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ABSTRACT
Regular path queries (RPQs) in graph databases are bottlenecked
by the memory wall. Emerging processing-in-memory (PIM) tech-
nologies offer a promising solution to dispatch and execute path
matching tasks in parallel within PIM modules. We present Mocto-
pus, a PIM-based data management system for graph databases that
supports efficient batch RPQs and graph updates. Moctopus em-
ploys a PIM-friendly dynamic graph partitioning algorithm, which
tackles graph skewness and preserves graph locality with low over-
head for RPQ processing. Moctopus enables efficient graph update
by amortizing the host CPU’s update overhead to PIM modules.
Evaluation of Moctopus demonstrates superiority over the state-of-
the-art traditional graph database.
KEYWORDS
Regular Path Query, Processing-in-Memory, path matching, graph
partition, load balance

1 INTRODUCTION
The rise of graph data in volume and complexity has spurred a
growing interest in graph databases from both academic[9, 10, 19]
and industries[18, 24]. Regular path queries (RPQs) are one of the
most essential classes of queries on graph databases. When evalu-
ating RPQ over a graph, graph databases return all endpoint pairs
of matched paths in the graph.

Unfortunately, RPQs on traditional graph databases face the
"memory wall" bottleneck. Processing RPQ involves a large amount
of pointer chasing, which triggers a considerable number of random
memory accesses for accessing the neighborhood nodes, forcing
most data accesses to use DRAM memory rather than cache. The
excessive data movement results in high access latency and high
bandwidth consumption that constrain the performance and incur
considerable energy costs, which is also known as the "memory
wall".

Processing-in-Memory (PIM) [6, 20] enables computations and
processing within the device’s memory, which offers a promising
solution to the "memory wall" challenge. PIM systems are typically
structured with a powerful host CPU and a set of PIM modules
with wimpy cores. The host CPU dispatches data-intensive com-
putational tasks to PIM modules, and gathers the results after the
PIM modules finish the computation. The PIM modules execute

these data-intensive computations within the memory modules
that integrate computational resources, reducing data movement to
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the host CPU for processing. This results in improved performance
for applications that deal with high data intensity or suffer from
low cache locality [12, 13]. PIM has been widely used in the field
of graphs and databases for graph analysis [7, 14, 26] and database
indexing[15, 16].

PIM systems face significant challenges for performing RPQs
over graph databases. The first challenge is the imbalanced load
distribution among PIM modules, especially with highly skewed
graphs. Many real-world graphs [11, 21, 22] exhibit varying degrees
of skewness, characterized by few high-degree (out-degree) nodes
and many low-degree nodes. High-degree nodes need more com-
puting and bandwidth resources given their large neighborhood.
Consequently, PIM systems often suffer from a load imbalance situ-
ation, where some PIM modules are overloaded with high-degree
nodes, while others are underutilized. The second challenge is
the high communication overhead of PIM-based graph databases,
which consists of CPU-PIM communication (CPC) and inter-PIM
communication (IPC). On the commodity UPMEM[6] platform, the
bandwidth of these two communication modes is less than 2% of
intra-PIM bandwidth[13]. To minimize IPC overhead, the graph
partitioning algorithm needs to preserve graph locality, as many
next-hops in different PIM modules would incur high IPC costs
otherwise. The third challenge is dynamic graph management with
constant insertion and deletion of nodes and edges, and the graph
storage engine needs to efficiently handle frequent updates.

We present Moctopus, a PIM-based data management system
for graph databases that leverages the unique features of PIM to
achieve high performance for RPQs and graph updates. By harness-
ing the parallel capabilities of PIM modules, Moctopus significantly
accelerates path matching and graph update operations. Moctopus
relies on a novel graph partitioning algorithm that exploits the PIM
features with locality-aware node distribution and greedy-adaptive
load balancing. To handle different types of workloads, Moctopus
adopts a labor-division approach that leverages the strengths of
both the host CPU and the PIM modules. Specifically, high-degree
nodes demonstrating a good locality access pattern are assigned to
the host CPU, whereas low-degree nodes are assigned to PIM mod-
ules. Thus, the PIM modules can overcome the load imbalance issue
that stems from graph skewness by avoiding the high-degree nodes.
Instead of randomly assigning graph nodes to PIM modules using a
hash function, we can record the partitioning state by keeping track
of previous partitioning decisions and achieve more precise graph
partitioning among PIMmodules. To preserve graph locality among
PIM modules with low overhead, we propose a greedy-adaptive
method that combines the greedymethod and adaptive method. The
two-stage load balancing method uses a radical greedy heuristic to
reduce partitioning overhead, then migrates incorrectly partitioned
nodes to enhance graph locality. Besides, it uses a dynamic capacity
constraint to enforce load balance across PIM modules. The graphDAC '24, June 23–27, 2024, San Francisco, CA, USA
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partitioning algorithm achieves PIM-friendliness by balancing the
workload and preserving the locality of the graph among PIM mod-
ules. For graph updates, high-degree nodes are more likely to be
updated frequently and consume more CPU resources. To address
this challenge, Moctopus employs heterogeneous graph storage for
high-degree nodes to ease the CPU’s load and delegate complex
update operations to PIM modules.

We implementMoctopus on the commodity PIM system, UPMEM[6].
We compare Moctopus with RedisGraph[4] and the scheme of the
widely-used hash using real-world graphs to demonstrate Moc-
topus’s superiority. RedisGraph is a state-of-the-art in-memory
graph database. The benchmark of processing a typical RPQ, k-
hop path query on 15 real-world graphs shows that Moctopus is
up to 10.67x faster than RedisGraph. Compared with the widely-
used hash scheme, Moctopus effectively reduces communication
overhead. Furthermore, fully exploiting high parallel intra-PIM
bandwidth, Moctopus is remarkably faster than RedisGraph regard-
ing graph update, with an average of 30.01x for insertion and 52.59x
for deletion.

In summary, this paper makes the following contributions:
(1) We present Moctopus, a PIM-based data management sys-

tem for graph databases that supports efficient batch RPQs and
graph updates. To the best of our knowledge, it’s the first design to
accelerate path matching queries over graph database with PIM.

(2) We propose a PIM-friendly dynamic graph partitioning al-
gorithm that tackles graph skewness and preserves graph locality
with low overhead. With PIM-friendly graph partitioning, Mocto-
pus successfully addresses the challenges of load imbalance and
communication bottleneck during performing RPQs.

(3) We achieve efficient graph update with heterogeneous graph
storage for high-degree nodes by amortizing the host side’s update
cost to the PIM side.

(4) We implement and evaluate the Moctopus on a commercial
PIM system, demonstrating the Moctopus’s superiority. Compared
with the state-of-the-art traditional graph database, our system
achieves up to 10.67x speedups for RPQ and 209.31x speedups for
graph update.

2 BACKGROUND
2.1 Graph Database and Graph Partition
As the volume of data continues to expand, traditional single-node
graph databases are no longer adequate to meet the growing de-
mands. More databases seek to partition graphs across multiple
computing nodes. The PIM architecture is similar to the distributed
graph database, for both involve multiple nodes participating in
computation.

Graph database. Graph databases utilize the property graph
model[8] to represent graph data. In a property graph, nodes repre-
sent distinct entities, and (directed) edges are employed to depict
the relationships between pairs of entities. Nodes and edges have
labels and property-value pairs to describe their attributes. For
processing RPQs, paths composed of entities and relationships are
considered first-class citizens. Focusing on path matching and for
simplicity, we use an adjacency matrix to present a simplified prop-
erty graph (directed graph), in which non-essential features (labels
and property-value records) are excluded.

Graph partition for distributed graph database. There are
two graph partition solutions for the existing distributed graph
database:

(1) Master-slave replication. Master-slave replication refers to
replicating data from a primary database (master) to one or more
secondary databases (slaves). The most popular graph database,
Neo4j[3], adopts this solution. For this approach, each computing
node stores the global graph. Nevertheless, the PIM module is con-
strained by limited local memory capacity (for UPMEM, 64MB),
which renders the storage of the complete global graph nearly
unfeasible.

(2) Hash partition. This widely-used method assigns graph nodes
to computing nodes according to a consistent hashing function.
The representative distributed graph databases are G-Tran [10]
and ByteGraph [18]. However, since graph nodes are randomly
assigned to PIM modules, this method overlooks the locality within
the graph, resulting in high IPC overhead. Besides, graph skewness
causes severe load imbalance among PIM modules.

Graph partition for preserving graph locality. There are
two graph partition solutions for preserving graph locality: the
greedy method and adaptive method. Linear Deterministic Greedy
(LDG) [23] is a good representative of the geedy method. LDG
uses a greedy heuristic that assigns a graph node to the partition
containing most of its neighbors, effectively preserving graph lo-
cality. However, the assignment could be more time-consuming
for traversing all computing nodes. Besides, LDG is unsuitable for
dynamic graphs within graph databases because it requires prior
knowledge of the graph structure, such as the number of nodes and
edges. For the adaptive method[25], new graph nodes are randomly
assigned to computing nodes according to a hash function, and
computing nodes iteratively migrate graph nodes to generate parti-
tions with good locality. This technique supports dynamic graphs
with nodes and edges constantly inserted and deleted but has a
huge communication overhead for migrating nodes.

The graph partitioning algorithm in Moctopus leverages the
strengths of both greedy method and adaptive method.

2.2 PIM architecture
With the UPMEM, Processing-in Memory DIMMs are already com-
mercially available. The PIM model comprises two main compo-
nents: a powerful host CPU with supreme controlling authority
(the host side) and a set of 𝑃 PIM modules (the PIM side). Each
PIM module consists of an on-bank processor (PIM processor) and
a local memory (for UPMEM, 64MB). Despite its simplicity, the
PIM processor remains general-purpose. It facilitates a range of
interactions between the host CPU and the PIM modules, allow-
ing the host CPU to transmit executable code to the PIM modules,
launch the code, and monitor its completion. IPC can be realized
by leveraging CPC through CPU forwarding data. The bandwidth
of CPC and IPC is expensive. Despite having 2048 PIM modules
and delivering 1.28TB/s of intra-PIM bandwidth[13], the system
can only offer roughly 25GB/s total CPC and IPC bandwidth.

2.3 Matrix-based graph operations
Graphs can be represented by matrices, and graph algorithms can
be implemented by matrix-based operations. In graph database sce-
narios, graph pattern matching can be translated into a set of matrix
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Figure 1: The architecture of the Moctopus with 𝑃 PIM mod-
ules.

multiplications. The GraphBLAS[17], an established mathematical
framework, defines a core set of matrix-based graph operations
that can be used to implement a wide class of graph algorithms.
Owing to the high serial and parallel processing performance of
matrix-based operations, RedisGraph employs GraphBLAS to sup-
port efficient graph queries[4].

Similar to RedisGraph, Moctopus’s execution plan is composed
of matrix-based graph operations, aiming to exploit the parallelism
of PIM modules by leveraging the natural parallelism of matrix
operations. For example, if we want to find two hops away nodes
from fixed source nodes (the batch 2-hop path query in Figure 2), the
matrix-based execution plan would be 𝑎𝑛𝑠 = 𝑄 ×𝐴𝑑 𝑗 ×𝐴𝑑 𝑗 , where
𝑄 is a matrix containing source nodes information, 𝐴𝑑 𝑗 stands for
the adjacent matrix, and 𝑎𝑛𝑠 is a matrix containing destination
nodes information. The rows of the 𝑄 identify a query in a batch
of queries, and the columns represent source nodes. The rows of
the 𝑎𝑛𝑠 identify a query in a batch of queries, and the columns
represent destination nodes.

3 DESIGN
In this section, we introduce the design of the Moctopus, support-
ing efficient batch RPQs and graph updates. The key design is a
PIM-friendly graph partitioning algorithm, aiming to reduce com-
munication costs and achieve load balance during path matching.

3.1 System architecture
Figure 1 shows the overall design of theMoctopus. Moctopus adopts
an adjacency matrix to represent a graph and uses matrix-based
operations to query the graph. The graph is partitioned across the
host side and PIM side. Leveraging both sets of resources, Moctopus
achieves efficient RPQs and graph updates. As depicted in Figure 1,
the main components of Moctopus include:

1) The Query Processor. When processing batch RPQs and graph
updates, the Query Processor generates execution plans composed
of matrix-based operators, and dispatches these operators to PIM
modules for processing. RPQ will be translated into a smxm operator
for path matching and a mwait operator for reducing the result.
Graph update is abstracted into add operator and sub operator.
Like the map-reduce model, inherently parallel tasks (matrix-based
operators) are mapped to 𝑃 PIM modules for execution, exploiting
the high parallel intra-PIM bandwidth.
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2) The Graph Partitioner and Node Migrator. To fully leverage
the potential of PIM and achieve efficient path matching, the graph
should be partitioned across computing nodes (the host CPU and 𝑃
PIM modules). Through the collaboration of the Graph Partitioner
and Node Migrator, Moctopus achieves dynamic graph partitioning.
The graph partitioning algorithm performs a disjoint partition-
ing by graph node among computing nodes. It is PIM-friendly,
achieving load balance among PIM modules and maintaining graph
locality with low overhead. The Graph Partitioner assigns new
graph nodes according to a radical greedy heuristic (described in
Section 3.2.2). As shown in Figure 1, when processing graph up-
dates, if an endpoint node appears for the first time in the inserting
edge stream, the Graph Partitioner will identify it as a new node
and assign it considering the history partitioning decisions stored
in node_partitioning_vector. The Node Migrator is responsible
for relocating new high-degree nodes to the host side and migrating
incorrectly partitioned nodes to appropriate partitions.

3) The Operator Processor. Each PIM module contains an Oper-
ator Processor. The Operator Processor is responsible for parsing
and processing operators received from the host CPU.

4) The Local Graph Storage and Heterogeneous Graph Storage.
Since Moctopus adopts a disjoint partitioning by graph node, as
shown in Figure 2, the adjacency matrix is partitioned across the 1+
𝑃 computing nodes by row, and every computing node maintains an
adjacency matrix segment. Given hash map’s excellent concurrency
and scalability, each PIM module stores corresponding adjacency
matrix segment in local graph storage using a hash map. The hash
map stores the mapping of row ID (NodeID) to row data (the next-
hop data, i.e., NodeIDs of next-hop). Nevertheless, simple local
graph storage cannot meet the demands of frequent updates on the
host side. By introducing heterogeneous graph storage, we make
optimizations for storing the adjacency matrix segment maintained
by the host CPU.

In the remainder of this section, we will describe in detail the
PIM-friendly dynamic graph partitioning algorithm (Section 3.2)
and optimizations for graph storage (Section 3.3).

3.2 Graph partition
Moctopus takes graph partition as the first-order design considera-
tion, aiming to achieve load balance among PIM modules and pre-
serve graph locality with low overhead. In this section, we describe
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the PIM-friendly graph partitioning algorithm composed of a labor-
division approach and a greedy-adaptive method. For the labor-
division approach, Moctopus treats high- and low-degree nodes
differently to tackle graph skewness and leverage the strengths of
both the host CPU and the PIM modules. For the greedy-adaptive
method, Moctopus tries to assign and migrate adjacent nodes to
the same PIM module under low overhead, aiming to reduce IPC
overhead during path matching.

3.2.1 locality-aware node distribution. To address load imbalance
caused by graph skewness and leverage the strengths of the host
side and the PIM side, we propose a labor-division approach that
the host side handles high-degree nodes and the PIM side deals
with low-degree nodes. As shown in Figure 2, the host CPU han-
dles nodes 1 and 2 (high-degree nodes), and the rest nodes are
partitioned into PIM 0 and PIM 1.

Migrate high-degree nodes to the host side. High-degree
nodes tend to be accessed more frequently and need more comput-
ing and bandwidth resources, causing serve load imbalance among
PIM modules. As the graph grows, a low-degree node may have
more connections and turn into a high-degree node. At this point,
the Node Migrator will migrate the node from the PIM side to the
host side. Since PIM modules no longer handle high-degree nodes,
the load imbalance caused by graph skewness naturally dissipates.

Leverage the strengths of the host side and the PIM side.
The labor-division approach also concurrently aligns with the PIM
architecture. The two components of the PIM architecture, the host
side and the PIM side, prefer different workloads. The distributed
PIM side prefers uniformly randommemory access workloads to ex-
ploit high parallel intra-PIM bandwidth, while the host side with a
powerful CPU prefers continuous and skewedmemory access work-
loads with good locality. Correspondingly, high-degree nodes tend
to be accessed more frequently, and fetching their large amounts
of next-hop’s NodeIDs exhibits continuous memory access, satis-
fying the host side’s preference. Low-degree nodes with few next
hops are likely to be accessed randomly, satisfying the PIM side’s
taste. Through dispatching path matching tasks associated with
high-degree nodes to the CPU side and low-degree nodes to the
PIM side, the Moctopus can leverage the advantages of both sets of
resources.

3.2.2 greedy-adaptive load balancing. To preserve graph locality
with low overhead and support dynamic graphs, we propose a
greedy-adaptive method to partition low-degree nodes among PIM
modules. The greedy-adaptive method combines the greedymethod
and adaptivemethod.When receiving a new graph node, themethod
uses a radical greedy heuristic that assigns it according to its first
neighbor. The radical greedy heuristic significantly reduces parti-
tioning overhead but might cause incorrectly partitioned nodes. As
performing path matching, PIM modules detect these incorrectly
partitioned nodes, then the host CPU migrates them to correct
partitions to enhance graph locality.

Balance locality and overhead. The key to preserving graph
locality is placing adjacent nodes on the same PIM module. The
radical greedy heuristic does not aim for optimal locality, but rather
a satisfactory trade-off between graph locality and partitioning
overhead. Instead of assigning a graph node to the partition con-
taining most of its neighbors, the radical greedy heuristic employs a

more assertive approach by assigning a graph node to the partition
housing its first neighbor. For PIM systems, the former method re-
quires traversing numerous PIM modules, potentially up to tens or
hundreds, in order to determine the appropriate partition, leading
to substantial partitioning overhead. The radical greedy heuris-
tic sacrifices some graph locality and tolerates a few incorrectly
partitioned, but it only requires minimal partitioning overhead.

Enhance locality by migration.When performing RPQs, Moc-
topus utilizes an adaptive method to recover the graph locality
sacrificed for low partitioning overhead. During path matching,
PIM modules simultaneously detect incorrectly partitioned nodes
that miss most of the next-hop nodes in the local PIM module, effec-
tively overlapping detection overhead with path matching query
processing. Then, the host CPU migrates them to the partitions
containing most of their neighbors. With more neighbors on the
same module, Moctopus enhances graph locality.

It is worth noting that the labor-division approach (Section 3.2.1)
makes a graph easier to partition on the PIM side, as high-degree
nodes have been migrated to the host side. Ideally, the graph with-
out high-degree nodes becomes multiple disconnected subgraphs.
In most cases, the radical greedy method has well maintained graph
locality among PIM modules, only leaving a few nodes to migrate.
Ultimately, the CPU only has to deal with a small amount of migra-
tion overhead.

Radical greedy heuristic and migration brings flexibility.
Besides its low partitioning overhead, a critical factor in our decision
to employ the radical greedy heuristic is its flexibility. Moctopus
makes graph node assignment decisions upon inserting the first
edge of a graph node rather than delaying until the whole graph is
established, accommodating the demands of partitioning dynamic
graphs in graph databases. Additionally, migration adapts to graph
changes. As the graph changes over time, the partitioning accuracy
may deteriorate, leaving some incorrectly partitioned nodes. Moc-
topus migrates these nodes at runtime to maintain graph locality
as the graph evolves.

Enforce load balance by a dynamic constraint. When as-
signing graph nodes, we use a dynamic assigned node’s capacity
constraint to enforce load balance across PIM modules. The dy-
namic capacity constraint is set to 1.05x the average number of
assigned nodes among PIM modules, increasing with graph scale.
When the number of assigned nodes in a PIM module exceeds the
capacity constraint, new graph nodes will be allocated into the PIM
modules below the capacity constraint using a hash algorithm to
avoid the load imbalance case where most graph nodes are assigned
to a few PIM modules. Decreasing the proportion of capacity con-
straint can facilitate load balance but at the expense of decreased
graph locality.

Eventually, the PIM-friendly graph partitioning algorithm achieves
load balance among PIMmodules and maintains graph locality with
low overhead. Additionally, it is flexible enough to support dynamic
graphs in graph databases.

3.3 Optimizations for graph storage
In Moctopus, every computing node needs to manage graph nodes
assigned to it and maintains an adjacent matrix segment to store
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Figure 3:Heterogeneous graph storage for high-degree nodes.

these graph data. PIM modules can leverage high parallel intra-
PIM bandwidth to provide high performance for querying and
updating low-degree nodes. Nevertheless, high-degree nodes on
the host side tend to be accessed and updated more frequently,
placing substantial pressure on the host CPU. To alleviate the host
CPU’s load, Moctopus uses heterogeneous graph storage for high-
degree nodes, achieving efficient query and update simultaneously
by amortizing the host side’s update cost to the PIM side.

Efficient graph query. On the host side, the most efficient
approach for graph querying is to store the next-hop data (NodeIDs
of next-hop) of high-degree nodes in a contiguous memory array
(cols_vector in Figure 3). Consequently, when accessing a graph
node, Moctopus requires only one memory fetch to acquire its next-
hop data, further improving memory accessing locality on the host
side.

Efficient graph update. When inserting or deleting an edge,
Moctopus has to traverse the cols_vector to determine if the edge
already exists. To avoid the time-consuming traversal, Moctopus
maintains two supplementary hashmaps (elem_position_map and
free_list_map in Figure 3) for storing high-degree nodes on the
PIM side. The elem_position_map stores the mapping of edge to
the edge’s position in cols_vector, and the free_list_map stores
the free positions in col_vector. For graph update, the host CPU
only assumes simple tasks of writing data to a certain position
within the cols_vector, while the PIM side undertakes complex
operations of edge retrieval and space management. For example,
Moctopus follows this process to insert an edge <1, 2> in Figure 3.
Firstly, the elem_position_map confirms that the edge does not
exist. Then, the free_list_map allocates a free space for the edge
and the position is 1. Next, update the elem_position_map by
inserting (edge = <1, 2>, pos = 1). Finally, the host CPU writes 2 to
position 1 of the cols_vector with row = 1.

Eventually, it forms heterogeneous graph storage for high-degree
nodes, where the CPU side enhances memory access locality while
the PIM side overtakes the majority of update expenses.

4 EVALUATION
4.1 Evaluation Setup
Dataset.Our experiments use 15 real-world graphs from the SNAP[5]
dataset. The 15 large-scale graphs (Trace ID #1-#15) with the num-
ber of nodes exceeding 200K are shown in Table 1, where nodes
with out-degrees exceeding 16 are considered high-degree nodes.

Baselines.We use RedisGraph[4] as a baseline system to eval-
uate our PIM system. By representing the data as sparse matrices
and employing highly optimized sparse matrix operations[2], Re-
disGraph delivers a fast and efficient way to store, manage, and
process graphs[1].

We also implement the PIM-hash system as a contrast system,
where all graph nodes are distributed to PIM modules using a
hash function, as the scheme of hash partition is widely used in
distributed graph databases[10, 18].

Configurations. We use a server with two Intel(R) Xeon(R)
Silver 4126 CPUs and 20 UPMEM DIMMs as the host system. Each
CPU has 16 cores at 2.10 GHz, and the L3 cache size is 22MB. Each
UPMEM DIMM has two ranks; each rank has 64 PIM modules.
RedisGraph utilizes a dedicated CPU core, exclusively benefiting
from L3 cache and memory bandwidth. Moctopus and PIM-hash
use a dedicated CPU core and 64 PIM modules (a rank).

Workload Setup. For simplicity, our evaluation focuses on a
typical RPQ, 𝑘-hop path query with a fixed start node. The start
node is randomly selected, and RPQs are processed in batch (batch
size = 64K). To show graph update performance, we randomly select
64K edges for insertion and deletion.

4.2 Performance of RPQs
Figure 4 shows the run time of processing 𝑘-hop path queries on
Moctopus, PIM-hash, and RedisGraph. Under the 15 real-world
graphs from the SNAP dataset, Moctopus has the best performance.
For the graphs with less skewness (#1, #2 ,#3, #7, #13, #14, and
#15), Moctopus outperforms RedisGraph by 2.54-10.67x. By dis-
patching path matching tasks to PIM modules and reducing data
movement, Moctopus breaks the "memory wall" bottleneck of path
matching and achieves high performance. When handling highly
skewed graphs (#5, #6, #8, #11, and #12), Moctopus outperforms the
PIM-hash up to 2.98x. On the one hand, Moctopus tackles graph
skewness with the locality-aware node distribution, achieving load
balance among PIM modules; on the other hand, Moctopus dis-
tributes skewedworkloads to the host CPU, leveraging the strengths
both of the host side and the PIM side.

We further analyze the IPC cost during path matching. Figure 5
shows the IPC cost for Moctopus and PIM-hash processing 3-hop
path queries. For 𝑘=3, Moctopus reduces the IPC cost by 89.56% on
average compared with PIM-hash, demonstrating that our graph
partitioning algorithm effectively preserves graph locality, ulti-
mately enabling more next-hops hit in local PIM modules.

It is observed that Moctopus’s performance significantly deteri-
orates compared to RedisGraph as 𝑘 increases. The reason is that,
for most graphs except for road network graphs (#1, #2, and #3), the
number of matched paths increases significantly with the increase
of k, causing CPC and reduction to become the performance bottle-
neck. For long path queries, we only perform 𝑘-hop path queries
(𝑘=4, 6, and 8) on road network graphs, and Moctopus outperforms
RedisGraph by 6.00-9.71x.

4.3 Performance of graph update
Figure 6 shows the run-time of graph update (insert 64k edges
and delete 64k edges) on the 15 real-world graphs from the SNAP
dataset. Exempt from IPC and reduction stages, the graph update



DAC ’24, June 23–27, 2024, San Francisco, CA, USA Ruoyan Ma1 , Shengan Zheng1 , Guifeng Wang1 , Jin Pu1 , Yifan Hua1 , Wentao Wang2 , Linpeng Huang1

Table 1: The real-world graphs from SNAP dataset used in our experiments.
Name roadNet-CA roadNet-PA roadNet-TX cit-patents com-youtube com-DBLP com-amazon wiki-Talk email-EuAll web-Google web-NotreDame web-Stanford amazon0312 amazon0505 amazon0601

Trace ID #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
nodes 1,965,206 1,088,092 1,379,917 3,774,768 1,134,890 317,080 334,863 2,394,385 265,214 875,713 325,729 281,903 262,111 410,236 403,394
high-degree nodes% 0 0 0 2.83 2.07 3.10 0.62 0.50 0.29 1.29 2.86 4.84 0 0 0
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Figure 4: Run-time of 𝑘-hop path queries (log scale).
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Figure 5: IPC cost of Moctopus and PIM-hash processing 3-
hop path queries (log scale).
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Figure 6: Run-time of graph update (log scale).
workloads can fully utilize the intra-PIM bandwidth, resulting in
exceptional performance. Compared with RedisGraph, Moctopus
achieves up to 81.45x higher throughput with an average of 30.01x
for insertion and achieves up to 209.31x higher throughput with an
average of 52.59x for deletion. For the graphs with a high proportion
of graph data stored on the host side, the host CPU’s load becomes
a bottleneck of graph update. Thanks to the heterogeneous graph
storage for high-degree nodes, Moctopus amortizes the host side’s
update cost to the PIM side, still achieving good graph update
performance with an average spreading time of 50-160ns.

5 CONCLUSION
In this paper, we present Moctopus, the first PIM system for ac-
celerating path matching over graph database with Processing-
in-Memory. Moctopus successfully supports efficient batch RPQs
and graph updates. The dynamic graph partitioning algorithm in
Moctopus successfully tackles graph skewness and preserves graph
locality with low overhead. With PIM-friendly graph partitioning,
Moctopus addresses the challenges of load imbalance and commu-
nication bottleneck during performing RPQs. The optimizations
for graph storage enables frequent graph update by amortizing the
host side’s update cost to the PIM side. Evaluation against Redis-
Graph and the widely-used hash scheme shows that Moctopus is a

PIM-friendly design and can achieve high path matching and graph
update performance.
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