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Abstract. The recent advent of persistent memory has revolutionized
file system design by enabling efficient, fast, and durable data updates.
However, to cope with mismatched access granularities and volatile CPU
caches, existing file systems resort to costly data and metadata update
approaches, leading to high write-back latency and excessive PM band-
width consumption. Recent cache persistence techniques, such as Intel’s
eADR, address this issue by automatically flushing data from CPU
caches to PM during power failures, making CPU caches effectively per-
sistent. Persistent CPU caches provide both cacheline access granularity
and data durability, acting as a new storage medium that can greatly
reduce the latency and throughput overhead of data persistence. We
present FusionFS, a file system that leverages persistent CPU caches to
redesign data and metadata update approaches. FusionFS employs an
adaptive data update approach that chooses the most effective mecha-
nism based on file access patterns, minimizing PM bandwidth consump-
tion and update latency. FusionFS also adopts an aggregated metadata
update approach that consolidates small entries in persistent log buffers
before appending them to PM logs, minimizing small random writes to
PM. Experimental results show that FusionFS outperforms existing PM
file systems in terms of latency and throughput in various scenarios.
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1 Introduction

Emerging byte-addressable persistent memory (PM) offers DRAM-like perfor-
mance and disk-like durability, enabling in-memory system designs with high
throughput and low persistence overhead. However, commercially available PM
products, such as Intel Optane DC Persistent Memory, do not meet the expec-
tations of system designers in terms of data flushing and access granularity
[7,19,28]. Applications must issue flush instructions and memory barriers on
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platforms with volatile CPU caches (e.g., ADR-based platforms) to guaran-
tee data persistence. This results in prolonged critical path latency and high
consumption of PM write bandwidth. Moreover, PM’s internal XPLine access
granularity (256B) mismatches with CPU caches’ cacheline access granularity
(64B), causing small random PM writes to trigger additional read-modify-write
traffic. Therefore, accessing PM with blocks aligned to 256B can maximize the
utilization of PM bandwidth.

These challenges force existing systems to adopt expensive data and meta-
data update approaches. Existing data update approaches are mainly based on
three types of mechanisms: i) active-flush update eagerly persists data syn-
chronously with flush instructions and memory barriers [10,20,26], ii) non-
temporal update directly writes data to PM bypassing CPU caches [8,18,27], iii)
asynchronous update buffers data in DRAM and persists updates asynchronously
[9,14,20,25,30]. The first two lead to high synchronous data persistence over-
head and write amplification, while the third cannot guarantee immediate data
consistency. Performance degradation occurs in access modes less conducive to
these approaches. Similarly, metadata update approaches fall into two main cat-
egories: i) in-place approach involves direct modifications to persistent indexes,
making it susceptible to write amplification [9,10,16,22,25,29], ii) log-structured
approach places append-only logs in PM and maintains volatile indexes in
DRAM. However, the small update granularity in both methods introduces write
amplification.

Fortunately, recent cache persistence techniques (e.g., Intel’s eADR [17],
battery-backed cache [1], CXL’s Global Persistent Flush [6]) enable auto-
matic data flushing from CPU caches to PM during power failures. This feature
provides persistence to byte-addressable CPU caches, enabling them to oper-
ate as a novel storage medium that can absorb writes to the hot PM region.
By leveraging persistent CPU caches, data update mechanisms that are usu-
ally meant for volatile data structures can be applied to update persistent data.
These mechanisms include: i) pinned-cache update pins data to a designated
cache space within persistent CPU caches [31] using cache allocation technolo-
gies [2,15], ii) in-place update does not explicitly issue flush instructions after
writes [21,29]. In addition, hardware transactional memory (HTM) can now be
used to transactionally update multiple cachelines in PM. Previously, the use
of HTM was limited by the need to flush data from volatile CPU caches for
persistence, causing HTM transactions to abort.

However, existing PM systems, including those based on eADR, fail to fully
harness the potential of persistent CPU caches. For data updates, ADR-based
systems use active-flush/non-temporal update to ensure consistency. On eADR-
enabled platforms, they completely switch to in-place update to avoid persistence
overhead [21,29]. However, such a fixed approach can lead to write amplifica-
tion as writes larger than a cacheline may be split into multiple cacheline-sized
random writes due to the cacheline eviction policy (e.g., LRU algorithm) [13].
For metadata updates, in-place approach often writes with atomic instructions,
whose granularity mismatches with PM’s internal access granularity, resulting
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in write amplification. Even when using log-structured approach to write sequen-
tially and taking advantage of PM’s internal buffer [3,27], massive metadata
(e.g., NOVA’s per-inode logs, KucoFS’s per-partition-tree logs) can overwhelm
the small buffers (about 16KB per Optane DIMM) [28].

In this paper, we present FusionFS, a file system that harnesses persistent
CPU caches to optimize data and metadata operations. FusionFS uses an adap-
tive data update approach to select the most suitable data update mechanism
based on file access patterns (e.g., data hotness, update size, and consistency
requirements). FusionFS also includes a hotspot detector that considers access
counts and last access timestamps, supporting both system calls and memory
mapping accesses. Moreover, FusionFS proposes an aggregated metadata update
approach to consolidate small metadata log entries within log buffers located in
persistent CPU caches. In summary, the contributions of this paper include:

– We perform an in-depth analysis of the impact of persistent CPU caches on
PM, highlighting their potential in optimizing the data and metadata update
approaches of existing PM systems.

– We propose FusionFS, a PM file system that integrates both adaptive data
update and aggregated metadata update to leverage the capabilities of persis-
tent CPU caches, thereby reducing latency and minimizing PM bandwidth
consumption.

– We implement FusionFS as a POSIX-compliant file system for Linux. Per-
formance results show that FusionFS achieves significantly lower latency and
higher throughput than state-of-the-art PM file systems.

2 Design and Implementation

In this section, we introduce FusionFS, a novel PM file system that exploits
persistent CPU caches to redesign data and metadata update approaches. We
first propose an adaptive data update approach to select the optimal data update
mechanism from the five update mechanisms based on access patterns (Sect. 2.1).
We then design an aggregated metadata update approach to minimize small meta-
data writes to PM (Sect. 2.2).

2.1 Adaptive Data Update

Update Policy. FusionFS employs an adaptive approach that dynamically
selects the most suitable data update mechanism during system calls and mem-
ory mapping accesses, as shown in Fig. 1. FusionFS uses radix trees as file indexes
for efficient file management. In addition, FusionFS uses HTM transactions to
replace inode locks, ensuring consistency of in-place writes and allowing simul-
taneous writes to different sections of the same file.

For large (≥ 256B) hot data, FusionFS employs in-place update to buffer
writes in persistent CPU caches. This is especially effective for hot data that
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Fig. 1. Adaptive Data Update

is likely to be accessed again before eviction, reducing writes to PM and lever-
aging the benefits of cache hits. For hot data that is frequently updated in
small granularity (< 256B), FusionFS uses pinned-cache update. It protects these
small data segments from cacheline eviction, ensuring their persistence in CPU
caches while minimizing CPU cache usage. For hot data with relaxed consistency,
including recoverable data and data flagged as relaxed consistent by the user,
FusionFS chooses asynchronous update to buffer writes in DRAM and persist
them asynchronously. This is because it is free of write amplification on cacheline
eviction and allows the high performance of DRAM to be exploited.

For small (≤ 64B) cold data, FusionFS uses in-place update to minimize
the cost of explicit flush instructions, since actively flushing a single cacheline
will not mitigate write amplification caused by cacheline eviction. Conversely,
for large (≥ 32KB) cold data, FusionFS employs non-temporal update due to its
lower latency and higher bandwidth. FusionFS ensures compatibility by writ-
ing shadow pages outside of HTM transactions and achieves consistency by
modifying indexes within HTM transactions. Recognizing that the overhead of
index modification and copying unaligned parts is non-trivial for smaller updates,
FusionFS switches to active-flush update for medium-sized cold data. FusionFS
ensures compatibility by delaying flushes until HTM transactions are complete
and achieves consistency by performing in-place writes to data pages within
HTM transactions.

FusionFS extends support for the adaptive data update approach to memory-
mapped files. For hot data, FusionFS uses in-place update by omitting flush
instructions in synchronization calls (e.g., fsync, fdatasync, and msync) to
reduce writes to PM. For cold data, FusionFS uses active-flush update to aggre-
gate the sequential writes in XPBuffer. For hot data with relaxed consistency,
FusionFS uses asynchronous update by buffering data pages in DRAM and per-
sisting them to PM during synchronization calls to take advantage of the high
performance of DRAM.

By dynamically selecting the most effective mechanism based on access pat-
terns, FusionFS optimizes data updates during system calls and memory map-
ping accesses. The adaptive approach of FusionFS ensures better PM bandwidth
utilization and lower latency across various scenarios, addressing the limitations
observed in conventional approaches.
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Hotspot Detector. We design a lightweight yet effective hotspot detector to
measure the hotness of data pages during system calls and memory mapping
accesses. For system call accesses, the detector relies on the number of accesses
to each data page within a designated period. After profiling the access counts
for all data pages during this period, FusionFS classifies pages that exceed a
certain threshold as hot data. The size of the identified hot data set matches the
specified CPU cache size.

For memory mapping accesses, obtaining access count information directly is
challenging. To address this, FusionFS proposes an approach inspired by the ker-
nel’s automatic NUMA balancing. FusionFS periodically adjusts the permissions
of data pages in the background. This allows the next access to be captured and
recorded by the page fault handler function. By recording the first access time
of all pages during a scan period, FusionFS categorizes pages whose difference
between access time and scan time is less than a certain threshold as hot data.

By analyzing both the number of accesses to data pages and the timestamp
of the last access, FusionFS effectively identifies hot data in both system call
and memory mapping scenarios. The lightweight design of this detector avoids
the use of locks, minimizing update overhead.

2.2 Aggregated Metadata Update

Fig. 2. Aggregated Metadata Update

FusionFS introduces the aggregated metadata update approach to increase the
size of metadata writes to PM, as shown in Fig. 2. FusionFS maintains individ-
ual logs for each directory. During directory system calls (e.g., create, mkdir,
unlink, and rmdir) that modify directory hash tables, FusionFS inserts corre-
sponding log entries into the directory inode’s log. In contrast to log-structured
approach, FusionFS caches small metadata log entries (< 256B) in buffers pinned
to persistent CPU caches (Step 1©). FusionFS also maintains metadata indexes in
DRAM to speed up lookup operations (Step 2©). These entries are batched and
copied to PM logs with active-flush update when the accumulated size exceeds
256B (Step 3©). While FusionFS writes to CPU caches, DRAM, and PM during
metadata updates, the benefit of writing in XPLine granularity to PM outweighs
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the small latency caused by redundant writes to the high-speed CPU cache and
DRAM. PM logs in FusionFS are designed to be extendable and organized as
linked lists of 4KB pages. To ensure crash consistency, FusionFS records the used
space of each buffer and log page, and the pointer to the next log page. In the
event of system failures, these indexes can be reconstructed by replaying log
entries from both PM logs and buffers. This aggregated approach significantly
reduces the frequency of small random writes to PM during metadata updates,
while ensuring immediate consistency of log entries.

3 Evaluation

In this section, we evaluate the performance of FusionFS and answer the follow-
ing questions:

– Can FusionFS leverage the adaptive data update approach to optimize file
updates?

– Can FusionFS utilize the aggregated metadata update approach to improve
metadata updates?

– Can FusionFS exhibit optimal performance in various application scenarios?

3.1 Experimental Platform

We evaluate FusionFS on a server equipped with two 28-core Intel Xeon Gold
6348 (42M cache), with four 128 GB Intel Optane and four 16 GB DDR4 DRAM
on each node. All experiments are performed on one NUMA node to avoid
NUMA effects. To evaluate the performance of FusionFS, we compare it to
PMFS, NOVA, SoupFS, and EXT4-DAX. For micro-benchmarks, we use Fio
[11] to generate various access patterns to test the effectiveness of FusionFS’s
design. For macro-benchmarks, we use several workloads of Filebench [24]. For
application benchmarks, we use YCSB [4] on LevelDB [12] and TPC-C [5] on
SQLite [23] to evaluate the performance of FusionFS.

3.2 Micro-benchmarks

We use Fio to demonstrate how FusionFS benefits from the adaptive data update
approach in file writes. We vary the Zipf parameter θ to issue uniform or skewed
(θ = 0.99) random write requests. We use 20 threads for the experiments to
saturate the PM bandwidth, each thread performs 4KB I/Os to a private file of
64MB, and all writes are synchronous.

Figure 3(a) shows that FusionFS achieves good performance in both scenarios
by using the optimal data update mechanism for the access pattern during sys-
tem calls. Figure 3(b) shows similar results using memory mapping. PMFS and
NOVA exhibit near-zero throughput due to their suboptimal synchronization
performance. In contrast, FusionFS maintains high performance by selectively
excluding hot data flushes from fdatasync() calls to minimize PM writes, while
retaining them for cold data to prevent write amplification caused by random
cacheline evictions.
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Fig. 3. Results of Fio

3.3 Macro-benchmarks

We evaluate the performance of FusionFS through Filebench, using three work-
loads to evaluate the performance of data and metadata updates. The results
are shown in Fig. 4.

Fig. 4. Results of Filebench Workloads

OLTP1 emulates database transactions at the file system level by issuing
2 KB asynchronous writes to a small data file and periodic 256 KB synchronous
writes to a small log file. Given the high hotness of the files, FusionFS uses
in-place update, allowing writes to hit CPU caches with high probability and
outperforming other file systems by up to 8.9×.

Varmail emphasizes metadata updates by creating and deleting many small
files in a single directory. In this workload, SoupFS, which is optimized for meta-
data updates, outperforms EXT4-DAX, PMFS, and NOVA. However, SoupFS
executes data persistence in background threads, while Varmail frequently calls
fsync(), incurring synchronized metadata persistence overhead that affects its
throughput. FusionFS, in contrast, employs the aggregated metadata update app-
roach, guaranteeing immediate consistency of metadata updates. This approach
1 We increase the frequency of OLTP-initiated transactions to better match the high

performance of PM.
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leads to superior performance, outperforming SoupFS by up to 1.5× and other
PM file systems by up to 7.5×.

Fileserver focuses on both file and metadata updates by keeping the number
of files in each directory small and setting small file sizes. FusionFS and SoupFS
show slightly better performance in this workload because they do not have
to persist small writes immediately. While ADR-based SoupFS does not provide
immediate consistency after writes, FusionFS outperforms other PM file systems
by up to 1.2× and offers protection against data loss during power failures thanks
to persistent CPU caches enabled by eADR.

3.4 Application Benchmarks

Fig. 5. Results of Application Benchmarks

Figure 5 summarizes real-world application performance across different file sys-
tems. We run YCSB workloads on LevelDB by issuing five million requests
with a single thread, where each request contains a 16B key and a 64B value.
We then measure the performance of TPC-C on SQLite in the Write-Ahead-
Logging (WAL) mode. Overall, FusionFS achieves up to 2.5× the performance
of other PM file systems in write-intensive workloads, including LoadA, LoadE,
and TPC-C, while consistently maintaining optimal performance across all sce-
narios. This is realized by adaptively choosing the most appropriate data update
mechanism for the access pattern.

4 Conclusions

Recent cache persistence techniques allow CPU caches to be considered persis-
tent. In this paper, we propose FusionFS, a PM file system that leverages persis-
tent CPU caches to redesign data and metadata update approaches. FusionFS
employs an adaptive data update approach that chooses the most effective mech-
anism based on file access patterns. FusionFS also adopts an aggregated metadata
update approach that consolidates small entries in persistent log buffers before
appending them to PM logs. These novel approaches help reduce PM bandwidth
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consumption and update latency. Performance results show that FusionFS out-
performs existing PM file systems in terms of latency and throughput in various
scenarios.
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