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Abstract—Disaggregated memory (DM) architecture physically
separates computing and memory resources into distinct pools
interconnected via high-speed networks within data centers, with
the aim of improving resource utilization compared to traditional
architectures. Most existing range indexes for DM that support
variable-length keys are based on adaptive radix trees. However,
these indexes exhibit suboptimal performance on DM due to
excessive network round trips during tree traversal and inefficient
node-based caching mechanisms.

To address these issues, we propose Sphinx, a novel hybrid
index for DM. Sphinx introduces an Inner Node Hash Table
to minimize the network round trips during index operations
by replacing the sequential tree traversal with parallel hash
reads. Sphinx incorporates a Succinct Filter Cache to further
minimize network overhead while keeping the computing-side
cache small and coherent. Experimental results show that Sphinx
outperforms state-of-the-art counterparts by up to 7.3× in the
YCSB benchmark.

I. INTRODUCTION

Disaggregated Memory (DM) architecture [1]–[5] has
gained significant attention in both academia and industry
in recent years. DM separates the memory and computation
resources into distinct pools. This separation allows for in-
dependent scaling of these resources, which addresses the
problem of low resource utilization in modern data centers.
Since the memory side has minimal computing power, clients
on the computing side typically access memory resources on
the memory side via high-speed networks such as RDMA [6]
and CXL [7], which enables clients to directly read from or
write to remote memory without involving remote CPUs.

The Adaptive Radix Tree (ART) [8], [9] is a widely used
index structure in many data center applications, such as key-
value storage systems and transaction processing systems,
due to its efficient support for variable-length keys. However,
existing ARTs [9]–[12] exhibit suboptimal performance on
DM due to excessive network round trips and the inefficient
node-based caching mechanism. Specifically, executing index
operations on tree-based indexes like ART requires traversing
the hierarchical tree structure [13]. On DM, this traversal
involves multiple network round trips between computing-side
clients and the memory-side index. Since accessing remote
memory remains significantly slower than accessing local
memory, these excessive round trips result in high latency
and become the primary performance bottleneck during index
operations.

Existing ART for DM [10] attempts to reduce tree traversal
round trips by caching certain inner nodes on the computing

side. However, this node-based caching mechanism is ineffi-
cient on DM. Firstly, the computing side of DM has limited
memory resources, allowing only a small subset of inner
nodes to be cached. As a result, node-based caching fails to
effectively reduce network round trips, leading to diminished
performance. Furthermore, node-based caching introduces po-
tential cache coherence issues, as remote inner nodes may be
modified by other clients, causing inconsistencies between the
computing-side cache and the memory-side index.

To address these issues, we propose Sphinx, a hybrid index
designed to minimize network overhead during index opera-
tions while keeping the computing-side cache small and co-
herent. To reduce network round trips, Sphinx incorporates an
Inner Node Hash Table to store the essential metadata of ART
inner nodes. This allows clients to directly access inner nodes
through reading hash entries in parallel, rather than traversing
the tree sequentially. To achieve optimal performance with
limited computing-side memory resources, we propose the
Succinct Filter Cache. The succinct filter cache further reduces
the network overhead by minimizing hash entries read to one
in most cases. Instead of caching the full content of inner
nodes, the succinct filter cache employs a succinct (space-
efficient) data structure (e.g., cuckoo filter [14]) to track only
the existence of inner nodes. As a result, the succinct filter
cache significantly improves memory utilization and preserves
coherence when remote inner nodes are modified by other
clients.

The contributions of this paper are summarized as follows:
• We thoroughly analyze existing ARTs on DM, demon-

strating that they provide inferior performance due to
excessive network round trips introduced by traversing
the hierarchical tree structure and the unsuitable node-
based caching mechanism.

• We propose Sphinx, a hybrid range index supporting
variable-length keys on DM. By introducing the Inner
Node Hash Table, Sphinx minimizes network round trips
by replacing the sequential tree traversal with reading
hash entries in parallel.

• We propose the Succinct Filter Cache, which further
reduces the network overhead of Sphinx and enables it to
achieve optimal performance with limited computing-side
memory resources.

• We conduct extensive evaluations of Sphinx and compare
it with the state-of-the-art range indexes for variable-
length keys on DM. Experimental results show that
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Sphinx outperforms existing systems in terms of both
throughput and latency.

II. BACKGROUND AND MOTIVATION

A. Disaggregated Memory Architecture

Disaggregated memory (DM) architecture physically sep-
arates computing resources (e.g., CPU cores) and memory
resources (e.g., DRAM) into distinct pools within data center,
which aims to improve the resource utilization in traditional
data center architectures [5], [15], [16]. In a DM setup,
Compute Nodes (CNs) contain extensive computing resources
but have limited memory. Conversely, Memory Nodes (MNs)
are equipped with substantial memory resources but only
wimpy computing power. CNs and MNs are interconnected
via high-speed networks such as RDMA [6] and CXL [7].

RDMA is a promising solution for disaggregated memory
architecture in modern data centers, as it not only offers high
bandwidth (e.g., 200 Gbps) and low latency (e.g., 2 µs) [17]–
[19] but also provides a set of one-sided operations (RDMA
Read/Write/CAS (Compare And Swap) /FAA (Fetch
And Add)), allowing clients in CNs to directly access re-
mote memory without requiring CPU intervention on the MN
side. This capability is particularly beneficial for DM, where
minimizing CPU overhead on MNs with limited computing
resources is critical.

B. Adaptive Radix Tree

The Adaptive Radix Tree (ART) [8] is a space optimized
variant of the radix tree [20]. As shown in the memory nodes
of Fig. 1, each inner node in ART represents a unique prefix
of a key stored in the tree. This characteristic allows it to
efficiently support variable-length keys. To improve space
utilization, ART employs inner nodes with different capacities
(e.g., 4, 16, 48 and 256) to store their children, allowing them
to grow dynamically as new keys are inserted into the tree.
To reduce tree height and enhance the performance of index
operations, ART incorporates a path compression mechanism
to merge multiple inner nodes with only one child into a single
inner node (e.g., the inner node marked as LYR in Fig. 1) and
eliminate inner nodes along the path to a single leaf node (e.g.,
the path from LYR to LYRICS in Fig. 1).

Existing ARTs [9], [10], [12] exhibits suboptimal perfor-
mance on DM due to excessive network round trips. ARTs
follow a hierarchical structure [13], in which a node can only
be accessed after its address is retrieved from its parent node.
In DM architectures, the index resides on the MN side with
sufficient memory, which is separated from the clients on the
CN side. This separation necessitates excessive network round
trips during tree traversal, resulting in high latency and early
saturation of network resources.

Existing ART for DM [10] attempts to mitigate this issue
by caching certain inner nodes. During index operations, the
client first traverses the tree formed by the cached inner
nodes locally, then proceed to traverse the remote tree from
the deepest node reached in the local traversal. However,
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Fig. 1: Overview of Sphinx.

this node-based caching mechanism is inefficient in memory-
limited CNs. First, node based caching requires a significant
amount of memory to achieve optimal performance, which is
impractical for memory-limited CNs. For example, as shown
in Sec. V-B, SMART [10], the state-of-the-art ART on DM,
still deliver suboptimal performance even with a cache size
set to 17.6% of the dataset size. Second, node-based caching
can lead to cache coherence issues, as remote ART nodes may
be updated by other clients. Although SMART mitigates this
issue by preallocating a space of Node-256 for each inner node
and employing an associated reverse checking mechanism,
it incurs significant memory overhead on the MN side. The
overhead ranges from 2.1–3.0× in our experiments, as detailed
in Sec. V-D.

III. DESIGN

Based on the above analysis, we propose Sphinx, a hybrid
index for variable-length keys on DM, designed to minimize
network overhead in index operations while keeping the CN-
side cache small and coherent.

The architecture of Sphinx is illustrated in Fig. 1. The
ART Nodes of Sphinx are evenly distributed across MNs
by consistent hashing [21]. To minimize network round trips
during index operations, each MN in Sphinx employs an Inner
Node Hash Table to store the addresses and lightweight meta-
data of ART inner nodes allocated to that MN. This reduces
network round trips during index operations by replacing the
sequential tree traversal with reading hash entries in parallel.
To further reduce the network overhead, Sphinx introduces
a Succinct Filter Cache that efficiently filter out unnecessary
hash entry reads, thereby reducing network bandwidth con-
sumption. The succinct filter cache adopts a succinct data
structure (e.g., cuckoo filter [14]) to track the existence of inner
nodes, rather than storing their full content. This approach
not only minimizes memory consumption on the CN side, but
also eliminates cache coherence issues that could arise from
directly caching the inner nodes.

A. Inner Node Hash Table

To reduce network round trips, Sphinx introduces an MN-
side Inner Node Hash Table for the ART, designed to break
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the serial dependencies between ART nodes. As illustrated in
Fig. 1, we construct a hash table for the inner nodes of the
ART, where the key is the full prefix of each inner node, while
the value stores the node’s address and its associated metadata.
During index operations, instead of sequentially fetching each
inner node through tree traversal, the client is able to read
all the hash entries of these inner nodes in parallel. Based on
these hash entries, the client then retrieves the deepest inner
node with another network round trip.

With the inner node hash table, locating the value corre-
sponding to a key can be optimized in a parallel manner.
Specifically, for a given key K (e.g., LYRICS in Fig. 1), the
client retrieves all hash entries corresponding to the prefixes
of K (LYRICS, LYRIC, . . . , L) in parallel to find the deepest
inner node corresponding to K. This approach stems from the
path compression mechanism [8] used in ART, which prevent
the client from directly determining the existence of each inner
node, necessitating a read of all possible hash entries (can be
further optimized to only read one hash entry in most cases,
as described in Sec. III-B). We adopt RACE hashing [22] as
the index of the inner node hash table, which allows each hash
entry to be retrieved within a single network round trip. By
further utilizing the doorbell batching mechanism [23], which
allows sending multiple RDMA operations to the NIC in a
single batch, reading all these hash entries can be performed
in a single round trip.

To further retrieve the value of K with these hash entries,
the client then identifies the valid hash entry corresponding to
the longest prefix (LYR), which represents the deepest inner
node. Next, the client retrieves this deepest inner node from
MNs using the metadata and address stored in the hash entry.
Finally, the client retrieves the target leaf node through this
deepest inner node and extracts the value from the leaf node.

The inner node hash table incurs only a slight memory
consumption on the MN side. Specifically, it is significantly
smaller than the inner nodes themselves, as each hash entry
only stores the address of the inner node and associated
metadata (e.g., a short fingerprint and node type as shown in
Fig. 3), fitting within just 8 bytes. In comparison, an ART inner
node consumes 40–2056 bytes of memory. Our experiments
in Sec. V-D show that the inner node hash table incurs only
3.3–4.9% additional memory usage on the MN side.

B. Succinct Filter Cache

Although reading inner nodes directly from the inner node
hash table reduces network round trips, it does not alleviate
bandwidth consumption. Specifically, for a key of length L, the
client must read Θ(L) hash entries to locate the deepest inner
node, offering no advantage over tree traversal. Additionally,
similar to tree traversal, reading multiple hash entries generates
a significant load on network, as the NIC must process a
substantial number (Θ(L)) of network packets for each index
operation. This high load accelerates the saturation of network
resources, ultimately diminishing throughput of the system.

To address the above issue, we propose the Succinct Filter
Cache, a lightweight per-CN cache based on cuckoo filter [14].
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Fig. 2: Succinct Filter Cache.

The succinct filter cache reduces the number of hash entry
reads per index operation from Θ(L) to one in most cases,
while maintaining minimal space consumption and preserving
cache coherence. The succinct filter cache tracks the existence
of inner node prefixes in the remote index using a cuckoo
filter, a succinct data structure. This allows the client to locally
determine the prefix of the deepest inner node for the key with
minimal CN-side memory usage. Consequently, the client only
needs to fetch a single hash entry corresponding to the deepest
inner node, significantly reducing network overhead associated
with reading multiple hash entries. Additionally, the succinct
filter cache maintains coherence when remote inner nodes are
modified, as it does not store their content.

As illustrated in Fig. 2, the succinct filter cache follows the
structure of cuckoo filter. To perform an existence check (i.e.,
to determine whether a given prefix exists in the succinct filter
cache), the client computes the hash values (H1 and H2) of the
prefix and checks if the corresponding hash fingerprint (fp) is
present in the candidate buckets determined by the hash values.
During index operations, for a given key K (e.g., LYRICS),
the client first performs existence checks for all prefixes of
K (LYRICS, LYRIC, . . . , L) in the succinct filter cache and
identify the longest prefix P that exists in the succinct filter
cache (LYR). The client then only fetches the hash entry of P
from remote inner node hash table. Finally, the client retrieves
the deepest inner node and further retrieves the leaf node to
extract the value corresponding to K.

In most cases, as described above, an index operation can
be performed in three network round trips: reading the hash
entry, reading the inner node, and retrieving the leaf node.
Due to the probabilistic nature of cuckoo filter, in false-
positive cases (<1%), the succinct filter cache may incorrectly
indicate that a prefix exists in the remote index when it does
not. Nevertheless, both the performance and correctness of
index operations remains unaffected by these rare cases. As
illustrated in Fig. 3, both the hash entry and the inner node
contain metadata that allows the client to avoid traversing the
tree starting from an unmatched inner node. For example, the
hash entry includes a 12-bit hash fingerprint (fp2), while the
inner node header provides a 42-bit full prefix hash. In the rare
scenario where both the fp2 and the full prefix hash collide,
Sphinx may traverse the tree starting from an unmatched
inner node U . However, the correctness is still guaranteed,
as the client will eventually reach a leaf node to retrieve the
corresponding value. At this point, the client computes the
common prefix between the key used in the index operation
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and the key stored in the leaf node. If the common prefix is
shorter than the prefix associated with U , the client identifies
the false positive and retries the index operation with a shorter
prefix from the succinct filter cache. Since such cases are
extremely rare (<0.01%), the overall performance remains
unaffected.

To address scenarios where the dataset size is so large that
even tracking the existence of all inner nodes in CNs becomes
infeasible, as illustrated in Fig. 2, we further propose a
lightweight mechanism to identify hot prefixes in the succinct
filter cache. This mechanism is inspired by the second chance
page replacement policy [24], which approximates the LRU
algorithm using only one additional hotness bit per entry.
Specifically, when a new prefix is inserted, its hotness bit is
initialized to 0, indicating it has not been recently used. The
hotness bit is set to 1 when the entry is accessed, marking
it as recently used. During insert operations, if both candidate
buckets are full, the client randomly selects an entry with the
hotness bit set to 0 for replacement. If all entries in both
candidate buckets have their hotness bits set to 1, the client
adopts the cuckoo hashing mechanism [25] to relocate existing
entries and make space for the new one. During relocation, the
hotness bits of all relocated entries are reset to 0, indicating
they are eligible for future eviction.

The succinct filter cache is particularly well-suited for DM.
First, as demonstrated in prior work [14], using a 10-bit
fingerprint per item is sufficient to achieve a low false positive
rate (<1%) for existence checks, making it significantly more
space-efficient than the node-based caching mechanism, which
require 40–2056 bytes of memory to cache a single inner
node. Second, the succinct filter cache inherently maintains
coherence even when inner nodes in the remote memory are
modified by other clients. These modifications impact only
types, slots, and partial prefixes of inner nodes, leaving their
full prefixes unchanged. Consequently, they have no effect on
the coherence of the succinct filter cache, which exclusively
tracks the existence of full prefixes.

C. Concurrency Control

Sphinx employs a lightweight concurrency control mecha-
nism that enables lock-free read operations and node-grained
locks for write operations. To further reduce network overhead
in update operations, Sphinx adopts a checksum-based in-place
update scheme for leaf nodes.

For concurrency control, as illustrated in Fig. 3, most
components (e.g., hash entries, headers and slots) of Sphinx

fit within 8 bytes, enabling clients to modify them atomically
using the RDMA CAS operation. In the inner node hash table,
both read and write operations are executed without acquiring
locks, as a write operation only affects an 8-byte hash entry
and can be performed atomically. For the ART, Sphinx re-
solves write-write conflicts using a node-grained lock (status)
and stores lightweight metadata (e.g., the type and depth of
the inner node) in the header of inner nodes to synchronize
lock-free reads with a write.

With the consistency maintained in both the ART and the
inner node hash table, the correctness of Sphinx is ensured
in most cases. The remaining correctness issue arises when
a client reads an outdated hash entry while another client is
performing a node type switch. In ART, a node type switch
occurs when a client attempts to insert a new key into a full
inner node. In such cases, a new inner node with more slots
is allocated, and the original node is replaced by the new one.
However, after the original node is removed from the ART,
a client may still access it through the inner node hash table
before the change propagates to the hash table, resulting in
a temporary inconsistency. To address this issue, as shown in
Fig. 3, the client sets the status field of the old inner node
to Invalid following a node type switch. Readers retrieving
an inner node from MNs check the status field before use. If
the status field is marked Invalid, the reader retries the index
operation.

For the update operation, if the new value fits within the
original leaf node, the client performs an in-place update
to reduce network overhead. As shown in Fig. 3, the client
begins the in-place update by locking the leaf node, setting
its status field to Locked using one RDMA CAS operation.
Sequentially, the client writes the new value, updates the
status field to Idle and computes the new checksum of the
leaf node locally. Finally, the client writes the entire leaf
node back to corresponding MN using a single RDMA Write
operation. To avoid reading partially modified data, all clients
verify the checksum of a leaf node before using it. This in-
place update scheme eliminates an RDMA operation during
an update operation by combining the lock release with the
value write, thereby reducing network overhead.

IV. INDEX OPERATIONS

In this section, we present the detailed implementation of
the index operations in Sphinx. By leveraging the inner node
hash table and succinct filter cache, Sphinx achieves high
performance in index operations, primarily by replacing the
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sequential tree traversal with a single hash entry read. This
substantially reduces network overhead in terms of both round
trips and bandwidth consumption.

Search (K). The client first calculates the hash values of all
prefixes of K and identifies the longest prefix P exists in the
succinct filter cache. As shown in Fig. 3, the client then fetch
the corresponding hash bucket from the inner node hash table
in one round trip. To avoid additional network round trips in
determining the address of buckets through the directory, each
CN maintains a local directory cache, which is small enough
to fit within limited CN-side memory (typically 2–5% of the
succinct filter cache size). The client then iterates through the
hash bucket and fetch all the inner nodes whose hash entry
has the same 12-bit fingerprint (fp2) as P . Typically, there
is only one candidate hash entry, as discussed in prior works
[26]. Finally, the client performs tree traversals starting from
the fetched inner nodes, ultimately reaching the leaf nodes,
where the value corresponds to K is extracted. In most cases,
the tree traversal requires only one additional network round
trip, as the succinct filter cache enables the client to determine
the deepest inner node of K. In rare cases, the client may fetch
an inner node that is not the deepest due to the structural
modifications made by other clients to the remote ART. In
such case, the client updates the succinct filter cache for any
prefixes not present in the cache to maintain its freshness.

Insert (K, V). The client begins by locating the deepest
inner node following the search procedure, and then traverses
the tree starting from the node until it reaches a leaf node,
verifying that the inner node prefix matches K. Subsequently,
the client writes the new leaf node with the new key-value
pair using an RDMA write. If the operation triggers a node
type switch or a node split, the client also writes a new inner
node with a slot pointing to the newly created leaf node. To
ensure consistency, the client acquires node-grained locks on
the affected inner node by setting its status field to Locked
with an RDMA CAS. This lock acquisition is piggybacked onto
the write using doorbell batching [23] to reduce network round
trips. Once the lock is acquired, The client makes the insertion
visible by atomically install the pointer to the new node in
the parent node’s slot with an RDMA CAS, followed by a
piggybacked lock release using another RDMA CAS.

After the operation is completed, the client updates the
succinct filter cache if the operation triggers a node split,
where a new inner node with a new prefix is added to the
index. The client updates only its local succinct filter cache,
while the synchronization of caches on other CNs is deferred
until their clients encounter the corresponding inner node
during tree traversal, as described in the search procedure.
Similarly, the inner node hash table is updated after a node
type switch or a node split to reflect changes applied to the
ART. This update can be performed atomically using an RDMA
CAS, as the client modifies only one 8-byte hash entry.

Update (K, V). The client first retrieves corresponding leaf
node following the search procedure. The structure of the leaf
node is shown in Fig. 3. Similar to prior works [10], [22], the
size of the leaf node is aligned to 64 B, and the unit of the

LeafLen field is 64 B. If the leaf node has sufficient space to
store V (i.e., the required size is within 64×LeafLen B), the
client performs an in-place update as described in Sec. III-C.
Otherwise, the client performs an out-of-place update similar
to the insert operation.

Delete (K). The client retrieves the leaf node following the
search process and sets its status to Invalid using an RDMA
CAS operation. The client then updates corresponding slot of
its parent node to NULL similar to the insert operation.

Scan (K1, K2). The client traverses the tree starting from
the root node, retrieves all leaf nodes with keys between K1

and K2, and adds extracted key-value pairs to the result set.

V. EVALUATION

A. Experimental Setup

Testbed. We emulate an RDMA-based DM cluster with
three dual-socket machines, each equipped with 128GB of
DRAM, two 2.6GHz Intel Xeon Gold 6348 CPUs (each with
28 cores), and one 2×100 Gbps dual-port Mellanox ConnectX-
6 NIC. To save machine resources, we run both a CN and
an MN on each machine, as in prior works [10], [27]. We
manually limit the index cache memory usage on CNs and
the CPU core usage on MNs to simulate a DM cluster.

Workloads. We evaluate Sphinx using the YCSB bench-
mark [28]. Specifically, we use six types of workloads: A (50%
read, 50% update), B (95% read, 5% update), C (100% read),
D (95% latest read, 5% update), E (95% Scan, 5% insert), and
an additional LOAD workload (100% insert). By default, the
workloads follow a zipfian key distribution with a skewness
factor of 0.99. The size of the value for each key-value pair
is set to 64 bytes.

Datasets. Two datasets are used for evaluation: u64 and
email. The u64 dataset consists of 8-byte fixed length integers
generated from a uniform distribution, while the email dataset
comprises publicly available email addresses [29] with sizes
ranging from 2 to 32 bytes (an average size of 18.93 bytes).

Comparisons. We compare Sphinx with SMART [10], the
state-of-the-art range index supporting variable-length keys on
DM. Additionally, We port the original ART to DM and use
it as a baseline. Similar to Sphinx and SMART, ART also
adopts one-sided RDMA operations to access and modify the
index and data stored in remote memory. The CN-side cache
size of SMART and Sphinx is set to 20 MB, which is 4.2%
of the u64 dataset size and 1.8% of the email dataset size.
To further demonstrate the high performance of Sphinx with
limited cache size, we also compare Sphinx with SMART+C,
which has a CN-side cache size of 200 MB (41.7% and 17.6%
of the u64 and email datasets, respectively).

B. Overall Performance

In this section, we evaluate the overall performance of
Sphinx with the YCSB benchmark. Fig. 4 displays the
throughput of the systems under the YCSB benchmark using
the u64 and email datasets.

Base Operations (YCSB A-D, LOAD). As shown in
Fig. 4, Sphinx achieves 1.2–3.6× higher throughput on the u64
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Fig. 4: The throughput under the YCSB benchmark.

dataset and 1.9–7.3× higher throughput on the email dataset
than SMART, SMART+C and ART. By combining the Inner
Node Hash Table and Succinct Filter Cache, Sphinx effectively
minimizes network round trips and bandwidth consumption
during index operations by replacing the sequential tree traver-
sal with a single hash entry read. This is especially beneficial
for the email dataset, where larger key sizes and deeper tree
structure exacerbate traversal costs. In contrast, SMART and
ART suffer from excessive network round trips during index
operations, leading to lower throughput. Furthermore, Sphinx
outperforms SMART+C with only 10% of its CN-side cache,
demonstrating the efficiency of the Succinct Filter Cache in
achieving high performance with limited CN-side memory
space. Finally, Sphinx maintains consistent performance across
both u64 and email datasets, indicating its suitability for
variable-length keys.

Range Query (YCSB E). For both the u64 and email
datasets, Sphinx, SMART and SMART+C achieve 2.3–3.1×
higher throughput than ART, primarily due to the use of the
doorbell batching mechanism [23], which hides the latency
associated with reading nodes. The performance of Sphinx,
SMART and SMART+C is comparable, as the main bottleneck
of the workload lies in reading the leaf nodes rather than in
tree traversal.

C. Scalability

In this section, we evaluate the scalability of the sys-
tems using the YCSB-A workload (50% read, 50% update,
skewed) with both the u64 and email datasets. Following prior
works [10], [27], [30], we adopt coroutines to hide latency as-
sociated with polling the completion queue across all systems,
with each coroutine treated as a worker. Fig. 5 presents the
throughput-latency curve of the systems under the YCSB-A
workload with various numbers of workers in CNs (6–192
workers, evenly distributed across 3 CNs). Sphinx scales well
as the number of workers increases in CNs, achieving up to
2.6× higher throughput and 2.2× lower average latency on
the u64 dataset, and up to 6.1× higher throughput and 11.7×
lower average latency on the email dataset. This performance
gain is primarily attributed to the inner node hash table and
succinct filter cache, which minimize network overhead in
terms of both round trips and bandwidth consumption, thereby
preventing premature saturation of network resources.
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Fig. 5: The scalability in the write-intensive YCSB-A work-
load.
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Fig. 6: The memory usage across different datasets

D. Space Consumption

In this section, we evaluate the MN-side space consumption
of the systems across different datasets. We insert 60 million
key-value pairs into each system and measure the resulting
MN-side memory usage. As shown in Fig. 6, the inner node
hash table incurs only a slight increase in memory consump-
tion compared to the original ART, with a 3.3% increase for
the u64 dataset and a 4.9% increase for the email dataset. In
contrast, SMART consumes 2.1–3.0× more memory than the
original ART, as it preallocates a space of Node-256 for each
inner node to prevent potential cache coherence problems.

VI. CONCLUSION

In this paper, we propose Sphinx, a novel hybrid index
supporting variable-length keys on DM. Sphinx introduces
an Inner Node Hash Table to break the serial dependency
in ART, offering an opportunity to mitigate the excessive
network round trips during tree traversal with parallel hash
entry reads. Sphinx further employs a Succinct Filter Cache
to significantly reduce network bandwidth usage during index
operations while keeping the CN-side cache succinct and co-
herent. Our evaluations demonstrates that Sphinx outperforms
existing counterparts by up to 7.3× in YCSB benchmark.
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