
1598 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

RADAR: A Skew-Resistant and Hotness-Aware
Ordered Index Design for Processing-in-Memory

Systems
Yifan Hua , Student Member, IEEE, Shengan Zheng , Weihan Kong , Cong Zhou, Kaixin Huang , Ruoyan Ma,

and Linpeng Huang , Senior Member, IEEE

Abstract—Pointer chasing becomes the performance bottleneck
for today’s in-memory indexes due to the memory wall. Emerging
processing-in-memory (PIM) technologies are promising to miti-
gate this bottleneck, by enabling low-latency memory access and
aggregated memory bandwidth scaling with the number of PIM
modules. Prior PIM-based indexes adopt a fixed granularity to
partition the key space and maintain static heights of skiplist nodes
among PIM modules to accelerate index operations on skiplist,
neglecting the changes in skewness and hotness of data access
patterns during runtime. In this article, we present RADAR, an
innovative PIM-friendly skiplist that dynamically partitions the
key space among PIM modules to adapt to varying skewness. An
offline learning-based model is employed to catch hotness changes
to adjust the heights of skiplist nodes. In multiple datasets, RADAR
achieves up to 198.2x performance improvement and consumes
47.4% less memory than state-of-the-art designs on real PIM hard-
ware.

Index Terms—Processing-in-memory, ordered index, pointer
chasing, load balance, index partition.

I. INTRODUCTION

POINTER chasing [11], [43] in today’s data-intensive appli-
cations exhibits irregular and unpredictable memory access

patterns, leading to a poor cache hit rate and excessive memory
accesses. The increasing performance gap between processor
speeds and memory access speeds (i.e., the memory wall [14],
[42]) renders pointer chasing the dominant performance bottle-
neck in these applications.

Manuscript received 13 March 2024; revised 9 June 2024; accepted 2 July
2024. Date of publication 9 July 2024; date of current version 25 July 2024. This
work was supported in part by the National Key Research and Development
Program of China under Grant 2022YFB4500303, in part by the National
Natural Science Foundation of China (NSFC) under Grant 62227809 and
Grant 62302290, in part by the Fundamental Research Funds for the Central
Universities, Shanghai Municipal Science and Technology Major Project under
Grant 2021SHZDZX0102, and in part by the Natural Science Foundation of
Shanghai under Grant 22ZR1435400. Recommended for acceptance by D. Li.
(Corresponding authors: Shengan Zheng; Linpeng Huang.)

Yifan Hua, Weihan Kong, Cong Zhou, Kaixin Huang, Ruoyan Ma, and
Linpeng Huang are with the School of Electronic Information and Electri-
cal Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
(e-mail: huahuahuahua@sjtu.edu.cn; weihankong@sjtu.edu.cn; cong258258@
sjtu.edu.cn; kaixinhuang@sjtu.edu.cn; maruoyan@sjtu.edu.cn; lphuang@sjtu.
edu.cn).

Shengan Zheng is with the School of Electronic Information and Electrical
Engineering, MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao
Tong University, Shanghai 200240, China (e-mail: shengan@sjtu.edu.cn).

Digital Object Identifier 10.1109/TPDS.2024.3424853

By embedding processors in memory, processing-in-memory
(PIM) technologies [13], [27], [28], [29], [30], [31], [32] en-
able computations to be executed closer to memory, which
is promising to break the memory wall. In PIM systems, the
host side dispatches batches of operations to PIM modules and
collects requested data from the PIM side [4], [5], [6], [7],
[15], exploiting the high parallelism between PIM modules and
accelerating pointer chasing.

Skiplist [9], [10], [41] is a widely used in-memory ordered
index in memory systems [17], [19], [20], [35], [36], [37], [38],
[39], [40], supporting both point (Get, Predecessor, Insert,
Delete, Update) and range (Scan) operations through pointer
chasing. Recent works focus on improving the throughput of
skiplist by utilizing the PIM system, and they adopt two struc-
tures to store key-value pairs: range partition [6], [7], [15]
and node distribution [4], [5]. Range partition [6], [7], [15]
statically divides the entire key space into multiple disjoint
coarse-grained ranges, maintained by each PIM module. They
achieve high parallelism under uniformly random workloads,1

but suffer from load imbalance (i.e., batches of operations may
concentrate on keys in a range and are unevenly dispatched to
PIM modules) under skewed workloads.2 Node distribution [4],
[5] lowers the load imbalance risk under skewed workloads by
randomly distributing skiplist nodes among PIM modules and
pulling frequently requested nodes from the PIM side to the
host side. However, this structure results in poor node locality
where adjacent nodes linked by a pointer are stored in different
PIM modules, contributing to a large quantity of overheads for
pointer chasing between PIM modules.

Both range partition and node distribution designs experience
three limitations. First, they employ a fixed coarse or fine gran-
ularity to partition the key space among PIM modules under
workloads with any skewness. Coarse granularity suffers from
load imbalance under skewed workloads, while fine granularity
incurs unnecessary overheads for skew-resistance and has poor
performance under uniformly random workloads. Second, they
maintain static heights of skiplist nodes regardless of the node

1A uniformly random workload refers to a workload where data and queries
are with uniformly random keys. For example, workloads in the Zipfian distri-
bution [21] with α values equal to 0 are uniformly random workloads.

2A skewed workload refers to a workload where data and queries are with
non-uniform keys. For example, in the Zipfian distribution [21], the larger the
α value, the more skewed the workloads are.

1045-9219 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:46:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2321-367X
https://orcid.org/0000-0003-2485-760X
https://orcid.org/0009-0007-6922-1740
https://orcid.org/0000-0002-1319-0283
https://orcid.org/0000-0002-1531-7962
mailto:huahuahuahua@sjtu.edu.cn
mailto:weihankong@sjtu.edu.cn
mailto:cong258258@sjtu.edu.cn
mailto:cong258258@sjtu.edu.cn
mailto:kaixinhuang@sjtu.edu.cn
mailto:maruoyan@sjtu.edu.cn
mailto:lphuang@sjtu.edu.cn
mailto:lphuang@sjtu.edu.cn
mailto:shengan@sjtu.edu.cn

HUA et al.: RADAR: A SKEW-RESISTANT AND HOTNESS-AWARE ORDERED INDEX DESIGN FOR PROCESSING-IN-MEMORY SYSTEMS 1599

hotness changes. More pointer chasing operations are required
to index hot keys stored in lower layers. Third, the parallelism
between the host side and the PIM side is not fully exploited.
When one side runs, the other side is idle most of the time.

This paper proposes RADAR, a skew-Resistant AnD hotness-
Aware oRdered index for PIM systems. RADAR adopts a hash-
based subrange distributed structure to dynamically partition
the key space into multiple disjoint variable-length subranges,
evenly distributed among PIM modules by hashing the start
key of each subrange. By dynamically adjusting the granular-
ity of each subrange between the range granularity in range
partition and the node granularity in node distribution under
varying skewness, RADAR benefits from both enhanced node
locality and high parallelism exploitation. To cope with load
imbalance stemming from a significant number of index opera-
tions concentrating on some subranges (i.e., skewed subranges),
RADAR employs an adaptive subrange redistribution mech-
anism. RADAR splits skewed subranges into multiple finer-
grained subranges and redistributes them to idle PIM modules,
or pulls key-value pairs in the finest-grained skewed subranges
from the PIM side to the host side. To better exploit the paral-
lelism between the host side and the PIM side and be aware of
the node hotness changes in each subrange, a machine learning
(ML) model is trained on the host side to adjust the heights of
skiplist nodes on the PIM side during the idle time of each side.
Concisely, this paper makes the following contributions:
� We propose a brand new hash-based subrange distributed

structure for ordered indexes in PIM systems to exploit the
high parallelism between PIM modules and enhanced node
locality in each PIM module.

� We present an adaptive subrange redistribution mechanism
for RADAR to dynamically partition the key space among
PIM modules under varying skewness.

� We design a learning-based node hotness classification
model for RADAR to adaptively adjust the heights of
skiplist nodes during runtime. To the best of our knowledge,
RADAR is the first PIM-friendly index design that success-
fully incorporates an ML model for hotness prediction.

� RADAR outperforms state-of-the-art designs in multiple
datasets on real PIM hardware, with up to 198.2x higher
throughput and 47.4% less memory consumption.

The remainder of this paper is organized as follows. Sec-
tion II provides the background of the PIM system and prior
PIM-friendly ordered indexes, and our motivations. Section III
presents the design overview of RADAR. We describe the adap-
tive index partition and hotness-aware node height adjustment
in Sections IV and V, respectively. The experimental results are
presented in Section VI. Section VII discusses related work, and
Section VIII concludes the paper.

II. BACKGROUND AND MOTIVATION

This section provides background on pointer chasing, the
structure of the PIM system, and previous PIM-friendly ordered
index works. We analyze the limitations of previous works
and summarize our motivations to design a new PIM-friendly
ordered index.

Fig. 1. The PIM architecture.

A. Pointer Chasing and PIM System

Pointer chasing is a fundamental operation in many data
structures [9], [11], [15], [22], [23], [45], [47] such as tree, linked
list, skiplist, and graph. Since nodes linked by pointers may be
stored in memory far away from each other, pointer chasing has a
poor cache hit rate and requires a significant number of memory
accesses to look for the next hop. Consequently, the pointer
chasing overhead becomes the performance bottleneck [5], [7],
[14], [15], [48], [49] in these data structures. In a conventional
machine, the cost of a pointer chasing operation involves the
CPU processing overhead (3∼5 CPU cycles for loading instruc-
tion and pointer value, calculating the address, and dereferencing
pointer), the cache miss overhead (50∼100 CPU cycles for L1,
L2, and L3 caches), and the memory access overhead (100∼200
CPU cycles).

The emergence of Process-in-memory (PIM) technolo-
gies [2], [8], [27], [28], [29], [30] introduce a new paradigm that
can enhance the efficiency of pointer chasing by allowing it to
be executed within the memory devices. As shown in Fig. 1, the
PIM system consists of two parts: the host side and the PIM side.
The host side involves multiple CPU cores, caches, and DRAM.
The PIM side includes multiple PIM modules. Each PIM module
is composed of a data processor unit (DPU) with weaker com-
puting capability than CPU, and capacity-limited caches and
DRAM. PIM cores are closer to memory and access memory
faster than CPU cores. The host side can send code to the PIM
modules, launch the code, and detect when the code completes.
It can also send data to and receive data from the PIM side. The
two components of the PIM architecture, the host side and the
PIM side, prefer different kinds of workloads [5]. The distributed
PIM side prefers uniformly random workloads and suffers from
the load imbalance under skewed workloads. In contrast, the host
side prefers skewed workloads since the spatial and temporal lo-
cality characteristics in these workloads lead to better CPU cache
efficiency.

Currently, UPMEM [18] (2.1 GHz CPUs on the host side and
350 MHz DPUs on the PIM side) is the only commercially-
available PIM product. Compared with a conventional ma-
chine equipped with DDR4-2666, UPMEM has higher data
processing parallelism and lower memory access latency since
a large number of DPUs are embedded in memory. However,
the existing UPMEM system has high overheads for host side
calling PIM modules, host-PIM communication, and inter-PIM

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:46:13 UTC from IEEE Xplore. Restrictions apply.

1600 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

communication. The memory bandwidth of a conventional 8 GB
DDR4-2666 DIMM is 21 GB/s. The latency of a CPU core
accessing the conventional DDR4-2666 memory for a 64-bit
memory word is roughly 90 ns. In the existing UPMEM system,
the memory bandwidth is 630 MB/s in a PIM module at a DPU
frequency of 350 MHz. The aggregate intra-PIM bandwidth is
linear with the number of PIM modules. An 8 GB UPMEM
DIMM has 128 DPUs and its aggregate intra-PIM bandwidth
is up to 79 GB/s. The latency of a PIM core accessing the
PIM’s memory for a 64-bit memory word in existing UPMEM
is 14 ns. Therefore, the DPUs in UPMEM access memory faster
than CPUs since they are closer to memory. In addition, if the
system achieves load balance among all PIM modules, UPMEM
can provide higher aggregate intra-PIM memory bandwidth
than conventional DDR4-2666. Despite the DPUs in UPMEM
accessing memory faster than CPUs, the latency for the host side
calling DPUs in UPMEM is 0.5 ms, which is much higher than
the memory access latency. The existing UPMEM system only
offers 25 GB/s host-PIM communication bandwidth, which is
smaller than the aggregate intra-PIM bandwidth. The existing
UPMEM system does not support direct communication be-
tween PIM modules due to the scarce on-chip routing resources.
The communication between PIM modules relies on host-PIM
communication to exchange data, which involves loading data
from one PIM module to the host’s cache and then storing it to the
destination PIM module. Considering the poor host-PIM com-
munication ability, inter-PIM communication can easily become
the performance bottleneck. The existing UPMEM system only
offers 25 GB/s total host-PIM and inter-PIM communication
bandwidth.

Although the architecture of a PIM system is similar to that
of a distributed system, there are some differences between the
two architectures. Compared with a distributed system, a PIM
system has a smaller data size and simpler architecture. 1) In
file systems, clients can communicate with other servers and
clients through the network. A client can figure out the object’s
location in the distributed system independently. However, in
PIM systems, applications cannot directly access PIM modules.
PIM modules can only process application tasks through the
host side. Applications send batches of index operations to the
host side. Then the host side dispatches these index operations
to PIM modules. After retrieving requested data from all PIM
modules, these data are transmitted to the host side and returned
to applications. 2) Due to the scarce on-chip routing resources in
PIM modules, existing PIM systems do not support direct com-
munication between PIM modules. The communication between
PIM modules relies on host-PIM communication to exchange
data. Considering the poor host-PIM communication ability,
inter-PIM communication can easily become the performance
bottleneck. Moreover, the basic system call overhead for the
host side calling PIM modules is expensive, leading to the poor
communication performance between PIM modules as well. 3)
The computing capabilities of PIM cores are much weaker than
those of CPU cores. The memory and cache capacities in a PIM
module are much smaller than those on the host side. Therefore,
compared to a device in distributed systems, a PIM module has
a smaller data size and processes simpler tasks. 4) Since existing

DRAM-based PIM modules are composed of volatile memory,
there is no need to consider data recovery by storing multiple
data replications in different PIM modules as well as failure
domain selection. 5) A distributed system may be composed
of heterogeneous devices such as HDD and SSD with different
capacities, exhibiting different performance. Therefore, these
devices have different weights in the distributed system for data
distribution. However, in PIM systems, all the PIM modules are
with the same hardware and software configurations. There is
no distinction between PIM modules. 6) In a distributed system,
a device may be added into the system or removed from the
system. The weights of devices may be adjusted due to the added
device and data may be migrated from the removed device to
other devices. However, in a PIM system, the number of PIM
modules is fixed during runtime.

PIM provides an opportunity to accelerate pointer chasing
due to the fast memory access and high parallelism between
PIM modules. Since the DPU in a PIM module is embedded
closer to memory, the memory access overhead of a pointer
chasing operation in a PIM system is lower than that in a
conventional machine. Furthermore, a DPU has fewer caches
than a CPU due to the limited on-chip resources. Therefore,
the cache miss overhead of a pointer chasing operation in a
PIM system is lower than that in a conventional machine. In a
PIM module in UPMEM, the cost of a pointer chasing operation
involves the DPU processing overhead (3∼5 DPU cycles for
loading instruction and pointer value, calculating the address,
and dereferencing pointer), the cache miss overhead (1 DPU
cycle for L1 cache), and the memory access overhead (4 DPU
cycles).

B. PIM-Friendly Ordered Indexes

Many prior works [4], [5], [6], [7], [15] employ PIM to
enhance the throughput of skiplist, an ordered index widely
used in memory systems [17], [19], [20], [35], [37], [38], [39],
[40]. To benefit from the parallelism of the PIM system and
amortize the communication cost between PIM modules (PIM-
PIM) and between the host side and the PIM side (host-PIM),
index operations are packed into batches and dispatched to PIM
modules. For processing a batch of index operations on the
skiplist, the host side dispatches the index operations to PIM
modules. After receiving these index operation requests, each
PIM module executes the requests in its local vault and sends
the result back to the host side. Prior works can be divided into
two categories based on the methods for partitioning the key
space and constructing ordered indexes: range partition [6], [7],
[15] and node distribution [4], [5].

Range partition: As Fig. 2(a) illustrates, range partition de-
signs [6], [7], [15] statically partition the entire key space into
disjoint coarse-grained ranges with the same length, maintained
by each PIM module. Each PIM module builds an independent
skiplist based on their key-value pairs. The search path from
top to bottom for each index operation is integral in one PIM
module, without communication overhead between PIM mod-
ules. Since the system performance is determined by the busiest
PIM module, for workloads that request for uniformly random

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:46:13 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: RADAR: A SKEW-RESISTANT AND HOTNESS-AWARE ORDERED INDEX DESIGN FOR PROCESSING-IN-MEMORY SYSTEMS 1601

Fig. 2. Range partition and node distribution. In (a) and (b), nodes in different PIM modules are indicated by different colors. Values are stored in the bottom
layer of the skiplist.

keys, each PIM module handles a similar number of requests
and range partition designs achieve high parallelism. However,
for skewed workloads that concentrate on keys in a small subset
of the partitions, some PIM modules are overwhelmed while the
rest PIM modules are idle, resulting in load imbalance across
PIM modules.

Node distribution: Node distribution designs [4], [5], [47] aim
to mitigate the load imbalance issue in range partition, as shown
in Fig. 2(b). Since the coarse granularity approach to partition the
key space in range partition designs suffers from load imbalance,
node distribution designs adopt a fine granularity approach to
partition the key space among PIM modules. Skiplist nodes
are randomly distributed across PIM modules. This approach
prevents the execution of pointer chasing from top to bottom
within only a subset of PIM modules under skewed workloads.
Frequently requested nodes are pulled from the PIM side to
the host side for better load balance. The search path from
top to bottom for each index operation is sliced into many
segments in different PIM modules. At the end of each segment,
index operations are redispatched to different PIM modules to
the next segment, requiring PIM-PIM communication. Index
operations may share a common node (i.e., contention node)
on their search paths and be routed to the same PIM module,
resulting in load imbalance. Pulling contention nodes from the
PIM side to the host side alleviates the load imbalance, but
requires multiple host-PIM communication rounds. Since the
skiplist is built based on all key-value pairs rather than key-value
pairs in each PIM module, it has a greater height compared
to skiplists in range partition designs, contributing to more
pointer chasing operations to traverse the skiplist from top to
bottom.

C. Motivation

As described before, PIM provides an opportunity to accel-
erate pointer chasing operations due to lower memory access
and cache miss overheads. However, existing range partition
and node distribution designs experience limitations in the PIM
system. Range partition designs suffer from load imbalance
under skewed workloads since they statically partition the key
space among PIM modules. Node distribution designs show
robust resistance to skewed workloads, but bring unnecessary
overheads for skew-resistance and perform much worse than
range partition designs under uniformly random workloads.

Limitations of state-of-the-art PIM-friendly indexes are sum-
marized in Table I and detailed as follows. N in this sec-
tion denotes the total number of key-value pairs in the PIM
system.

First, current skew-resistant ordered index structures bring un-
necessary overheads: a considerable quantity of pointer chasing
operations, contention nodes on the search paths, host-PIM and
PIM-PIM communication cost, due to the following reasons:
� The height of the skiplist is not lowered by distributing

skiplist nodes among PIM modules, resulting in excessive
pointer chasing operations to traverse the high skiplist from
top to bottom. For example, in Fig. 2(b), although key-value
pairs in the bottom layer are evenly distributed among PIM
modules and each PIM module maintains less than N key-
value pairs, the skiplist height is still O(logN) and higher
than that in range partition designs in Fig. 2(a).

� Skiplist nodes cannot perceive the hotness changes during
runtime to dynamically adjust their heights. More pointer
chasing operations are required to index hot keys stored in
lower layers.

� The sliced search path from top to bottom for each index
operation brings more contention nodes and communi-
cation cost. At the end of each search path slice, index
operations are redispatched to all PIM modules since
the next hop for each operation may reside in a distinct
PIM module. Common shared nodes on the search paths
of these index operations become contention nodes. For
example, in Fig. 3(a), although the requested keys are
uniformly distributed across PIM modules (three queries
for 1,986, 2,024, and 2,122 in the bottom layer), common
shared nodes (blue 1,545 and grey 1,545) on the search
paths still become contention nodes, resulting in load
imbalance. Pulling contention nodes to the host side and
redispatching index operations to PIM modules require
host-PIM and PIM-PIM communication on the critical
path respectively, giving rise to high communication cost.
Thus, the overhead for skew-resistance should be reduced
by lowering the skiplist height, dynamically adjusting
heights of skiplist nodes with hotness changes, and min-
imizing the number of search path slices in different PIM
modules:

Second, in both range partition and node distribution designs,
the granularity to partition the key space is static under any
skewness during runtime. Each PIM module maintains a large

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:46:13 UTC from IEEE Xplore. Restrictions apply.

1602 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

TABLE I
LIMITATIONS OF STATE-OF-THE-ART PIM-FRIENDLY INDEXES

Fig. 3. Limitations of state-of-the-art PIM-friendly indexes. In (a), nodes in different PIM modules are indicated by different colors. In (b), lines in different
colors represent different works executed on the two sides.

and consecutive key range in range partition designs while a
significant number of discontinuous fine-grained keys in node
distribution designs. Coarse partition granularity exhibits good
performance under uniformly random workloads, but suffers
from load imbalance and lacks parallelism among PIM modules
under skewed workloads. Fine partition granularity sacrifices
node locality in each PIM module to lower the load imbalance
risk, resulting in excessive PIM-PIM communication cost and
degraded performance under uniformly random workloads. As
a result, the granularity to partition the key space should be
dynamically adjusted to adapt to different skewness during
runtime.

Third, both range partition and node distribution do not fully
exploit the parallelism between the host and PIM sides. The
execution time for indexing consists of three non-overlapping
components: host-only time, PIM-only time, and host-PIM
communication time. Host-PIM communication requires both
host and PIM sides, but the other two components only utilize
one side. Since each batch of index operations may consist
of both read and write operations, the system should guar-
antee the order of read-write/write-write operations in two
adjacent batches, which are serially executed as Fig. 3(b)
shows. When one side runs, the other side is idle most of
the time. Therefore, the parallelism between the host side and
the PIM side should be fully exploited by pipelining the two
sides.

III. DESIGN OVERVIEW

RADAR is a high performance ordered index designed for
PIM systems. We first describe its API and target workloads.
Then, we introduce its design goals and explain how RADAR
achieves these goals. Finally, we give the overview of RADAR’s
structure. Notations in the following sections are given in
Table II.

TABLE II
NOTATIONS IN THIS PAPER

API: RADAR supports a wide range of index operations, in-
cluding point operations (Get(key), Predecessor(key), Insert(key,
value), Delete(key), Update(key, value_prev, value_curr))
and range operation (Scan(Lkey, Rkey, if_include_Lkey,
if_include_Rkey)).

Target workloads: RADAR targets both uniform workloads
and non-uniform workloads with varying skew. RADAR adap-
tively adjusts the index partition strategy under varying skewness
during runtime.

Goals and proposed techniques: As shown in Table III,
RADAR aims to address the limitations in state-of-the-art PIM-
friendly ordered indexes, by adopting the following techniques:
� The hash-based subrange distributed structure partitions

the entire key space into multiple disjoint subranges with
different granularities. RADAR distributes key-value pairs
within these disjoint subranges to PIM modules by a
hash function. Instead of partitioning the index built based
on all key-value pairs in previous skew-resistant designs,
RADAR builds an individual index in each PIM mod-
ule and distributes key subranges to PIM modules using
hash tables, lowering the skiplist height from O(logN)
to O(logN

P). To reduce the host-PIM and PIM-PIM com-
munication cost in state-of-the-art works, the search path
to traverse the skiplist from top to bottom in RADAR is
integral in each PIM module. With the skewness changes
of workloads, the granularities of these subranges are
adjustable rather than fixed in previous range partition

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:46:13 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: RADAR: A SKEW-RESISTANT AND HOTNESS-AWARE ORDERED INDEX DESIGN FOR PROCESSING-IN-MEMORY SYSTEMS 1603

TABLE III
DESIGN GOALS AND PROPOSED TECHNIQUES IN RADAR

and node distribution designs, combining the advantages
of coarse granularity (range partition) designs and fine
granularity (node distribution) designs.

� The adaptive subrange redistribution mechanism evaluates
the skewness and adaptively adjusts the granularity of
subranges during runtime. To be skew-resistant under high
skewness, instead of employing a fixed node chunking
granularity in prior works, RADAR splits coarse-grained
skewed subranges into multiple fine-grained subranges
and redistributes key-value pairs within these fine-grained
subranges to other idle PIM modules. To reduce memory
consumption for index node replication in previous node
distribution designs, RADAR only stores one copy of each
index node in the PIM system. Besides, key-value pairs
within the finest-grained skewed subranges are pulled to
the host side to benefit from CPU cache locality. The
redistribution is accomplished in one PIM-PIM commu-
nication round and one host-PIM communication round
to lower the communication cost, contributing to lower
system call overhead for calling PIM modules compared
with state-of-the-art skew-resistant works.

� To address the node hotness-unawareness in previous
works, RADAR employs a learning-based time series
model to predict the hotness of subranges through features
of historical index operations. By raising the heights of
skiplist nodes in hot subranges and lowering the heights
of skiplist nodes in cold subranges, RADAR reduces the
number of pointer chasing operations to retrieve requested
values compared with state-of-the-art designs. RADAR
pipelines the host side and the PIM side to run the node
hotness classification model, leveraging resources on the
two sides during their idle time.

Overview of RADAR’s structure: Fig. 4 presents the overview
of RADAR. Applications send batches of index operations to
RADAR and request for data through indexing keys in RADAR.
By querying some hash tables on the host side, the preprocess
layer determines which PIM module to send each index opera-
tion to and evaluates the skewness across PIM modules. Then,
RADAR dispatches a batch of index operations to their target
PIM modules to retrieve requested data and decides whether
to redistribute key-value pairs among PIM modules based on
the workload skewness. In parallel, features of index operations
in each batch are fed into a node hotness classification model
for training and making hotness predictions for skiplist nodes in
PIM modules. The model then raises the heights of hot nodes and
lowers the heights of cold nodes in skiplist to reduce the number
of pointer chasing operations. Note that the model running

Fig. 4. Overview of RADAR.

is offline and asynchronous with processing index operations.
After retrieving requested data from PIM modules, these data
are transmitted to the host side, merged by the merge layer, and
returned to applications.

IV. ADAPTIVE INDEX PARTITION

In this section, we describe how RADAR distributes key-value
pairs, constructs the skiplist, and enhances load balance across
PIM modules under different skewness. We first illustrate the
metadata and the subrange distributed structure on the host
and PIM sides in Section IV-A. Then we present the adaptive
subrange redistribution mechanism under different skewness in
Section IV-B.

A. Hash-Based Subrange Distribution

To distribute skiplist nodes across PIM modules for skew-
resistance while enhancing node locality in each PIM module,
the key space is partitioned into multiple disjoint subranges.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:46:13 UTC from IEEE Xplore. Restrictions apply.

1604 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Fig. 5. Hash-based subrange distribution. A black box in L2 represents a subrange node. In each PIM module, all subrange nodes in L2 compose a skiplist. A
blue box in L1 represents a key node and a green box in L1 represents the value of the key. Key nodes and their values within a red dotted box in L1 compose an
individual skiplist for a subrange.

These subranges are evenly distributed among PIM modules
by applying a hash function to the start key of each subrange,
preventing skewed subranges from being stored in one PIM
module. The granularity of each subrange is dynamically ad-
justable with changes in the skewness of requested data during
runtime, combining the advantages of both fine granularity and
coarse granularity. Each PIM module maintains an individual
skiplist built based on keys within its subranges, ensuring the
integrity of the search path for each index operation within a
PIM module and lowering the skiplist height from O(logN) to
O(logN

P). Fig. 5 illustrates the structure of hash-based subrange
distribution in RADAR.

Metadata and workflow on the host side: On the host side,
to better leverage the advanced computing resources and avoid
expensive pointer chasing, RADAR only performs a limited
number of hash operations to dispatch index operations to target
PIM modules. The overhead of employing simple traditional
hashing is smaller than that of employing intelligent algorithms.
For data migration between PIM modules, modifying traditional
hash tables is less time-consuming than retraining an intelligent
model. Given that dispatching index operations to PIM modules
is a critical step on the host side as shown in Fig. 4, tradi-
tional hashing is more suitable than intelligent algorithms in
PIM systems. Hash tables are built for subranges with different
granularities. For each index operation, RADAR queries the
hash tables to locate the target subrange containing the requested
key. The entry structure of hash tables includes the start and

the end of the subrange, the id of the PIM module storing all
keys within the subrange, the number of keys in the subrange,
and some metadata for training (detailed in Section V-A). The
subrange granularities are dynamically adjusted under different
skewness (detailed in Section IV-B). For each index operation,
RADAR queries hash tables for subranges from fine to coarse.

To illustrate, Fig. 5 shows an example where the granularities
of subranges are 100, 1,000, and 10,000. Three hash tables
contain the metadata of subranges with the three granularities,
respectively. For a requested key 12168, RADAR queries the
three hash tables from fine to coarse. For a hash table hit (3©,
6©, and 9©), RADAR finishes the hash table query. For a hash

table miss (2© and 5©), RADAR continues to query the next
hash table for coarser subranges. RADAR at most performs
hash operations on 12100 (1©), 12000 (4©), and 10000 (7©)
in their respective hash tables to locate the target hash entry
and determine the target PIM module to dispatch the request
to (11©). If a new inserted key results in misses across all hash
tables (8©), RADAR allocates a hash entry for the finest-grained
subrange containing the key (10©) to reduce the number of misses
in subsequent hash table queries.

Skiplist built on the PIM side: On the PIM side, to better
leverage the fast memory access and avoid expensive computing,
RADAR executes pointer chasing in the skiplist. Each PIM
module maintains multiple subranges of the key space with
different granularities, and builds a skiplist based on these keys.
The skiplist in each PIM module is divided into the upper part

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:46:13 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: RADAR: A SKEW-RESISTANT AND HOTNESS-AWARE ORDERED INDEX DESIGN FOR PROCESSING-IN-MEMORY SYSTEMS 1605

and the lower part. The upper part (L2) consists of subrange
nodes and the lower part (L1) contains key nodes within the
corresponding subrange. All subrange nodes in L2 compose a
skiplist and key nodes within each subrange in L1 compose
a skiplist. For processing a request to traverse the skiplist
in a PIM module from upper to lower, RADAR first locates
the subrange containing the requested key in L2 and then locates
the requested key in L1. In each PIM module, RADAR employs
the array structure to store nodes with the same subrange or
key in different layers. If keys are found in the upper layer,
their values can be retrieved without pointer chasing to lower
layers. The search path for each index operation traversing
the skiplist from top to bottom is integral in a PIM module,
without PIM-PIM communication cost. For better range scan
performance, in each PIM module, all leaf nodes in L1 are linked.
Note that if the number of keys in a subrange is 0, to reduce the
memory consumption and the pointer chasing cost, the subrange
does not appear on either the host side or the PIM side.

RADAR adopts several methods in the subsequent sections to
detect hot subranges and keys, and reduce the number of pointer
chasing operations in L2 and L1 for obtaining the required
key-value pairs. Skewed subranges are split into finer-grained
subranges during runtime and key nodes in L1 are redistributed
to other PIM modules, contributing to fewer pointer chasing
operations when searching for hot keys in L1 (detailed in
Section IV-B). Furthermore, the heights of subrange nodes in
L2 are adjustable. Raising the heights of hot subrange nodes
and lowering the heights of cold subrange nodes can reduce
the number of pointer chasing operations when traversing L2
(detailed in Section V).

B. Adaptive Subrange Redistribution

The adaptive subrange redistribution mechanism dynamically
adopts different subrange redistribution strategies under varying
skewness. Under low skewness, each PIM module processes
similar number of index operations without load imbalance risk.
However, under high skewness, requested keys may concen-
trate on some subranges (i.e., skewed subranges), bringing load
imbalance among busy PIM modules (each busy PIM module
processes more than S

P index operations) and idle PIM modules
(each idle PIM module processes less than S

P index operations).
To mitigate the load imbalance among PIM modules, each
coarse-grained skewed subrange in busy PIM modules is split
into P finer-grained disjoint subranges, and key-value pairs
within these finer-grained subranges are redistributed to idle
PIM modules. Besides, key-value pairs within the finest-grained
skewed subranges in busy PIM modules are pulled to the host
side since these subranges cannot be further split into finer
granularity.

Dynamic subrange granularities: Since the skewness is
changeable over time, the subrange granularities are dynami-
cally adjusted. In the initial state, all the subranges are with the
same granularity. Compared with initially splitting the key space
in large granularity, initially splitting the key space in small
granularity results in high metadata overhead. Considering a
system involving millions of key-value pairs, the system requires

recording the location of each small subrange in PIM modules,
incurring high metadata overhead. In contrast, initially splitting
the key space in large granularity, only a small percentage
of skewed subranges are split into fine-grained subranges and
redistributed to PIM modules. Therefore, employing a large
granularity to initially split the key space is more suitable. The
key space is partitioned into P disjoint ranges distributed to P
PIM modules. For index operations requesting for uniformly
random keys within unskewed subranges, each PIM module
processes similar number of index operations with high par-
allelism. RADAR does not split these unskewed subranges into
finer-grained subranges. For index operations concentrating on
keys within a small portion of skewed subranges, each of these
skewed subranges is split into P finer-grained subranges until it
cannot be further split. If there are no subranges remaining in a
hash table (e.g., all subranges in the hash table have been split
into finer-grained subranges), the hash table is deleted from the
host side.

Subrange redistribution decision: The subrange redistribution
decision is made based on the benefit of load balance and the cost
to achieve the load balance under varying skewness. Given that
the performance bottleneck is determined by the busiest PIM
module, RADAR adopts a greedy strategy to make subrange
redistribution decision for PIM modules from busy to idle.

The benefit (Benefit) of load balance, which is achieved by
redistributing a skewed subrange from the busiest PIM module
to idle PIM modules, is the load reduction of the busiest PIM
module among these load-redistributed PIM modules.

Benefit = Ncurr_busiest −Nnew_busiest, (1)

where Ncurr_busiest and Nnew_busiest is the number of index
operations processed by the busiest PIM module before and after
redistributing the skewed subrange, respectively.

The subrange redistribution process for a skewed subrange
containing nk key-value pairs includes two parts: retrieving
and deleting nk key-value pairs in the skewed subrange, and
redistributing nk key-value pairs to idle PIM modules. The
retrieving and deleting process is essentially the same as a range
operation to traverse nk key-value pairs in the busiest PIM
module. The redistributing process transmits nk key-value pairs
between PIM modules, then inserts a subrange node to L2 and
rebuilds a skiplist in L1 based on the redistributed key-value
pairs in each idle PIM module simultaneously. Note that the
key-value pairs inserted in L1 are consecutive and in order, and
the rebuild process can be accomplished in PIM modules’ cache
with negligible cost compared to pointer chasing in memory. To
minimize the PIM-PIM communication cost of redistributing,
RADAR redistributes all nodes in one communication round
between PIM modules until no skewed subrange is identified.
Thus, the cost of the subrange redistribution process includes
the cost of a range operation (Costrange), a point operation
(Costpoint), as well as an additional PIM-PIM communication
(Costcomm).

Since the main cost for each index operation is pointer chas-
ing in memory, RADAR uses the number of pointer chasing
operations as a metric to evaluate the three costs of the subrange
redistribution process for a skewed subrange. For processing

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:46:13 UTC from IEEE Xplore. Restrictions apply.

1606 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

each batch of index operations, RADAR calculates the average
number of pointer chasing operations in a point (Avgpoint) and a
range (Avgrange) operation. RADAR assumes that the number
of pointer chasing operations in Costpoint is the same as that
in Avgpoint in the recent batch. Costrange requires logN

P + nk

pointer chasing operations in expectation. nk key-value pairs
are transmitted between PIM modules in Costcomm, which
is converted to the number of pointer chasing operations in
memory.

Costpoint = Avgpoint (2)

Costrange = log
N

P
+ nk (3)

Costcomm =
nk ×KV _size× Tcomm

Tpim_mem
, (4)

where KV _size is the average size of a key-value pair in bytes,
Tcomm is the time to transmit a byte between PIM modules, and
Tpim_mem is the time for a memory access in a PIM module.
The values of KV _size, Tcomm, and Tpim_mem are constants
in the PIM system.

We use the the following formula to evaluate the skewness of
a batch of index operations and decide whether to split or pull
(SP) a skewed subrange in busy PIM modules, by converting
the benefit of load balance and the subrange redistribution cost
into the number of index operations in the batch.

SP = Benefit− Costpoint + Costrange + Costcomm

βAvgpoint + (1− β)Avgrange
,

(5)
where β is the percentage of point operations in the batch and
its value can be obtained in the preprocess. RADAR calculates
SP for skewed subranges in PIM modules from busy to idle: if
SP ≤ 0, RADAR gains no benefit from the subrange redistribu-
tion and does not spilt or pull the skewed subrange; if SP > 0,
RADAR splits the skewed subrange to idle PIM modules or
pulls it to the host side. In this way, under low skewness, there is
no subrange redistribution overhead since SP ≤ 0. Under high
skewness, the number of redistributed nodes is far smaller than
the batch size since requests concentrate on a small portion of
nodes. Only these skewed nodes across busy PIM modules are
concurrently redistributed to idle PIM modules. RADAR does
not merge fine-grained subranges into coarse-grained subranges.
Since only a small percentage of skewed subranges rather than
all subranges are split into fine-grained subranges, the meta-
data overhead is not very high. Merging multiple fine-grained
subranges into a coarse-grained subrange requires migrating
key-value pairs within these subranges from several PIM mod-
ules to one PIM module. The data migration overhead is more
significant than the benefit of reducing the metadata overhead
due to the expensive inter-PIM communication. Experiments in
Section VI demonstrate that the subrange redistribution over-
head is substantially lower than the load imbalance overhead
and request redispatching overhead in state-of-the-art designs
under varying skewness.

The adaptive subrange redistribution design is not only ef-
fective for load balance but also reduces the number of keys in
skewed subranges, resulting in fewer pointer chasing operations

when searching for hot keys in L1. The number of commu-
nication rounds for processing each batch of index operations
is upper-bounded by two, one (PIM-PIM communication) for
redistributing key-value pairs within skewed subranges to idle
PIM modules and the other (host-PIM communication) for
retrieving required values of the index operations and pulling
nodes within the finest-grained skewed subranges.

V. HOTNESS-AWARE NODE HEIGHT ADJUSTMENT

In this section, we first present the learning-based node
hotness classification model for detecting hot subranges and
adjusting the heights of subrange nodes in Section V-A. Then
we describe how RADAR incorporates the hotness classification
model in PIM systems in Section V-B.

A. Learning-Based Node Hotness Classification

The node hotness classification model aims to reduce the num-
ber of pointer chasing operations by raising the heights of hot
subrange nodes and lowering the heights of cold subrange nodes
in L2. For processing a request to traverse the skiplist from upper
to lower in a PIM module, RADAR first locates the subrange
containing the requested key in L2 and then locates the requested
key in L1. For requesting keys within hot subranges, raising the
height of hot subrange nodes contributes to less pointer chasing
when locating the subrange node in L2. Therefore, assigning
the hot subrange node a higher height reduces the number of
pointer chasing operations. Subrange nodes are classified into
HL2-class (HL2 is the height of L2 in PIM modules) based on
their hotness. RADAR trains a lightweight time series model for
node hotness classification.

Model selection: The node hotness classification model uses
features of historically requested subranges to make an HL2-
class hotness prediction for each currently requested subrange.
The prediction result indicates which level of L2 the subrange
node should be placed in. Then the model adjusts the heights
of those subrange nodes whose heights deviate most from the
predicted results. A supervised time series model is suitable to
extract features from historical index operations and classify
node hotness. The machine-learning time series model extracts
features from historical index operations and has a high pre-
diction accuracy for multi-class node hotness classification.
Furthermore, since there is a large amount of idle time on the host
and PIM sides in state-of-the-art designs as shown in Fig. 3(b),
RADAR carefully leverages these idle time for model training
and prediction without incurring extra overhead compared with
using a simple static mapping method. Therefore, instead of
using a simple static mapping method, RADAR employs a
machine-learning model to solve this problem due to the high
node hotness classification accuracy without incurring extra
overhead. RADAR incorporates the widely used gated recurrent
unit (GRU) [26], a lightweight supervised machine learning
model capable of processing time series data and learning the
labeled input features, as shown in Fig. 6. To ensure that the
time for training and making predictions in one epoch on the host
side is overlapped by the index processing time on the PIM side,
the data sets for training and making predictions are sampled

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:46:13 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: RADAR: A SKEW-RESISTANT AND HOTNESS-AWARE ORDERED INDEX DESIGN FOR PROCESSING-IN-MEMORY SYSTEMS 1607

Fig. 6. The node hotness classification model.

from each batch of index operations. A curvilinear model is
trained to fit hotness thresholds for data labeling by sampling
and sorting recently requested nodes.

Model structure and feature extraction: In each window for
processing multiple batches of index operations, the GRU model
is trained for one epoch for each batch and makes a prediction at
the end of the window. For training and predicting hot subranges,
RADAR chooses the hotness of subranges as feature input. In
addition, since the data access patterns of a large number of
workloads exhibit spatial locality (data near the requested data
tends to be requested later) and temporal locality (requested data
tends to be requested again later) [50], [51], [52], [53], [54],
[55], [56], the spatial locality and temporal locality features
are helpful for training and predicting hot subranges. Since a
subrange containing a large number of keys is more likely to be
requested than a subrange containing a small number of keys,
the number of keys in a subrange is used as feature input as
well. During our design iterations, the following features of
each subrange are selected as the model input: the hotness of
subranges evaluated by counters (Hotness); the spatial locality
of workload evaluated by whether the adjacent subranges are re-
quested (Is_left and Is_right); the temporal locality of workload
evaluated by the number of window gaps between two accesses
to the subrange (Lifetime), which is equivalent to using the
global window number as a virtual clock; the number of keys in a
subrange (Key_num). For efficient processing, RADAR breaks
numerical inputs into hexadecimal digits and concatenates them
as the model inputs. The number of digits used for each feature is
chosen so that most cases can be handled without overflow. The
model is trained with the cross entropy loss function [44] and the
Adam optimizer [46] using the training data sampled from each
batch. The GRU model has a single-layer hidden state with 32
neurons. On the output side, the hidden state of the last GRU cell
is pushed through a fully connected layer to produceHL2 output
values, determining which layer in L2 should a subrange node
be placed in. Finally, argmax is applied to get the prediction
result. If the number of nodes in the predicted layer reaches the

upper limit, RADAR sets the maximum output value to zero
and applies argmax again to get the result with sub-maximum
confidence.

Adaptive data labeling: Since RADAR uses supervised ma-
chine learning to predict the hotness of subranges, with changes
in the hotness of requested data during the workload’s runtime,
thresholds between adjacent hotness classes are adaptively set
for data labeling. On the output side, the model is designed
to make a HL2-class hotness prediction for each requested
subrange based on their historical hotness. Ideally, subrange
nodes are placed in each layer of L2 from top to bottom according
to their hotness. However, sorting all subrange nodes by hotness
in each window consumes a large amount of time. To avoid
the time-consuming sorting, RADAR samples and sorts some
requested subrange nodes in each epoch in the current window,
and trains a lightweight curvilinear regression model [24], [25]
to fit the threshold function in the next window. Note that the
number of sampled nodes in each epoch is adjustable according
to different batch sizes. If the value of HL2 changes with the
insertion, deletion, splitting, and pulling of subrange nodes, the
curvilinear regression model fits new thresholds by using current
thresholds.

B. Host-PIM Pipelining Mechanism

As described in Section II-C, RADAR has potential to lever-
age resources on the host side or the PIM side when the other
side is busy. RADAR runs the node hotness classification model
to figure out hot and cold subranges and adaptively adjusts the
heights of subrange nodes, by pipelining the host side and the
PIM side as Fig. 7 illustrates. Apart from the host, host-PIM, and
PIM time for processing batches of index operations, RADAR
makes full use of the idle time of both the host side and the PIM
side to train model, make hotness predictions, adjust the hotness
thresholds for adaptive data labeling, and adjust the heights of
subrange nodes in PIM modules. Since the PIM side consumes
more time than the host side for processing index operations,
and to better leverage the advanced computing and memory
resources on the host side, in each window, the model trains and
predicts on the host side when the PIM side is busy. To entirely
overlap the training and prediction time on the host side with the
index processing time on the PIM side while providing sufficient
nodes’ features for model training in a window, the frequency
of height adjustment is dependent on the index processing time
on the PIM side and the model training efficiency on the host
side. The model is trained for one epoch for each batch of index
operations. At the end of each window, the model predicts by
using features of the last batch of index operations as input, and
adaptively adjusts thresholds between adjacent hotness classes.
Finally, the PIM side raises or lowers the heights of those
subrange nodes whose current heights deviate most from the
predicted heights. Compared with previous works [4], [5], [6],
[7], [15] that do not make use of the idle time on the host and
PIM sides in PIM systems, RADAR leverages these idle time to
implement the height adjustment mechanism without incurring
extra overhead.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:46:13 UTC from IEEE Xplore. Restrictions apply.

1608 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Fig. 7. Host-PIM pipelining. Training, predicting, hotness thresholds adjustment, and node height adjustment of the model are pipelined with index operations
processing.

VI. EVALUATION

In this section, we evaluate the performance of RADAR
against state-of-the-art PIM-friendly and traditional ordered in-
dex designs in multiple datasets.

A. Experimental Setup

Testbed: Our testbed machine for PIM-friendly indexes is a
dual-socket server with two Intel(R) Xeon(R) Silver 4216 CPUs,
each CPU equipped with 16 cores at 2.10 GHz and 22 MB
cache. Each socket has six memory channels: four DDR4-2666
DIMMs are installed on two channels, while eight UPMEM
DIMMs are on the other four channels. Each of the sixteen
UPMEM DIMMs has two ranks, each rank has eight chips,
and each chip has eight PIM modules. There are 2048 PIM
modules in total. For fair comparisons, our testbed machine for
traditional indexes has the same CPU and the memory channel
count. DDR4-2666 DIMMs are installed on all the memory
channels.

Compared Systems: We compare RADAR against three state-
of-the-art PIM-friendly designs: Range-partition [6], Jump-
push [4], and PIM-tree [5]; three traditional designs: Bronson
BST [12], (a,b)-tree [1], and Unrolled Skiplist [10]. We borrow
Kang’s [5] implementations of Range-partition, Jump-push, and
PIM-tree. We directly use the open-sourced code of Bronson
BST [12], (a,b)-tree [1], and Unrolled Skiplist [10].

Workload Setup: In all experiments, the same as the prior
design [5], we first insert 500 million key-value pairs in each
index, then evaluate the index by running 100 million index
operations. The size for each batch of index operations is 2
million. Each scan operation retrieves 32 ∼ 1024 key elements
in expectation. The sizes of both keys and values are set to 8
bytes.

B. Design Space Exploration

For parameter settings in RADAR, the number of sampled
subrange nodes in each batch for training and the number of
training epochs in each window influences the system per-
formance. We explore the model prediction accuracy and the
throughput performance of all index operations supported by

RADAR, with different numbers of sampled nodes and training
epochs. The number of sampled nodes in a batch varies from 4
thousand to 32 thousand, and the number of training epochs in
a window ranges from 2 to 6.

Fig. 8 illustrates the prediction accuracy of the node hotness
classification model. Fixing the number of sampled nodes, the
model prediction accuracy gradually rises with more training
epochs and tends to saturate after 4 epochs, enabling the model
to learn the recent features of index operations. For the same
number of training epochs in a window, sampling more nodes
in a batch for training gives rise to better feature extraction and
higher prediction accuracy. However, higher prediction accuracy
does not necessarily lead to better system performance.

Fig. 9 shows the throughput performance of RADAR with dif-
ferent parameter configurations normalized to RADAR without
the node hotness classification model. For sampling 4 thousand
nodes and 8 thousand nodes, the time for training on the host
side is entirely hidden by the indexing time (42 milliseconds) on
the PIM side. Therefore, higher prediction accuracy contributes
to better throughput performance since fewer pointer chasing
operations are required for searching hot skiplist nodes. For
sampling 16 thousand nodes and 32 thousand nodes, the time for
training on the host side is much longer than that for indexing on
the PIM side, generating idle time on the PIM side and degrading
the system performance.

For the rest of experiments in this paper, we present our results
of RADAR by sampling 8 thousand nodes in each batch of
index operations and training 4 epochs in each window. With
this configuration, RADAR achieves 71.8% node classification
accuracy and 1.18x normalized throughput improvement.

C. Microbenchmarks

To show the system performance under different skewness, we
generate workloads in Zipfian distribution [21] with α values
ranging from 0 (uniformly random) to 1.2. Fig. 10 shows the
throughput performance of state-of-the-art PIM-friendly and
traditional ordered indexes.

Effectiveness of our proposed optimizations: We break down
our proposed optimizations to analyze their effectiveness.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:46:13 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: RADAR: A SKEW-RESISTANT AND HOTNESS-AWARE ORDERED INDEX DESIGN FOR PROCESSING-IN-MEMORY SYSTEMS 1609

Fig. 8. Prediction accuracy with different numbers of sampled nodes and training epochs.

Fig. 9. Normalized throughput performance with different numbers of sampled nodes and training epochs.

RADAR (basic) only employs the hash-based subrange dis-
tributed structure. Based on RADAR (basic), the adaptive sub-
range redistribution is adopted by RADAR (no GRU), and the
GRU model is further added to RADAR. The performance of
RADAR (basic) drops with the workload becoming skewed,
but still outperforms Range-partition. This is because although
some subranges become skewed due to the lack of node re-
distribution, the granularity of each subrange is far finer than
that in Range-partition. The hash-based subrange distribution
prevents these skewed subranges from being stored in one
PIM module. RADAR (no GRU) shows robust resistance to
skewed workloads due to the adaptive subrange redistribution
for skewed subranges. The host-PIM pipelining and GRU model
improve the performance by 12% (for α = 0) ∼ 22% (for α =
1.2) for point operations and by 5% (for α = 0) ∼ 9% (for
α = 1.2) for range operations. The reason why point opera-
tions achieve more benefits than range operations is that our
learning-based node hotness classification model reduces the
number of pointer chasing operations to locate subranges in
L2 rather than those to traverse the ordered linked list in L1
for range operations. Besides, the learning-based node hotness
classification design is more effective for skewed workloads
than uniformly random workloads since raising the heights
of skewed subrange nodes could reduce more pointer chasing
operations.

Performance comparisons: RADAR outperforms all state-of-
the-art designs for all operations under different skewness, other

than Range-partition for scan operation under uniformly ran-
dom workloads. Under uniformly random workloads, RADAR
performs 19.8% worse than Range-partition for scan opera-
tion due to the overhead of querying hash tables on the host
side, while performing better for other operations attributed
to the node hotness classification. As α increases, the perfor-
mance of Range-partition drops sharply (up to 168.1x worse
than RADAR) since the key space is statically partitioned in
coarse granularity among PIM modules. RADAR achieves up
to 6.8x and 15.8x higher throughput than traditional ordered
indexes for query and update operations respectively, due to
the parallelism exploitation in the PIM system. The worse
performance of the two tree indexes for update operations is
attributed to the cost of maintaining tree balance. Asα increases,
traditional indexes perform better while PIM-friendly indexes
perform worse since skewed workloads enable the host side to
benefit from cache locality but cause load imbalance among
PIM modules. Node distribution designs show robust resistance
to skewed workloads but perform worse than RADAR (up to
198.2x for Jump-push and 7.3x for PIM-tree), owing to their
large quantity of pointer chasing operations, contention nodes
on the search paths, host-PIM and PIM-PIM communication
cost, idle time on both host side and PIM side, and static granu-
larity to partition the key space under any skewness. Jump-push
samples and records previous search paths, bringing a consider-
able number of inter-PIM-module pointer chasing operations.
PIM-tree exhibits worse performance for insert, delete, and

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:46:13 UTC from IEEE Xplore. Restrictions apply.

1610 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Fig. 10. Throughput of index operations.

Fig. 11. Overheads mentioned in Section II-C of RADAR, normalized to PIM-tree.

update than query operations due to the cost of maintaining tree
balance.

Overheads for skew resistance: Overheads mentioned in Sec-
tion II-C of RADAR are normalized to PIM-tree (the latest
skew-resistant PIM-friendly design) in Fig. 11. The average
number of pointer chasing operations for each point (PC-point)
and range (PC-range) operation is reduced by 50.7% and 75.4%,
respectively. The pointer chasing reduction is due to the lower
skiplist height, the ability to retrieve values of upper-layer keys
without pointer chasing to lower layers, the adaptive heights
of subrange nodes, and the enhanced node locality in PIM
modules. The number of contention nodes pulled from the PIM

side to the host side is 46.2% of that in PIM-tree, stemming
from the integral search path guaranteed in one PIM module. The
host-PIM (Host-PIM comm (round)) and PIM-PIM (PIM-PIM
comm (round)) communication rounds are reduced by 72.9%
and 62.5%, respectively. PIM-tree requires multiple host-PIM
communication rounds to pull contention nodes, while RADAR
only requires one round to retrieve values and pull nodes in
skewed subranges. As for PIM-PIM comm (round), the sliced
search path in PIM-tree requires batches of operations to be
redispatched across PIM modules regardless of the skewness
of workloads. RADAR requires zero rounds for uniformly ran-
dom workloads and one round for skewed workloads to split

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:46:13 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: RADAR: A SKEW-RESISTANT AND HOTNESS-AWARE ORDERED INDEX DESIGN FOR PROCESSING-IN-MEMORY SYSTEMS 1611

Fig. 12. Throughput of the YCSB workloads.

hot subranges. Since the communication between PIM mod-
ules in UPMEM must go through the host, we use the data
transmitted between the host side and the PIM side in bytes
(Comm (byte)) to measure the communication overhead, which
is 65.3% lower than that of PIM-tree due to the reduction in
redispatching index operations and pulling contention nodes.
The idle time on the host side and the PIM side is reduced by
94.2% and 18.7% respectively, thanks to the host-PIM pipelining
mechanism.

To sum up, under low skewness, RADAR and range partition
designs significantly outperform node distribution designs due to
the enhanced node locality in each PIM module and lower com-
munication and pointer chasing overhead. Under high skewness,
RADAR achieves the best performance while range partition
designs perform the worst. The overhead for achieving skew-
resistance in RADAR is much lower than that in state-of-the-art
node distribution designs.

D. YCSB Benchmark

We evaluate all ordered indexes using five YCSB [3] work-
loads:

Workload A: Read-write-balance (50% Get and 50% Update);
Workload B: Read-intensive (95% Get and 5% Update);
Workload C: Read-only (100% Get);
Workload D: Read-latest (95% Get and 5% Insert);
Workload E: Short-ranges (95% Scan and 5% Insert).
We generate zipfian-skewed index operations and their

throughput performance is shown in Fig. 12 (The performance of
YCSB C is the same as that in Fig. 10(a)). RADAR achieves up
to 193.7x higher throughput than other state-of-the-art designs.
The results again confirm the fragility of range partition designs

Fig. 13. Throughput of the wikipedia workload.

and the robustness of RADAR under skewed workloads, as well
as more performance benefits achieved by RADAR compared
with node distribution and traditional index designs.

E. Workload of Real-World Skewness

We evaluate all indexes under a workload with real-world
skewness using the publicly available wikipedia dataset [16].
The same as previous research [5], we extract words from each
document, then use (word, document id) pairs as keys and
random 8-byte integers as values to preserve the skewness of
english words. Fig. 13 gives the performance of all ordered
indexes under wikipedia workload. RADAR achieves the best
performance (up to 182.6x and 12.9x than PIM-friendly and
traditional ordered indexes, respectively) under the workload of
real-world skewness.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:46:13 UTC from IEEE Xplore. Restrictions apply.

1612 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Fig. 14. Throughput of the wikipedia workload for end-to-end evaluation.

Fig. 15. Normalized memory footprint for PIM-friendly indexes.

F. End-to-End Evaluation

Redis [17] is a popular in-memory key-value store using a
hash table as its index. We replace its internal index with our
evaluated indexes for end-to-end evaluation. RADAR achieves
1.12x ∼ 1.58x higher throughput than other indexes under the
wikipedia workload in Fig. 14. The performance gap among
indexes becomes smaller due to the high server-client commu-
nication overhead.

G. Memory Footprint

Fig. 15 illustrates the memory footprint of state-of-the-art
PIM-friendly indexes normalized to that of Range-partition, for
running all benchmarks in Section VI. Range-partition con-
sumes the least amount of memory only for storing skiplists
in PIM modules. RADAR consumes 7% more memory than
Range-partition due to the hash tables on the host side for
varied-granularity subranges, as well as 34.3% and 47.4% less
memory than Jump-push and PIM-tree respectively since both
of them replicate upper-layer skiplist nodes in multiple PIM
modules to achieve load balance under skewed workloads.

VII. RELATED WORK

Processing-in-memory: To deal with the well-known mem-
ory wall [14], [42] problem, many researchers have proposed
processing-in-memory (PIM) technologies [27], [28], [29], [30],
[31], [32], [33], [34] over the past decades. By embedding
processors in memory, PIM enables computations to be ex-
ecuted closer to memory. In recent few years, PIM products
have entered the commercialization phase. UPMEM [18] is
a commercially-available DDR4-PIM product. Programmable

RISC cores are placed near every DRAM memory bank, re-
sulting in a remarkable increase in total bandwidth. In addition,
Samsung has proposed HBM-PIM products [33], designed to
efficiently process memory-bound basic linear algebra subpro-
grams (BLAS) that do not benefit from on-chip cache, such as
scalar-vector, vector-vector, and matrix-vector operations. SK-
Hynix has also developed their PIM product named AiM [34]
based on GDDR6 memory, exhibiting significant potential in
accelerating LSTM models.

PIM-friendly skiplist: The emergence of processing-in-
memory technologies provide an opportunity to accelerate index
operations in memory systems and databases. In general, prior
works can be divided into two categories based on the methods
for partitioning the key space and constructing ordered indexes:
range partition designs [6], [7], [15] and node distribution de-
signs [4], [5].

Range partition designs statically partition the entire key
space into multiple coarse-grained key ranges with the same
length. Each PIM module maintains a key range and constructs
an individual skiplist. Liu et al. [15] propose a PIM-based
concurrent skiplist supported both point index operations and
range index operations. For processing an index operation for a
key on the skiplist, the CPU on the host side first compares
the key with the start key of each key range, to determine
which PIM module the key belongs to. Then the index operation
request is sent to that PIM module. After the PIM module
retrieving the request, it executes the operation in the local
vault and sends the result back to the host side. The process
requires one communication round between the host side and
the PIM side, without communication between PIM modules.
The authors do not evaluate their proposed index on a real PIM
hardware or a simulated PIM system. Choe et al. [6] implement
Liu’s [15] design using a full-system architecture simulator.
They use benchmarks requesting for uniformly random keys to
evaluate the PIM-based concurrent skiplist. The experimental
results confirm that the range partition design achieves higher
parallelism than traditional skiplist under uniformly random
workloads. Based on Liu’s [15] design, HybriDS [7] splits the
skiplist into a host-managed portion consisting of upper-layer
nodes and an PIM-managed portion consisting of the remaining
lower-layer nodes. Since index operations access upper-layer
nodes more frequently than lower-layer nodes, HybriDS better
exploits cache locality on the host side. Although these range
partition designs exhibit high parallelism under uniformly ran-
dom workloads, they suffer from load imbalance under skewed
workloads.

Node distribution designs randomly distribute skiplist nodes
to PIM modules, preventing the execution of pointer chasing
from top to bottom within only a subset of PIM modules under
skewed workloads. Jump-push [4] is designed based on a key
observation: once the search paths of keys l and r share a lower
part node v, searching any key u ∈ [l, r] will also reach node v.
Thus, the search for u can directly start from the lowest common
ancestor of these two paths. Jump-push adopts a multi-round
sample search to record search paths. In each round, it doubles
the sample size and uses the search paths recorded in previous
rounds to decide start nodes of sample queries in this round.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:46:13 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: RADAR: A SKEW-RESISTANT AND HOTNESS-AWARE ORDERED INDEX DESIGN FOR PROCESSING-IN-MEMORY SYSTEMS 1613

However, the sampling incurs a significant number of inter-PIM-
module pointer chasing operations to search for the lower part.
Moreover, Jump-push requires recording entire search paths,
burdening CPUs on the host side. PIM-tree [5] is designed
based on Jump-push. For better load balance, upper-level nodes
are replicated in multiple PIM modules. The data replication
consumes more memory in PIM modules and brings synchro-
nization overhead among PIM modules. A portion of nodes are
chunked to enhance node locality. Frequently-requested skiplist
nodes are pulled to the host side for better cache locality exploita-
tion. Pulling these nodes requires additional communication
overhead between the host side and the PIM side.

VIII. CONCLUSION

This paper presents RADAR, an ordered index that employs a
novel hash-based subrange distributed structure in PIM systems
to benefit from both load balance and enhanced node locality.
The subrange granularity is dynamically adjustable to adapt to
varying skewness during runtime. An offline machine learning
model is applied to adjust the heights of skiplist nodes with
hotness changes. In our evaluation, RADAR achieves up to
198.2x performance improvement and consumes 47.4% less
memory than state-of-the-art designs in multiple datasets.

ACKNOWLEDGMENT

The authors would like to thank the anonymous editor and
reviewers for their valuable feedback and insightful suggestions.

REFERENCES

[1] T. Brown, “Techniques for constructing efficient lock-free data structures,”
2017, arXiv:1712.05406.

[2] A. Fatima, S. Liu, K. Seemakhupt, R. Ausavarungnirun, and S. Khan,
“vPIM: Efficient virtual address translation for scalable processing-in-
memory architectures,” in Proc. IEEE 60th ACM Des. Autom. Conf., 2023,
pp. 1–6.

[3] B. F. Cooper et al., “Benchmarking cloud serving systems with YCSB,”
in Proc. 1st ACM Symp. Cloud Comput., 2010, pp. 143–154.

[4] H. Kang et al., “The processing-in-memory model,” in Proc. 33rd ACM
Symp. Parallelism Algorithms Architectures, 2021, pp. 295–306.

[5] H. Kang et al., “PIM-tree: A skew-resistant index for processing-in-
memory,” in Proc. VLDB Endowment, vol. 16, no. 4, pp. 946–958, 2022.

[6] J. Choe et al., “Concurrent data structures with near-data-processing: An
architecture-aware implementation,” in Proc. 31st ACM Symp. Parallelism
Algorithms Architectures, 2019, pp. 297–308.

[7] J. Choe et al., “HybriDS: Cache-conscious concurrent data structures
for near-memory processing architectures,” in Proc. 34th ACM Symp.
Parallelism Algorithms Architectures, 2022, pp. 321–332.

[8] J. Park, S. Lee, and J. Lee, “NTT-PIM: Row-centric architecture and
mapping for efficient number-theoretic transform on PIM,” in Proc. 60th
ACM/IEEE Des. Automat. Conf., 2023, pp. 1–6.

[9] J. Zhang et al., “S3: A scalable in-memory skip-list index for key-value
store,” in Proc. VLDB Endowment, vol. 12, no. 12, pp. 2183–2194, 2019.

[10] K. Platz, N. Mittal, and S. Venkatesan, “Concurrent unrolled skiplist,” in
Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst., 2019, pp. 1579–1589.

[11] K. Yang et al., “Random walks on huge graphs at cache efficiency,” in Proc.
ACM SIGOPS 28th Symp. Operating Syst. Princ., 2021, pp. 311–326.

[12] N. G. Bronson et al., “A practical concurrent binary search tree,” ACM
SIGPLAN Notices, vol. 45, no. 5, pp. 257–268, 2010.

[13] O. Mutlu et al., “A modern primer on processing in memory,” in Emerging
Computing: From Devices to Systems: Looking Beyond Moore and Von
Neumann, Singapore: Springer Nature, 2022, pp. 171–243.

[14] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications
of the obvious,” ACM SIGARCH Comput. Archit. News, vol. 23, no. 1,
pp. 20–24, 1995.

[15] Z. Liu et al., “Concurrent data structures for near-memory computing,”
in Proc. 29th ACM Symp. Parallelism Algorithms Architectures, 2017,
pp. 235–245.

[16] Wikimedia Foundation, “Wikepedia: Database download,” 2016. Ac-
cessed: Feb. 15, 2024. [Online]. Available: https://en.wikipedia.org/wiki/
Wikipedia:Database_download

[17] Redis, “Redis,” 2009. Accessed: Feb. 18, 2024. [Online]. Available: https:
//redis.io

[18] UPMEM, “UPMEM technology,” 2023. Accessed Feb. 21, 2024. [Online].
Available: https://www.upmem.com/technology

[19] M. N. Vora, “Hadoop-HBase for large-scale data,” in Proc. Int. Conf.
Comput. Sci. Netw. Technol., 2011, pp. 601–605.

[20] A. Wahid and K. Kashyap, “Cassandra–A distributed database system:
An overview,” in Proc. Emerg. Technol. Data Mining Inf. Secur., 2019,
pp. 519–526.

[21] G. K. Zipf, Human Behavior and the Principle of Least Effort: An Intro-
duction to Human Ecology. Dublin, Ireland: Ravenio Books, 2016.

[22] M. Vilim, A. Rucker, and K. Olukotun, “Aurochs: An architecture for
dataflow threads,” in Proc. ACM/IEEE 48th Annu. Int. Symp. Comput.
Archit., 2021, pp. 402–415.

[23] J. Hu, Z. Wei, J. Chen, and D. Feng, “RWORT: A read and write optimized
radix tree for persistent memory,” in Proc. IEEE 41st Int. Conf. Comput.
Des., 2023, pp. 194–197.

[24] G. W. Snedecor, “Curvilinear regression,” in Statistical Methods: Applied
to Experiments in Agriculture and Biology. Ames, IA, USA: Iowa State
College Press, 1938, pp. 308–335.

[25] M. Ezekiel and K. A. Fox, “Methods of correlation and regression analysis:
Linear and curvilinear,” J. of the Amer. Statal Assoc., vol. 123, no. 3,
pp. 307–308, 1959.

[26] R. Dey and F. M. Salem, “Gate-variants of gated recurrent unit (GRU)
neural networks,” in Proc. IEEE 60th Int. Midwest Symp. Circuits Syst.,
2017, pp. 1597–1600.

[27] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Proc. 42nd Annu.
Int. Symp. Comput. Archit., 2015, pp. 105–117.

[28] B. Asgari, R. Hadidi, J. Cao, D. E. Shim, S.-K. Lim, and H. Kim, “FAFNIR:
Accelerating sparse gathering by using efficient near-memory intelligent
reduction,” in Proc. IEEE Int. Symp. High-Perform. Comput. Architecture,
2021, pp. 908–920.

[29] H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim, “Chameleon:
Versatile and practical near-dram acceleration architecture for large mem-
ory systems,” in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture,
2016, pp. 1–13.

[30] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “NDA:
Near-DRAM acceleration architecture leveraging commodity DRAM de-
vices and standard memory modules,” in Proc. IEEE 21st Int. Symp. High
Perform. Comput. Archit., 2015, pp. 283–295.

[31] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing for
in-memory analytics frameworks,” in Proc. Int. Conf. Parallel Archit.
Compilation, 2015, pp. 113–124.

[32] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS:
Scalable and efficient neural network acceleration with 3D memory,” in
Proc. 22nd Int. Conf. Architectural Support Program. Lang. Operating
Syst., 2017, pp. 751–764.

[33] Y.-C. Kwon et al., “25.4 A 20 nm 6Gb function-in-memory DRAM,
based on HBM2 with a 1.2T flops programmable computing unit us-
ing bank-level parallelism, for machine learning applications,” in Proc.
IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2021,
pp. 350–352.

[34] Y. Kwon et al., “System architecture and software stack for GDDR6-AiM,”
in Proc. IEEE Hot Chips 34 Symp., 2022, pp. 1–25.

[35] J. Chen et al., “The MemSQL query optimizer: A modern optimizer for
real-time analytics in a distributed database,” in Proc. VLDB Endowment,
vol. 9, no. 13, pp. 1401–1412, 2016.

[36] C. Huang et al., “RS-store: A skiplist-based key-value store with remote
direct memory access,” in Proc. Int. Conf. Database Syst. Adv. Appl.,
Cham: Springer International Publishing, 2020, pp. 314–323.

[37] S. Dong et al., “RocksDB: Evolution of development priorities in a key-
value store serving large-scale applications,” ACM Trans. Storage, vol. 17,
no. 4, pp. 1–32, 2021.

[38] J. Yeon et al., “JellyFish: A fast skip list with MVCC,” in Proc. 21st Int.
Middleware Conf., 2020, pp. 134–148.

[39] W. Kim et al., “ListDB: Union of Write-Ahead logs and persistent
SkipLists for incremental checkpointing on persistent memory,” in
Proc. 16th USENIX Symp. Operating Syst. Des. Implementation, 2022,
pp. 161–177.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:46:13 UTC from IEEE Xplore. Restrictions apply.

https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://redis.io
https://redis.io
https://www.upmem.com/technology

1614 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

[40] O. Balmau et al., “Unlocking memory in persistent key-value stores,” in
Proc. 12th Eur. Conf. Comput. Syst., 2017, pp. 80–94.

[41] I. Dick, A. Fekete, and V. Gramoli, “A skip list for multicore,” Concurrency
Comput. Pract. Exp., vol. 29, no. 4, 2017, Art. no. e3876.

[42] S. A. McKee, “Reflections on the memory wall,” in Proc. 1st Conf. Comput.
Front., 2004, Art. no. 162.

[43] G. Weisz et al., “A study of pointer-chasing performance on shared-
memory processor-FPGA systems,” in Proc. ACM/SIGDA Int. Symp.
Field- Program. Gate Arrays, 2016, pp. 264–273.

[44] Z. Zhang and M. Sabuncu, “Generalized cross entropy loss for training
deep neural networks with noisy labels,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 8792–8802.

[45] S. Assadi, G. Kol, R. R. Saxena, and H. Yu, “Multi-pass graph stream-
ing lower bounds for cycle counting, max-cut, matching size, and other
problems,” in Proc. IEEE 61st Annu. Symp. Found. Comput. Sci., 2020,
pp. 354–364.

[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[47] H. Kang et al., “PIM-trie: A Skew-resistant Trie for Processing-in-
Memory,” in Proc. 35th ACM Symp. Parallelism Algorithms Architectures,
2023, pp. 1–14.

[48] X. Q. Li, G. M. Tan, and N. H. Sun, “PIM-Align: A processing-in-memory
architecture for FM-Index search algorithm,” J. Comput. Sci. Technol.,
vol. 36, pp. 56–70, 2021.

[49] S. Hosseinzadeh, A. Parvaresh, and D. Fey, “Optimization of OLAP
in-memory database management systems with processing-in-memory
architecture,” in Proc. Int. Conf. Archit. Comput. Syst., Cham, Switzerland:
Springer Nature, 2023, pp. 264–278.

[50] M. Snir and J. Yu, “On the theory of spatial and temporal locality,” Comput.
Sci. Dept., Univ. of Illinois at Urbana-Champaign, Tec. Rep. DCS-R-2005-
2564, 2005.

[51] J. B. Camiña, R. Monroy, L. A. Trejo, and M. A. Medina-Pérez, “Temporal
and spatial locality: An abstraction for masquerade detection,” IEEE Trans.
Inf. Forensics Secur., vol. 11, no. 9, pp. 2036–2051, Sep. 2016.

[52] Y. Sui, G. Wang, L. Zhang, and M.-H. Yang, “Exploiting spatial-temporal
locality of tracking via structured dictionary learning,” IEEE Trans. Image
Process., vol. 27, no. 3, pp. 1282–1296, Mar. 2018.

[53] Y. Hua, S. Zheng, J. Yin, W. Chen, and L. Huang, “Bumblebee: A
MemCache design for die-stacked and off-chip heterogeneous memory
systems,” in Proc. 60th ACM/IEEE Des. Autom. Conf., 2023, pp. 1–6.

[54] F. Montesano, R. Marotta, and F. Quaglia, “Spatial/temporal locality-based
load-sharing in speculative discrete event simulation on multi-core ma-
chines,” in Proc. ACM SIGSIM Conf. Princ. Adv. Discrete Simul., 2022,
pp. 81–92.

[55] B. S. Gill and D. S. Modha, “WOW: Wise ordering for writes-combining
spatial and temporal locality in non-volatile caches,” in Proc. Proc. 4th
Conf. USENIX Conf. File Storage Technol., 2005, Art. no. 10.

[56] A. A. Prihozhy and O. N. Karasik, “Inference of shortest path algorithms
with spatial and temporal locality for Big Data processing,” in Proc. Big
Data and Adv. Analytics: Proc. of VIII Int. Conf., 2022, pp. 56–66.

Yifan Hua (Student Member, IEEE) is currently
working toward the PhD degree with Shanghai Jiao
Tong University, China. His research interests in-
clude non-volatile memory systems, processing-in-
memory systems, and hybrid memory management.

Shengan Zheng received the BS and PhD degrees
from Shanghai Jiao Tong University, in 2014 and
2019, respectively. He is currently an assistant profes-
sor with Shanghai Jiao Tong University. His research
interests include memory systems, storage systems,
and distributed systems.

Weihan Kong is currently working toward the PhD
degree with Shanghai Jiao Tong University. His re-
search interests include hybrid memory systems and
processing-in-memory systems.

Cong Zhou is currently working toward the PhD
degree with Shanghai Jiao Tong University, China.
His research interests include in-memory computing
and distributed memory systems.

Kaixin Huang received the PhD degree from Shang-
hai Jiao Tong University, in 2021. His research inter-
ests include non-volatile memory management and
distributed systems.

Ruoyan Ma is currently working toward the mas-
ter’s degree with Shanghai Jiao Tong University. His
research interests include machine learning system
and near data processing.

Linpeng Huang (Senior Member, IEEE) received
the MS and PhD degrees in computer science from
Shanghai Jiao Tong University, in 1989 and 1992,
respectively. He is a professor in computer science
with the Department of Computer Science and Engi-
neering, Shanghai Jiao Tong University. His research
interests include distributed systems and service ori-
ented computing.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:46:13 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

