
Cheetah: An Adaptive User-Space Cache
for Non-volatile Main Memory

File Systems

Tian Yan1, Linpeng Huang1(B), and Shengan Zheng2

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, China

{officialyan,lphuang}@sjtu.edu.cn
2 Department of Computer Science and Technology, Tsinghua University,

Beijing, China
venero@tsinghua.edu.cn

Abstract. Over the past decade, most NVMM file systems have been
designed without detailed knowledge of real NVDIMMs. With the release
of Intel Optane DC Persistent Memory, researchers find that the perfor-
mance characteristics of real NVMM differ a lot from their expectations.
The design decisions they made lead to limited scalability, significant
software overhead, and severe write amplification.

We present Cheetah, a user-level cache designed for existing NVMM
file systems to improve overall performance. Cheetah leverages the unique
characteristics of Intel Optane DC persistent memory to design a fine-
grained data block allocation policy in order to reduce write amplifica-
tion. To minimize the impact of the long write latency of NVMM, Chee-
tah absorbs asynchronous writes in DRAM rather than NVMM. Our
experimental results show that Cheetah provides up to 3.5× through-
put improvement compared to the state-of-the-art NVMM file systems
in write-intensive workloads.

Keywords: Non-volatile main memory · File system · Cache scheme

1 Introduction

Emerging fast, byte-addressable non-volatile main memory (NVMM), such as
PCM [6] and Intel Optane DC persistent memory (Optane DCPMM [5]), is
expected to revolutionize the memory and storage hierarchy of existing computer
systems. NVMM can be directly placed on the memory bus, thereby allowing
applications to access data via processor load/store instructions. Compared
with traditional disks (HDDs and SSDs), NVMM offers lower latency and higher
bandwidth while providing direct access.

Over the past decade, several state-of-the-art NVMM-aware file systems, such
as BPFS [7], PMFS [8], and NOVA [16], have been proposed. These file systems
leverage the Direct Access (DAX) feature of NVMM to avoid unnecessary copy.
c© Springer Nature Switzerland AG 2021
L. H. U et al. (Eds.): APWeb-WAIM 2021, LNCS 12858, pp. 199–207, 2021.
https://doi.org/10.1007/978-3-030-85896-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85896-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-85896-4_17


200 T. Yan et al.

Since NVMMs are directly attached to the main memory bus, NVMM-aware file
systems allow users to access file data directly without the OS page cache.

Unfortunately, existing NVMM file systems have two major drawbacks. First,
researchers find that the real NVDIMMs’ performance is far from their expecta-
tions, especially its concurrency and write performance. The experimental results
revealed in a recent report [17] exhibit NVMM has only about one-sixth write
bandwidth than DRAM. Second, for different applications with various access
patterns, the conventional fixed-size block allocation scheme is inefficient. Recent
studies [15,17] show that Optane DCPMM utilizes 256-byte internal blocks to
access data and has several storage mechanisms different from DRAM. Uni-
formed block allocation in file systems is not suitable for small writes since it
causes severe write amplification.

To address the drawbacks, we propose Cheetah, a user-level cache for NVMM
file systems. Cheetah combines the benefits of DRAM and NVMM to improve
overall performance. To hide the long write latency of NVMM, Cheetah utilizes
a small DRAM cache to absorb asynchronous writes. Cheetah offers an adaptive
data block allocation policy for different writes to minimize write amplifica-
tion. Cheetah is compatible with most kernel NVMM-aware file systems, such
as NOVA [16], EXT4-DAX [2], XFS-DAX [4], etc.

Cheetah distinguishes itself from traditional DRAM cache schemes in several
aspects. First, Cheetah adopts a more accurate profiler for caching the most
suitable data in DRAM. Second, Cheetah adopts an adaptive cache replacement
strategy, which dynamically adjusts the impact of different access patterns on
data replacement. The contributions of this paper include:

• We design a profiler that accurately profiles I/O frequency of file data.
• We design a hybrid memory management module to manage file metadata

and data on NVMM and DRAM effectively.
• We implement Cheetah and evaluate it by using a collection of micro-bench-

marks and real applications. We find that Cheetah exhibits higher perfor-
mance than the state-of-the-art file systems on a range of workloads.

2 Background

2.1 Non-volatile Main Memory

Non-volatile main memory (NVMM) is an emerging memory technology that
provides byte-addressability and durability. NVMM also allows direct data access
via processor load and store instructions. However, the past researches for
NVMM have been made without detailed knowledge of real NVMM. Recent
works [13–15,17] demonstrate that real Optane DCPMMs [5] have more com-
plex performance characteristics than DRAM. Optane DCPMM utilizes 256-byte
internal blocks to access data instead of completely byte-addressable access. It
has up to about 2.1× higher latency for sequential reads and 3.8× higher latency
for random reads compared to DRAM. Moreover, Optane DCPMM has limited
scalability compared with DRAM.



Cheetah: An Adaptive User-Space Cache for NVMM File Systems 201

Fig. 1. Cheetah overview.

2.2 Direct Access and Memory Mapping

The Direct Access (DAX) feature of NVMM allows applications to use the CPU
Load/Store instructions to directly access data in NVMM, bypassing the DRAM
page cache. DAX eliminates all operating and file system code from the access
path, providing the fastest way to access NVMM. Most NVMM-aware file sys-
tems [2,4,7,8,12,16] leverages DAX to shorten the critical path of file I/O. They
also support mmap() mechanism that directly maps file data in NVMM into user
address space. Upon a mmap() call, these file systems set up a mapping between
file data pages and a range of addresses within an application’s address space,
reducing context switching and internal addressing overhead.

3 Design

Cheetah is a user-level cache that takes advantage of the benefits of DRAM
and NVMM to accelerate file I/O for NVMM file systems. Figure 1 shows the
architecture of Cheetah. Cheetah consists of a user-space library and a hybrid
memory management module, namely CUlib and HMM.

CUlib is a user-space library linked to applications. CUlib provides common
POSIX APIs and contains a data profiler. Data profiler is a process that profiles
the access frequency of file data in order to cache data efficiently. HMM is a
hybrid memory management module for managing metadata and data both in
DRAM and NVMM. To achieve high scalability, HMM manages the hybrid mem-
ory space with three groups of threads: writeback threads, reclamation threads,



202 T. Yan et al.

and migration threads. The function of writeback threads is to periodically flush
dirty data to NVMM for persistence. When the remaining space of the cache is
almost used up, the reclamation threads evict blocks from cold data. By con-
trast, the migration threads migrate hot file data to DRAM when its temperature
reaches a threshold.

We make the following design decisions in Cheetah:

Combined the Benefits of DRAM and NVMM. To hide the long write
latency of NVMM, we leverage DRAM to handle asynchronously-updated write
requests. Based on the unique features of Optane DCPMMs, we design an adap-
tive data block allocation policy to avoid write amplification.

Assign Write Destination Adaptively. Different applications have different
synchronicity requirements. Cheetah handles asynchronous writes in DRAM and
strives other writes to NVMM.

DRAM-Aware Cache Replacement. To obtain high DRAM utilization,
Cheetah combines the access frequency of file data and DRAM usage to dynam-
ically adjust the threshold for reclaiming cold data and migrating hot data.

3.1 CUlib

Cheetah provides a user-level library linked to applications called CUlib that is
fully compatible with existing applications. When the file is opened, Cheetah
calls the mmap() to map the file data. All interactions between Cheetah and the
underlying file systems are based on the mapping regions. We design a module
called data profiler that identifies what kind of data should be cached in DRAM.

Profiler. Cheetah not only caches hot data in DRAM but also migrates hot data
from NVMM to DRAM. Data profiler considers both the current free space of
DRAM and the access frequency of file data to set the dynamic threshold for
identifying hot data. We denote the migration temperature as Tmigration. Once a
file’s temperature reaches the Tmigration, the migration threads begin to migrate
file data to DRAM. T total indicates the total temperature of all data in Cheetah
and Pused shows the percentage of DRAM space used. The threshold is shown
in the following equation:

Tmigration =

⎧
⎨

⎩

Ttotal ∗ 50% Pused < 50%
Ttotal ∗ Pused 50% ≤ Pused < 80%

∞ 80% ≤ Pused < 100%

Writes. Data profiler splits file writes into two types: asynchronously-updated
writes and synchronously-updated writes. The reason is two-fold. First, persist-
ing all data in NVMM immediately for applications is unnecessary and inef-
ficient. Second, the long write latency of NVMM is always exposed to the
critical path, leading to severe system performance degradation. CUlib utilizes
DRAM to absorb asynchronous writes and reduce the high write latency on the
critical path, increasing the lifetime of NVMM and improving scalability. For
synchronously-updated writes, Cheetah strives it to NVMM directly.



Cheetah: An Adaptive User-Space Cache for NVMM File Systems 203

Reads. For read operations with cache misses, the traditional approach has to
go through the DRAM cache to fetch file data from disks. However, this approach
is not suitable for hybrid DRAM/NVMM architecture. As NVMM and DRAM
have similar read performance, Cheetah reads data directly from both DRAM
and NVMM to avoid unnecessary data copies in the read path.

3.2 Hybrid Memory Management

HMM is an efficient management module in Cheetah for managing data and
metadata on NVMM and DRAM.

Fig. 2. Data management.

Metadata Management. HMM splits the data structures used for manag-
ing metadata into per-CPU and lock-free structures to avoid global locking and
provide high scalability. Cheetah maintains LRU lists at each CPU to reclaim
cold data blocks parallel. Cheetah uses lock-free queues [9] to manage the allo-
cation and deallocation of metadata since it improves the overall throughput by
preventing resource contention and context switching.

Fine-Grained Data Block Allocation Policy. Fixed-size data blocks in most
file systems are allocated for all writes regardless of its size, which may cause
high write amplification. To address the issue, we propose an adaptive data
block allocation policy. Cheetah allocates data blocks by the write size. The
data block sizes can be set to 256 B, 1 KB, 4 KB, all the way to 1 MB. The
minimum block size is 256 B, which is equal to the internal buffer size of Intel
Optane DCPMM [17]. Our policy dynamically allocates the most suitable block
size according to the I/O size, minimizing write amplification.

Data Management. We utilize a structure called extent to manage data blocks.
As shown in Fig. 2, each extent contains six fields and manages up to 1 MB data.
When the application posts a write request, Cheetah searches the corresponding
extents in the B+ tree. If the extents do not exist, new extents are allocated
to the file. Reclamation and migration are performed at the granularity of the
extent. The advantage of our approach is to make the best of data locality.



204 T. Yan et al.

File Index. When a file is opened in Cheetah for the first time, Cheetah allocates
a unique index for the file. Each index records the file metadata (Fig. 2). We build
a set of red-black trees to index the files opened in Cheetah, which use the file
inode numbers as the key to store the corresponding indexes.

4 Cache Replacement

Cheetah provides an efficient replacement policy to improve space utilization.
We next describe the cache replacement policy in detail.

Temperature Profiling. When a data block is accessed, Cheetah increases the
temperature of its corresponding extent according to the weight of the access
type. The read and write weights are dynamically adjusted when dealing with
different types of applications. Cheetah calculates the weight of reads and writes
every two seconds, according to the real-time read-write ratio.

Cache Reclamation. Cheetah utilizes background threads to reclaim cold data
blocks from the infrequently accessed files. The background threads reclaim the
data blocks of different sizes. Once the number of allocated data blocks of any
size reaches a threshold (e.g., 90% in our experiments), the reclamation threads
wake up and begin to reclaim data blocks from cold extents, starting from the
tail of LRU lists. We use T threshold (described in Sect. 3.1) as the threshold
temperature for cache reclamation. Background threads reclaim all cached data
blocks in the extent with temperature lower than T threshold until 20% of the
data blocks in the cache are reclaimed.

Fig. 3. Fio performance.

Migration. The purpose of migration is to cache more hot data for accelerating
the future file I/O. Cheetah sets migration threads at per-CPU and utilizes a
lock-free queue as a message buffer to communicate with migration threads.
When the data profiler identifies an extent with hot temperature, Cheetah pops
its index into a lock-free queue, and the migration thread wakes up and migrates
its uncached data contained to DRAM.



Cheetah: An Adaptive User-Space Cache for NVMM File Systems 205

5 Evaluation

In this section, we evaluate the performance of Cheetah by using a collection of
benchmarks and real-world application workload.

5.1 Experimental Setup

Our experimental testbed machine consists of 2× Intel Xeon Gold 6240M CPUs,
six 32 GB DDR4 DRAM, and six 256 GB Intel Optane DCPMMs. All the exper-
iments are performed on Ubuntu 18.04 LTS with Linux kernel 4.13.

We use Cheetah-equipped EXT4-DAX (abbreviated as EXT4-DC) as the
only Cheetah-equipped file system to compare with other file systems, such as
XFS-DAX [4] and NOVA [16], in the FIO (Sect. 5.2) and Redis (Sect. 5.3) work-
loads. We vary the DRAM cache size available to Cheetah to show how per-
formance changes with different Cheetah configurations. E.g. EXT4-DC (2 GB)
means that the DRAM cache size of Cheetah is only 2 GB.

5.2 Microbenchmarks

We use Fio [3] to evaluate the performance of file operations. Fio is a flexible I/O
test tool that provides different types of microbenchmarks. We vary the I/O size
from 1 KB to 16 KB, and run the workload in single-thread. All I/O operations
in this experiment are synchronous.

Figure 3 shows the performance improvement of Cheetah for write operations.
EXT4-DC achieves nearly 2.1× higher performance than EXT4 and XFS and
outperforms NOVA by 91% and XFS-DAX by 1.5× when the cache capacity is
32 GB. Non-DAX file systems perform poorly on synchronous write operations.
Cheetah only absorbs asynchronous writes in DRAM, thus reducing the number
of unnecessary double-copies. NOVA utilizes 4 KB pages to manage data. For
small writes, this policy causes significant write amplification. Cheetah adopts a
fine-grained data allocation policy to minimize write amplification, which allo-
cates the most suitable data blocks instead of fix-sized data blocks.

Fig. 4. Redis performance.



206 T. Yan et al.

5.3 Redis

We use Redis [1] to evaluate the performance of the file systems with Cheetah.
We run Redis in the AOF mode, which logs every write operation and persists
data synchronously. We vary the object size from 1 KB to 16 KB.

Figure 4 shows the throughput of SET operations of different file systems.
EXT4-DC outperforms EXT4-DAX by 51%, 1.2×, and 1.8× on average for the
1 GB, 2 GB, and 4 GB cache capacity, respectively. When the cache capacity is
4 GB, EXT4-DC improves the performance over NOVA by 1.3×, outperforms
XFS-DAX, XFS and EXT4 by 3.5×, 3.2×, and 1.9×, respectively.

Compared with EXT4 and XFS, the performance advantage stems primarily
from the design of adaptive write services. Compared with the NVMM-aware file
systems, the per-CPU and lock-free structures adopted by Cheetah ensure that
writing data into DRAM and migrating cold data to NVMM can be performed
concurrently to achieve high bandwidth. Also, Cheetah provides direct access
without the overhead of context switching and software stack.

6 Related Work

Existing NVMM-aware file systems can be classified into two categories: kernel-
space and user-space.

1) Kernel-space. EXT4-DAX [2] and XFS-DAX [4] provide direct access
capabilities to the native Linux file system. NOVA [16] is designed for
hybrid DRAM/NVMM architecture. NOVA guarantees consistency and sup-
ports atomic operations through its log-structured design. It stores indexes in
DRAM to accelerate lookup and utilizes the logs of each file to achieve high
concurrency.

2) User-Space. Strata [11] and SplitFS [10] both utilize a split architecture
to improve performance. Strata adopts the log digestion scheme to improve file
access performance. SplitFS provides flexible guarantees for different applica-
tions.

7 Conclusion

We present Cheetah, a user-space cache for NVMM file systems to accelerate file
I/O. Cheetah leverages the unique characteristics of Intel Optane DC persistent
memory to reduce write amplification. Cheetah absorbs asynchronously-updated
writes in DRAM to minimize the impact of long write latency of NVMM. Exper-
imental results show that Cheetah enables applications to exploit the benefits
from native file systems while providing significant performance improvements.

Acknowledgments. This work is supported by National Key Research & Develop-
ment Program of China (Grant No. 2018YFB1003302), and SJTU-Huawei Innovation
Research Lab Funding (Grant No. FA2018091021-202004). Shengan Zheng is supported
by China Postdoctoral Science Foundation (Grant No. 2020M680570).



Cheetah: An Adaptive User-Space Cache for NVMM File Systems 207

References

1. Redis (2010). https://github.com/redis/redis
2. Add support for NV-DIMMs to ext4 (2011). https://lwn.net/Articles/613384/
3. Flexible I/O tester (2011). https://github.com/axboe/fio
4. xfs:DAX support (2015). https://lwn.net/Articles/635514/
5. Intel Optane DC pesistent memory (2019). https://www.intel.com/content/www/

us/en/architecture-and-technology/optane-dc-persistent-memory.html
6. Akel, A., Caulfield, A.M., Mollov, T.I., Gupta, R.K., Swanson, S.: Onyx: a proto-

type phase change memory storage array. In: HotStorage (2011)
7. Condit, J., et al.: Better I/O through byte-addressable, persistent memory. In:

SOSP (2009)
8. Dulloor, S.R., et al.: System software for persistent memory (2014)
9. Frechilla, F.: Yet another implementation of a lock-free circular array queue (2011).

https://www.codeproject.com/Articles/153898
10. Kadekodi, R., Lee, S.K., Kashyap, S., Kim, T., Kolli, A., Chidambaram, V.:

SplitFS: reducing software overhead in file systems for persistent memory. In: SOSP
(2019)

11. Kwon, Y., et al.: Strata: a cross media file system. In: SOSP (2017)
12. Ou, J., Shu, J., Lu, Y.: A high performance file system for non-volatile main mem-

ory. In: EuroSys (2016)
13. Patil, O., Ionkov, L., Lee, J., Mueller, F., Lang, M.: Performance characteriza-

tion of a DRAM-NVM hybrid memory architecture for HPC applications using
intel Optane DC persistent memory modules. In: Proceedings of the International
Symposium on Memory Systems (2019)

14. Waddington, D., Kunitomi, M., Dickey, C., Rao, S., Abboud, A., Tran, J.: Evalua-
tion of intel 3D-xpoint NVDIMM technology for memory-intensive genomic work-
loads. In: Proceedings of the International Symposium on Memory Systems (2019)

15. Wang, Z., Liu, X., Yang, J., Michailidis, T., Swanson, S., Zhao, J.: Characterizing
and modeling non-volatile memory systems. In: MICRO (2020)

16. Xu, J., Swanson, S.: NOVA: a log-structured file system for hybrid volatile/non-
volatile main memories. In: FAST (2016)

17. Yang, J., Kim, J., Hoseinzadeh, M., Izraelevitz, J., Swanson, S.: An empirical guide
to the behavior and use of scalable persistent memory. In: FAST (2020)

https://github.com/redis/redis
https://lwn.net/Articles/613384/
https://github.com/axboe/fio
https://lwn.net/Articles/635514/
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.codeproject.com/Articles/153898

	Cheetah: An Adaptive User-Space Cache for Non-volatile Main Memory File Systems
	1 Introduction
	2 Background
	2.1 Non-volatile Main Memory
	2.2 Direct Access and Memory Mapping

	3 Design
	3.1 CUlib
	3.2 Hybrid Memory Management

	4 Cache Replacement
	5 Evaluation
	5.1 Experimental Setup
	5.2 Microbenchmarks
	5.3 Redis

	6 Related Work
	7 Conclusion
	References




