISC TxISC
0.0

0.5

1.0

Ti
m

e 
br

ea
kd

ow
n Bitmap decompression

Host FileISC TxISC

Graph BFS

I/O Computation
Host FileISC TxISC

LevelDB compaction

Fig. 5. Application execution time breakdown.

62302290), the Fundamental Research Funds for the Central
Universities, Shanghai Municipal Science and Technology
Major Project (Grant No. 2021SHZDZX0102), and Natural
Science Foundation of Shanghai (Grant No. 22ZR1435400),
and Alibaba Group through the Alibaba Innovative Research
(AIR) program.

VI. CONCLUSION

In this paper, we present TxISC, a generic ISC framework
that provides transactional file processing capability and fea-
tures full ACID support, thus offering concurrency manage-
ment and data protection as the storage device gains the ability
to mutate data. Transaction support is implemented at low cost
by leveraging the out-of-place write characteristic of NAND
flash. Full-stack hardware-based evaluation demonstrates that
the performance penalty of transactions is negligible, and
the programming model is expressive enough to offload I/O-
intensive tasks with complex logic in real-world applications.

REFERENCES

[1] J. Do, S. Sengupta, and S. Swanson, “Programmable solid-state storage
in future cloud datacenters,” Communications of the ACM, vol. 62, no. 6,
pp. 54–62, 2019.

[2] J. Hwang, M. Vuppalapati, S. Peter, and R. Agarwal, “Rearchitecting
linux storage stack for µs latency and high throughput,” in 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
21), 2021, pp. 113–128.

[3] A. Lerner and P. Bonnet, “Not your grandpa’s ssd: The era of co-
designed storage devices,” in Proceedings of the 2021 International
Conference on Management of Data, 2021, pp. 2852–2858.

[4] S. Yu, Z. Sha, C. Tang, Z. Cai, P. Tang, M. Huang, J. Li, and J. Liao,
“Adaptive dram cache division for computational solid-state drives,” in
2024 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2024, pp. 1–6.

[5] S. Liang, Y. Wang, Y. Lu, Z. Yang, H. Li, and X. Li, “Cognitive ssd:
A deep learning engine for in-storage data retrieval,” in 2019 USENIX
Annual Technical Conference (USENIX ATC 19), 2019, pp. 395–410.

[6] S. Kim, Y. Jin, G. Sohn, J. Bae, T. J. Ham, and J. W. Lee, “Behemoth:
a flash-centric training accelerator for extreme-scale dnns,” in 19th
USENIX Conference on File and Storage Technologies (FAST 21), 2021,
pp. 371–385.

[7] Y. Lee, J. Chung, and M. Rhu, “Smartsage: training large-scale graph
neural networks using in-storage processing architectures,” in Pro-
ceedings of the 49th Annual International Symposium on Computer
Architecture, 2022, pp. 932–945.

[8] K. Lee, I. Jo, J. Ahn, H. Lee, H. Lee, W. Sul, and H. Jung, “Deploying
computational storage for htap dbmss takes more than just computation
offloading,” Proceedings of the VLDB Endowment, vol. 16, no. 6, pp.
1480–1493, 2023.

[9] S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker, A. De, Y. Jin, Y. Liu,
and S. Swanson, “Willow: A user-programmablessd,” in 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14), 2014, pp. 67–80.

[10] G. Koo, K. K. Matam, T. I, H. K. G. Narra, J. Li, H.-W. Tseng,
S. Swanson, and M. Annavaram, “Summarizer: trading communication
with computing near storage,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, 2017, pp.
219–231.



[11] Z. Ruan, T. He, and J. Cong, “Insider: Designing in-storage computing
system for emerging high-performance drive,” in 2019 USENIX Annual
Technical Conference (USENIX ATC 19), 2019, pp. 379–394.

[12] R. Schmid, M. Plauth, L. Wenzel, F. Eberhardt, and A. Polze, “Accessi-
ble near-storage computing with fpgas,” in Proceedings of the Fifteenth
European Conference on Computer Systems, 2020, pp. 1–12.

[13] Z. Yang, Y. Lu, X. Liao, Y. Chen, J. Li, S. He, and J. Shu, “λ-io: A
unified io stack for computational storage,” in 21st USENIX Conference
on File and Storage Technologies (FAST 23), 2023, pp. 347–362.

[14] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy,
R. Nair, and S. Swanson, “Near-data processing: Insights from a micro-
46 workshop,” IEEE Micro, vol. 34, no. 4, pp. 36–42, 2014.

[15] Y. Huang, N. Guan, S. Bai, T.-w. Kuo, and C. J. Xue, “Serico:
Scheduling real-time i/o requests in computational storage drives,” in
2023 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2023, pp. 1–6.

[16] A. Gupta, Y. Kim, and B. Urgaonkar, “Dftl: a flash translation layer
employing demand-based selective caching of page-level address map-
pings,” Acm Sigplan Notices, vol. 44, no. 3, pp. 229–240, 2009.

[17] Y. Luo, Y. Cai, S. Ghose, J. Choi, and O. Mutlu, “Warm: Improving nand
flash memory lifetime with write-hotness aware retention management,”
in 2015 31st Symposium on Mass Storage Systems and Technologies
(MSST). IEEE, 2015, pp. 1–14.

[18] S. Yan, H. Li, M. Hao, M. H. Tong, S. Sundararaman, A. A. Chien,
and H. S. Gunawi, “Tiny-tail flash: Near-perfect elimination of garbage
collection tail latencies in nand ssds,” ACM Transactions on Storage
(TOS), vol. 13, no. 3, pp. 1–26, 2017.

[19] “Daisyplus openssd,” https://www.crz-tech.com/crz/article/DaisyPlus.
[20] H. Li, M. Hao, M. H. Tong, S. Sundararaman, M. Bjørling, and H. S.

Gunawi, “The case of femu: Cheap, accurate, scalable and extensible
flash emulator,” in 16th USENIX Conference on File and Storage
Technologies (FAST 18), 2018, pp. 83–90.

[21] “Stanford large network dataset collection,”
https://snap.stanford.edu/data.


