
ReoFS: A Read-Efficient and Write-Optimized
File System for Persistent Memory

Yan Yan∗, Kaixin Huang∗, Shengan Zheng†, Dongliang Xue∗ and Linpeng Huang∗
∗ Department of Computer Science and Engineering

Shanghai Jiaotong University, Shanghai, China
{118033910141, Kaixinhuang, xuedongliang010, lphuang}@sjtu.edu.cn

† Department of Computer Science and Engineering
Tsinghua University, Beijing, China

{venero}@tsinghua.edu.cn

Abstract—In this paper, we present ReoFS, a read-efficient
and write-optimized PM-aware (Persistent Memory-Aware) file
system that provides strong consistency guarantee. Different
from traditional journaling techniques, ReoFS optimizes write
requests on the write I/O path and allows concurrent reads
to be served opportunistically. To reduce the write overhead
for metadata-related operations, we devise a backup buffering
mechanism, which keeps a replica of metadata in the backup
buffer and supports fast in-place update. To minimize the write
overhead for file data modifications, we design a fine-grained
short logging mechanism to migrate writes to persistent log
blocks and make new writes visible immediately after the
log is persisted. With these two designs, ReoFS removes the
double write overhead off the critical path of request execution
for both metadata and data operations. We conduct extensive
experiments on Intel Optane DC PM platform and the results
show that ReoFS outperforms existing PM-aware file systems
by 1.3x-4x.

Keywords-persistent memory, file system, data persistence,
data consistency

I. INTRODUCTION

Emerging persistent memory (PM) such as PCM, STT-

RAM and 3D XPoint [1]–[3] is a new class of memory

that can provide byte-addressability, non-volatility, large

capacity and DRAM-comparable access latency. In April

2019, Intel announced the first commercially-available PM

product, Intel Optane DC Persistent Memory [4]. PM can be

placed on the memory bus and accessed like DRAM using

processor load and store instructions [5]. With its low latency

and non-volatility, PM has been attractive for building high-

performance persistent storage systems, such as KV-Stores

[6] [7], DBMSs [8] and file systems [9]–[12]. This paper

focuses on designing PM-aware file system.

Traditional file systems introduce large overhead for read

and write operations because of the data copy between the

in-DRAM OS page cache and the durable storage (e.g., disk

and SSD). To avoid such overhead, the system community

has proposed some novel PM-aware file systems, such as

BPFS [9], PMFS [10], NOVA [11] and HMVFS [13]. They

redesign the file systems in kernel and remove the heavy

OS page cache to directly copy data between the user buffer

and the PM space.

For persistent memory-based systems, data consistency

is a significant issue, because partial writes and reordering

writes by modern processor to PM may cause inconsistent

data upon system crash [14] [15]. This problem does not

exist in traditional file systems since all the data in DRAM

is volatile after crash. To maintain the correct persistence

order, all current PM-aware file systems have to explicitly

enforce memory writes (e.g., clflush/clwb + mfence/sfence)

to persistent memory in a certain order [16]. This will

add non-negligible performance overhead to file systems.

Notably, such overhead is absolutely proportional to the

number of write operations and forced persistence ordering

instructions [17].

Existing PM-aware file systems have widely employed

either write-ahead logging (WAL) [18]–[20] or copy-on-

write (CoW) [21] techniques to obtain consistency [16].

Write-ahead logging is adopted by PMFS [10], HiNFS [12]

and EXT4 DAX [22], which consists of redo logging and

undo logging. In either case, a copy for original data or

updated data has to be created in the critical path, leading to

double write overhead. Other PM-aware file systems such as

BPFS and NOVA mainly utilize CoW to achieve consistency.

This technique in BPFS may incur a sequence of updates

from the affected leaf node to the root node when a write

request is committed. Even though CoW doesn’t copy the

original data or updated data, there still exists the write

overhead for the entire data block, which is usually much

larger than the modified data size [5]. Such performance

issue is called write amplification.

We further compare existing mainstream PM-aware file

systems and summarize their features in Table I. We observe

that in addition to the overhead caused by double write and

write amplification, there are other limitations in current

file systems. First, some file systems [10] [12] [22] only

support metadata consistency but lack the guarantee for

data consistency. Notwithstanding the high performance they

can achieve, they may be dangerous for certain deployed

applications that require strong data consistency. Second, a

few systems ignore the issue of limited write endurance of

177

2020 25th International Conference on Engineering of Complex Computer Systems (ICECCS)

978-1-7281-8558-3/20/$31.00 ©2020 IEEE
DOI 10.1109/ICECCS51672.2020.00028

20
20

 2
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 E
ng

in
ee

rin
g

of
 C

om
pl

ex
 C

om
pu

te
r S

ys
te

m
s (

IC
EC

CS
) |

 9
78

-1
-7

28
1-

85
58

-3
/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

EC
CS

51
67

2.
20

20
.0

00
28

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 28,2024 at 07:43:32 UTC from IEEE Xplore. Restrictions apply.

Table I
COMPARISON OF DIFFERENT PM-AWARE FILE SYSTEMS

file system metadata consistency data consistency double write-optimized write amplification-optimized
endurance
optimized

BPFS
√ √ √ × ×

PMFS
√ × × √ ×

HiNFS
√ × × √ √

EXT4 DAX
√ × × × ×

NOVA
√ √ √ × √

ReoFS
√ √ √ √ √

PM and make no optimization for that. Then the PM device

supporting those persistent file systems may wear out easily

for skewed write workloads.

Motivated by the limitations of existing PM-aware file

systems summarized in table I, we develop ReoFS, a

read-efficient and write-optimized file system for persistent

memory. The main purpose of ReoFS is to provide strong

consistency for both metadata and data, while minimizing

extra performance overhead caused by write amplification,

data flush (for persistence) and double write in the critical

path. We decouple the write logic for file metadata and data

to make best access performance for each. Concretely, we

keep a backup buffer zone, in which each backup buffer is a

replica of a metadata block. In this way, writes to metadata

can be executed using in-place update, without copying old

data or new data to the log area. For file data writes, we

design per-file DRAM log nodes and persistent log blocks

to absorb writes in fine-grained (i.e., cacheline) granularity

to avoid write amplification. Furthermore, ReoFS removes

the double write overhead for both metadata updates and

data writes. In summary, this paper makes the following

contributions.

• We analyze the limitations of existing PM-aware file

systems, which are 1) the lack of data consistency, 2)

double write overhead, 3) write amplification and 4) the

risk of limited endurance. To overcome these limitations,

we propose ReoFS, a read-efficient and write-optimized PM-

aware file system.

• To guarantee efficient metadata consistency, we pro-

pose a backup buffering mechanism to support fast in-

place metadata update for metadata access operation and

file append operations. For data consistency, we also design

a fine-grained short logging mechanism to enable flexible

file modification (i.e., overwrite) operations, which reduces

write amplifications while prolonging the lifetime of PM.

Both mechanisms eliminate the double write overhead off

the critical path.

• We implement ReoFS as a kernel module of Linux

kernel 4.15.0 and evaluate it on Intel Optane DC Persistent

Memory platform. The experimental results show that ReoF-

S outperforms the compared PM-aware file systems by 1.3x-

4x in terms of overall throughput for various benchmarks.

The remaining of this paper is organized as follows.

Section II presents the background and motivation of our

work. Section III provides the design and detailed imple-

mentation of ReoFS. Performance evaluations are presented

in section IV. Section V discusses related work and we

conclude this paper in section VI.

II. BACKGROUND AND MOTIVATION

A. Persistent Memory

Persistent Memory (PM) is a new class of memory that

supports byte-addressable access like DRAM and survives

power outages. Attaching PM to the main memory bus pro-

vides a raw storage medium that can be orders of magnitude

faster than modern persistent storage medium such as disk

and SSD [23]. For PM-based systems, data consistency is a

significant issue since partial writes can be persistent after

system crash. To make matter worse, modern processors and

caches may reorder writes to memory for better pipelining

performance, which adds complexity to data consistency.

That is, when a write request is issued, an atomic store only

ensures 8-byte data to be written to volatile CPU cache and

then flushed to the PM controller in arbitrary order [14]

[15]. Fortunately, fence instructions such as mfence/sfence
provided by Intel x86 can avoid memory reordering and

force a store visible before subsequent operations are exe-

cuted. Furthermore, clflush/clwb instructions are offered for

programmers to explicitly flush a dirty cacheline to memory.

With these two types of instructions, a data structure larger

than 8 bytes can be stored and persisted into PM in correct

order.

B. Review of Existing PM-aware File Systems

Many researchers have proposed novel file systems for

PM [9]–[12] to remove the OS page cache. Apart from these

PM-aware file systems, the common Linux ext4 file system

also presents a new access model called Direct Access

(DAX) to directly access PM without using a page cache.

It is significant for applications to recover to a consistent

state after a system crash, which is called consistency.

Consistency can be classified into two levels: metadata

consistency (i.e., weak consistency, which only guarantees

consistency for file metadata), full data consistency (i.e.,

strong consistency, which guarantees consistency for both

file metadata and file data). Among the PM-aware file

178

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 28,2024 at 07:43:32 UTC from IEEE Xplore. Restrictions apply.

workflow

data

log

Tx startPersistent Pending Store Flush&sfenceTruncation Tx end

Committed
B1

b1 b1

B1 B1'

b1

B2

b2

B2

b2

B2'

b2

B3

b3

B3

b3

B3'

b3
Committing
B1' B2' B3' B1' B2' B3'

b1 b2 b3 b1 b2 b3

(a) Undo logging workflow

workflow

data

log
Committed

B1

b1 b2

B2

b3
Committing
B1' B2' B3' B1' B2' B3'

b1 b2 b3 b1 b2 b3

B3 B1

b1 b2

B2

b3

B3 B1'

b1 b2

B2'

b3

B3'

(b) Redo logging workflow

Figure 1. The workflow of two types of write-ahead logging

systems mentioned above, BPFS and NOVA provide strong

consistency while the others pursue system performance

but sacrifice data consistency. However, BPFS adopts epoch
command and employs hardware primitives to enforce write

ordering, which requires nontrivial modifications to system

hardware [9]. NOVA is the only PM-aware file system de-

signed in kernel that guarantees strong consistency without

any hardware dependence.

C. Drawbacks of Existing Consistency Mechanisms

Write-Ahead Logging (WAL) is adopted by PMFS,

HiNFS and EXT4 DAX. It incorporates two basic logging

paradigms: redo logging and undo logging. Fig. 1 shows

the detailed workflow of undo logging and redo logging

for updating three data blocks. Suppose that data block B1
is the original data to be modified. Block b1 represents

the data copy in the log area and B1
′

stands for the new

data. Fig. 1(a) gives the procedure of undo logging. For

each update, undo logging has to create a data copy of

original data before performing in-place update. Fig. 1(b)

depicts the workflow of redo logging. Each update is in-

tercepted and appended to the redo log area before making

modifications to original data. Therefore, both write-ahead

logging techniques have to create copies of original or new

data in the critical path, leading to double write overhead.

Furthermore, each update incurs extra cache line flushing

and store ordering instructions. The overhead of persistence

ordering for double copies is also prohibitively expensive

for system performance.

Copy-on-Write (CoW) is used by many PM-aware file

systems, such as BPFS and NOVA, to avoid the heavy double

copy procedure. Fig. 2 uses a tree structure to describe the

copy-on-write (CoW) technique. Fig. 2(a) is an original tree

before modifications. In Fig. 2(b), a write request for node

E and F is issued and three new nodes marked as E1,

F1 and C1 are created to absorb the updates. We make

two observations from the procedure of CoW employed in

existing PM-aware file systems. First, with the tree-based

data organization, CoW will make a cascade of updates from

A

B C

D E F

(a) Original tree A

A

B C

D E F E1 F1

C1

(b) Updating block node E and F

Figure 2. Copy-on-Write technique

the modified leaf nodes to the top root node. Therefore, like

WAL, CoW substantially requires extra data copies in the

critical path of execution. Second, when a write operation

only modifies a few bytes within the whole data block, the

new data block has to copy the old data from original data

block, leading to higher write amplification overhead.

Apart from the lack of data consistency and performance

overhead caused by double write and write amplification,

limited write endurance is another issue in some existing

PM-aware file systems. Since skewed workload (e.g., Face-

book Memcached workload [24]) may frequently access

and update the same data region, certain PM cells may

be written many times and tend to wear out easily. Wear-

leveling techniques should be developed for PM-aware file

systems to relieve the risk of PM wear out. However, existing

systems such as BPFS, PMFS and EXT4 DAX just ignore

this issue.

III. REOFS

A. Design Goals

Strong consistency guarantee. ReoFS aims to guarantee

both metadata consistency and data consistency.

Low latency. ReoFS should enable fast access to file data,

with minimizing the write overhead and persistence ordering

overhead in the critical path.

High throughput. ReoFS aims to achieve high concurrent

throughput by improving file access concurrency.

Wear-leveling support. ReoFS is supposed to be wear-

leveling-aware and automatically balance writes to relieve

the risk of wear-out for skewed workloads.

Transparency and portability. ReoFS is developed as

a kernel module in Linux system and does not require any

hardware modification to modern hardwares.

B. Overview

The architecture of ReoFS is shown in Fig. 3. Similar to

EXT4 DAX, ReoFS bypasses the generic block layer and

copies data between user buffer and PM directly. ReoFS

offers an in-kernel PM-aware architecture that services all

file operations. Specifically, there are two categories of file

operations in file systems: metadata operations (e.g., check

file state, modify file size) and data operations (e.g., file

overwrite and append). In addition to the metadata area that

179

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 28,2024 at 07:43:32 UTC from IEEE Xplore. Restrictions apply.

POSIX Application

Virtual File System(VFS)

DRAM Log Node
Read Over-write

File I/O

Traditional Block-oriented FS

Generic block Layer

I/O Scheduler Layer

Block Device Driver Layer

Disk/SSD/Flash

Metadata-related
or Append write

File I/O File I/O

Read

User-space
Kernel-space

Persistent Memory

ReoFS

Buffer area

Log area Original data

Original metadata

Backgroun
d threads

Over-write Cacheline_block
hit not hit

Figure 3. Architecture of ReoFS

log

tx_start

tx_write

tx_end

lock inode
log old metadata

write

tx_commit
truncate log

unlock inode

tx_start

tx_commit

tx_end

lock inode log new
metadata and

datatx_write

unlock inode

truncate log

lock inode

update

unlock inode

log old data

append-write log append-write original metadata bufferappend-write

in-place
update

old
metadata

in-place
update

in-place
update

in-place
update

CHECKSUM
edit

latest
metadata

Undo logging Redo logging Backup Buffering

original metadataoriginal metadata

Figure 4. Workflow comparison of different update techniques. For viewing convenience, the workflow is used for append-write request. Notice that
we only use the workflow to deal with append-write and metadata-related write for single inode.

stores file metadata blocks and data area that contains file

data blocks, we also reserve a buffer area and log area in

PM. The buffer area is used to speed up metadata operations

and the log area is reserved for promoting the performance

of data operations. In the meanwhile, they are responsible

for metadata consistency and data consistency of ReoFS.

Since the metadata block and data block have different

granularities, we design different consistency mechanisms

for them to obtain the best performance of each: 1) backup
buffering (BABU) is devised to guarantee metadata con-

sistency and speed up metadata operations, 2) fine-grained
short logging (FISOL) is proposed to guarantee data con-

sistency and enable efficient data reads/writes. Both should

be assisted with background threads, which are responsible

for copying updated data from the original metadata block

to the backup buffer and from the log block to original data

block, respectively.

C. BABU: Backup Buffering

The main goal of backup buffering is to provide meta-

data consistency while minimizing the overhead caused

by double write and persistence ordering. The key idea

is to maintain an extra metadata copy in the buffer area.

Upon the time a file is created, its metadata (i.e., inode

block) is initiated and a corresponding backup buffer in the

buffer area is allocated for it. The backup buffer always

keeps a consistent old version of that metadata block. Any

modification to metadata is performed with in-place update.

Then, a checksum for the metadata is calculated and stored

into the CHECKSUM field, which occupies the last 16 bits

of the metadata block. The design of checksum is critical

for the correctness of backup buffering since it can tell

whether the metadata is integrated after crash. After that,

a background thread will immediately persist the modified

data and copy it to the corresponding backup buffer. As a

result, the overhead of both persistence ordering and double

write is eliminated in the critical path. The metadata write

transaction can quickly return and then process the next

transaction.

Fig. 4 compares write-ahead logging techniques with our

proposed backup buffering. We observe that both undo and

redo logging need to create a data copy for either old version

or new version of metadata in the critical path. Conversely,

backup buffering does not require to write to a data copy

in the critical path. It even eliminates the overhead of copy

creation and deletion. Therefore, ReoFS is able to achieve

low-latency metadata access.

Notice that once a metadata write transaction in the

front-end has completed, a background thread will take

over the remaining work, copying the modified metadata

180

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 28,2024 at 07:43:32 UTC from IEEE Xplore. Restrictions apply.

Dependent TransactionsIndependent Transactions

over-write buffer

tx1_start

tx1_end

lock inode1

unlock inode2

thread write

tx2_start lock inode2

unlock inode1

tx2_end

tx1_start

tx1_end

lock inode1

unlock inode1

tx1'_start

unlock inode1

tx1'_end

lock inode1
block

original data over-write bufferoriginal data

thread write

thread write

thread write

Figure 5. Dependent journaling and independent journaling

to its backup buffer. Only when the updated metadata is

persisted in the backup buffer, the metadata write transaction

is considered as committed and all the modifications are

visible to future reads.

Access collisions may occur when a new metadata write

transaction starts after the last transaction ends but before the

last transaction commits. We address this challenge with the

design of a dependent list. A dependent list includes an inode

set, in which all the metadata blocks are inconsistent with

their corresponding backup buffers. It indicates that either in-

place update or background copying is being performed for

these metadata blocks. A dependent transaction is a meta-

data read/write that accesses an inode that belongs to the

dependent list. If the new transaction does not overlap with

the dependent list, it is called an independent transaction.

Fig. 5 illustrates how independent transactions and depen-

dent transactions are processed. An independent transaction

can be performed immediately whenever it issues a read or

write request to a metadata block. However, a dependent

transaction has to wait until the original metadata block

is consistent with corresponding backup buffer (i.e., the

relevant transactions are all committed).

D. FISOL: Fine-Grained Short Logging

The fine-grained short logging mechanism is designed to

guarantee data consistency and support efficient access to file

data. It mainly serves file overwrite operations. In ReoFS,

each inode has its own data log. This contributes to high

access concurrency across multiple files. We keep the log

blocks in PM to record updated data and maintain an index

structure in DRAM to enable fast lookup for latest data. The

fine-grained short logging optimizes traditional redo logging

scheme with two distinguishing techniques: fine-grained

recognition and eager commit. The fine-grained recognition

technique can decrease the write amplification overhead

by only recording the modified cachelines of original data

blocks. The eager commit technique allows the transaction

to commit immediately after the modified data is persisted

in the log block. We name this as short-path logging because

VFS Inode

Radix_tree
root pointer

Superblock

S_head

Radix-Tree
in DRAM

Log Nodes in Persistent Memory
S_tail

…

bitmap j_blocknr fs_blocknrv f d next

64 bits64 bits64 bits64 bits

32 bytes(256 bits) log node

Figure 6. Block Node Index

there is no double write in the critical path. In this way, the

update is visible to other transactions earlier and supports

higher concurrency for reads and writes. The modified data

in the log block will be copied back to original data block

by a background thread in a lazy method. This also helps to

coalesce the data updated to the same file and reduces the

number of writes to original data blocks, which optimizes the

endurance performance of PM. The illustrations for DRAM

log node, fine-grained logging technique and eager commit

technique are provided as follows.

DRAM Log Node. Each inode owns a radix tree in

DRAM space to support fast indexing of valid log blocks

in persistent memory. Radix tree is feasible and efficient for

search, insert and delete operations [25]. The index structure

of the DRAM Log Node is depicted in Fig. 6. The leaf nodes

of radix-tree, however, are stored in PM for data consistency.

ReoFS finds one log node by the logic file offset which

is aligned with the data block size. The log node acts as

the metadata of log blocks and each occupies 32 bytes. As

illustrated in Fig. 6, the leftmost 3 flag bits are used to label

the attributes of a log block. The v bit represents whether the

matched log block is valid (’1’) or invalid (’0’). The f bit

is used to label whether the matched log block is occupied

(’1’) or free (’0’). The d bit tells whether the matched log

block and the log node are deletable (’1’) or non-deletable

(’0’). The subsequent 61 bits are used as next field, which

points to another log node if there exists one. The remaining

bits are divided into three parts equally, including a 64-bit

bitmap, 64-bit log block number and 64-bit original block

number. The root of radix tree is stored in the kernel node

of virtual file system and all the log nodes are linked as a

log node list. A head pointer points to the first log node

and a tail pointer points to the last node. Both of these two

pointers are stored in the file system superblock.

Fine-grained Recognition. Both conventional buffer

management for block-oriented file systems and PM-aware

file systems are coarse-grained (e.g., 4KB block granularity

181

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 28,2024 at 07:43:32 UTC from IEEE Xplore. Restrictions apply.

Table II
PLATFORM CONFIGURATIONS

CPU Intel Xeon Gold 6240×2
DRAM 32GB×8

PM Intel Optane DC Persistent Memory 128GB×4
OS Ubuntu 18.04, Linux 4.13.0, Linux 4.15.0

[11]) for data modifications. However, such management

scheme is not efficient in two respects. (1) a write operation

may only modify a few bytes within the whole data block,

but the new data block has to copy all the content from

original data block to the new version and the need also

arises to flush the data in the entire block to persistent

memory. (2) When an unaligned write is issued, a fetching

process will catch the persistent data to log block first and

then the new data is written to the log block.

To ease the buffer management, we propose a fine-grained

recognition technique with cacheline-level management. A

64-bit bitmap is used to record the states of all the cachelines

in a data block. If the M th bit is 1, the M th 64 bytes need to

be flushed into original data block. When a write operation

modifies a few bytes, instead of the whole data block, ReoFS

only needs to fetch the related cachelines. As such, the fine-

grained recognition technique reduces many unnecessary

copies and eases the write amplification overhead.

Eager Commit. Fine-grained short logging mechanism

employs a background thread to defer the heavyweight

cache flush and memory fence operations (e.g.,clflush/clwb
+ mfence/sfence) and eliminates any copy in the critical

write I/O. Once the updated data is persistent in the log

block, the write transaction can be regarded as committed

and upper-layer applications have the chance to access the

latest data version earlier. For instance, a read transaction for

a file with committed logs can be processed in three steps: 1)

locate the related log nodes; 2) find dirty cachelines from the

cacheline bitmaps; 3) read latest data from both original data

block and relevant dirty cachelines from valid log blocks.

Therefore, eager commit can improve the concurrency of

ReoFS, especially when multiple threads operate on the

same file. Furthermore, the combination of background

thread and cacheline bitmap is able to coalesce writes to

the same block and cancel the writes that are later deleted,

thus reducing the number of writes to original data block

and improving the endurance of PM.

E. Buffering and Persistence

Buffer area. ReoFS uses B-tree data structure to store the

metadata (i.e., inode) information of files.

Log node buffer. ReoFS adds a log node layer to modify

the I/O execution path, which maintains a linked list to track

the recently-overwritten data. When an overwrite transaction

is performed, the fine-grained short logging will calculate

the delta between the old log node and new log node. The

Table III
FILE SYSTEMS FOR COMPARISON

EXT4 DAX EXT4 with Direct Access (DAX).

EXT4 DBA EXT4 with strong consistency.

PMFS UNDO
PMFS with data consistency using undo

logging.

NOVA
A PM-aware file system with

copy-on-write technique.

ReoFS 0
It only has the fine-grained short logging
mechanism in comparison with ReoFS.

delta and new data is written to a new log block while the

raw log block remains unchanged.

Background threads. ReoFS creates the background

kernel threads when the system is mounted. They are used

to persist data and commit a transaction in the background.

Typically, two kernel threads are utilized to complete these

operations: one backup thread for copying data from original

metadata block to the corresponding backup buffer and one

log thread for copying data from the log block to original

data block.

The backup thread will be waken up once the write request

completes the in-place update and checksum calculation in

the metadata block. As for the log thread, two cases may

trigger the process of it. First, the time interval threshold, 5

seconds by default, is reached. Second, the number of free

log nodes falls below a threshold value, 10% by default.

When the log thread is waken up, it will deal with the log

nodes from head to tail pointer in the superblock. For each

log node, its flag bits determine the subsequent operations.

For example, if the d flag is 1, the log node is useless because

it is deleted or coalesced. If the v flag is 1, the log thread

will write back the dirty cachelines to original data block via

the memory interface (i.e.,memcpy mcsafe()). After that, the

corresponding log node and log block will be reclaimed for

future write transactions.

F. Concurrency and Consistency

Concurrent read. A file in ReoFS can be accessed

simultaneously by multiple processors with shared read lock.

They will read the latest data from both log blocks and

original data blocks.

Concurrent write. ReoFS uses mutex lock mechnism for

concurrent read and write operations. If there is another

transaction executed on this metadata/data block, we just

defer the current transaction until the lock on this file is

released by the concurrent pending transaction.

Crash recovery. When a system crash occurs during

meta-related or append-write operation, ReoFS first calcu-

lates the checksum of the metadata block. If the check-

sum result matches the value in the CHECKSUM field,

then current metadata block is the latest consistent version.

ReoFS will overwrite the corresponding backup buffer in

the buffer area. Otherwise, the metadata block should be

182

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 28,2024 at 07:43:32 UTC from IEEE Xplore. Restrictions apply.

Table IV
BENCHMARKS AND DESCRIPTION

Benchmark Read/Write Ratio Request Size Running Time Description

Fileserver 1/2 16KB 60s
A file server to perform create, append,

read, write and delete operations

Webserver 10/1 16KB 60s
A web server consists of file reads and

log append operations.

Varmail 1/1 16KB 60s
A email server contains read and delete

operations, create-append and
read-append with sync flag.

Sequential write 0/1 1KB ∼ 4KB 60s Sequential write for a file data

Random write 0/1 1KB ∼ 4KB 60s Random write for a file data

overwritten by the corresponding backup buffer. In either

case, the metadata block will enter a consistent state, which

satisfies the requirement of metadata consistency.

When system crash occurs during overwrite operation,

ReoFS first scans the journal. If an uncommitted transaction

is found, an undo procedure should be performed: 1) copy

the corresponding backup buffer to original metadata block,

2) mark the valid log nodes which point to the modified

data blocks as deletable, and 3) for each deletable log node,

traverse the linked list, find the log nodes that has the same

fs blocknr field and mark the last log node as valid. The

situation may occur that one transaction is committed but the

metadata block is not consistent with the backup version. For

this case, a copy operation from metadata block to backup

buffer is enough. Finally, a recovery process is performed

to deal with all the log nodes stored in linked list.

Wear-leveling. In order to avoid localized writes to

the same block, ReoFS defers the writeback of log blocks

and keeps a list of log blocks in persistent memory. When

different versions of the same block exists in log blocks

and frequent write requests for that block is issued, we only

write the new data and delta data to log block, therefore

reducing the number of writes to the log block and original

data block.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fileserver Webserver Varmail

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

ReoFS ReoFS_0 PMFS_UNDO EXT4_DAX EXT4_DBA NOVA

Figure 7. Overall performance

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We conduct our evaluation experiments on Intel Optane

DC Persistent Memory platform (OptanePM). The configu-

rations of OptanePM are listed in Table II, in which Linux

4.13.0 is used for NOVA. All the experiments are developed

on a separate persistent memory device and threads are

pinned on local NUMA nodes. In all cases, we use clwb
instead of clflush instruction for cacheline flush.

We list the file systems for comparison in Table III.

EXT4 DAX and NOVA are designed to access the persis-

tent memory directly. EXT4 DBA adopts journal mode in

which both metadata and data are written to log area while

NOVA takes copy-on-write technique. ReoFS is developed

on the basis of PMFS. Since PMFS doesn’t guarantee data

consistency, we add an undo logging-based consistency

mechanism in PMFS, for fairness of comparison. In addition,

we also implement a comparative version, ReoFS 0 without

backup buffering mechanism((i.e., metadata consistency is

guaranteed by undo logging).

We use benchmarks [26] (filserver, webserver and var-

mail) to measure the performance of file systems. Table

IV shows their characteristics and descriptions. For these

benchmarks, the default configuration is used of 50 threads

issuing requests to the fileserver.

B. Overall performance

In Fig. 7, normalized throughput from three multi-

threaded benchmarks is presented.

Fileserver. Compared with EXT4 DAX, EXT4 DBA and

NOVA, ReoFS gains 1.03× (for NOVA) to 5.7× (for EX-

T4 DBA) higher throughput. It mainly benefits from backup
buffering and fine-grained short logging mechanism, which

remove the double-copy overhead off the critical path and

minimize the write amplification overhead. EXT4 DBA has

the worst performance because of the penalty of double-

write overhead and of generic block layer.

Webserver. Webserver is a read-dominated benchmark.

Comparatively, ReoFS is 9% better on average than NOVA

and 128% better than EXT4 DBA. EXT4 DAX has the

same performance as the EXT4 DBA because of the DRAM

183

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 28,2024 at 07:43:32 UTC from IEEE Xplore. Restrictions apply.

page cache. We can see that the performance of ReoFS 0

outperforms ReoFS since the log append operations are

in the critical path as well as an additional overhead for

CHECKSUM.

Varmail. A large portion of operations is synchronous

in Varmail, which involve both reads and writes. ReoFS

outperforms the other file systems by 1.3× to 4× as all

the writes in this case are append operations, which will be

written to file directly without the double-write overhead.

It is also observed that the performance of ReoFS is better

than ReoFS 0, because Varmail consists of many metadata

operations, backup buffering in ReoFS can eliminate any

copy in the critical path and improve the performance.

Meanwhile, the performance of ReoFS 0 is also lower

than NOVA because NOVA uses one log for each inode

to maintain file’s metadata, avoiding the duplicate writes

overhead. Therefore, ReoFS 0 is more suitable for read-

intensive operations. Furthermore, users can decide to mount

ReoFS 0 or ReoFS for best performance.

C. Scalability and Sensitivity

Scalability to the number of threads. We vary the

number of threads to compare the throughput of ReoFS with

the mainstream file systems. The results are shown in Fig. 8.

From Fig. 8(a) and Fig. 8(c), we observe that ReoFS

outperforms the other systems for fileserver and varmail

benchmarks. This is because 1) ReoFS buffers the backup

version and log blocks to enable efficient data reads/writes.

2) The data hit radio will increase when the number of

threads increases from 1 to 9. The throughput of EX-

T4 DBA is stable at approximately 500MB/s because of the

constraints incurred by the double write overhead and the

generic block layer. However, for the webserver benchmark

(shown in Fig. 8(b)), the performance of ReoFS is a bit lower

than NOVA for throughput. The reason is that webserver is

a read-dominated benchmark. ReoFS accesses the latest data

from both original data block and log blocks while NOVA

designs a powerful and comprehensive index structure to

quickly perform search operations [11].

Sensitivity to the I/O size. The write I/O path supports

high concurrency for mixed read/write operations. There-

fore, in this part, we ignore the discussion for the perfor-

mance of read-only operations. The experimental results for

sequential and random writes are given in Fig. 8(d) and

Fig. 8(e). For brevity, we only keep ReoFS 0, EXT4 DBA

with write-ahead logging and NOVA with copy-on-write

technique.

Fig. 8(d) shows that the throughput of NOVA is better than

ReoFS when the size is less than 4KB. This occurs because

1) the fine-grained structure for log copying in ReoFS will

degenerate to write the entire page for sequential write while

only a few bytes are modified, 2) ReoFS has almost the same

performance as ReoF 0, which means the double write for

backup buffer is in the critical path. All cases show that

the throughput of ReoFS exceeds EXT4 DBA because of

minimal data copying and write I/O by bypassing the generic

block layer.

In Fig. 8(e), the throughput of ReoFS outperforms NOVA

by up to 25%. When the I/O size is 2KB, we find that the

performance of ReoFS 0 is better than ReoFS because of

the higher hit ratio and the constraint of backup thread. The

results demonstrate that ReoFS is more suitable for handling

random writes.

V. RELATED WORK

PM-aware File Systems. Many researchers have pro-

posed different in-kernel file systems for persistent memory.

BPFS [9] uses a combination of shadow paging technique

and 8-byte atomic in-place update to ensure consistent

update while requiring a hardware approach (i.e., epoch)

to force correct persistence ordering. PMFS [10] is a

lightweight POSIX-based file system built to bypass the OS

page cache and access persistent memory directly. HiNFS

[12] buffers the lazy-persistent writes in DRAM to hide

the long write latency. EXT4 DAX [22] extends EXT4

with a new access model called Direct Access(DAX) to

directly read from or write to persistent memory. However,

PMFS, HiNFS and EXT4 DAX sacrifice data consistency

and ignore the double-write overhead in the critical path.

NOVA [11] is a log-structured file system that guarantees

both metadata and data consistency with copy-on-write

technique. However, it performs page-level copy-on-write

and incurs many wasteful copies when only a few bytes are

modified. In constrast, ReoFS provides strong consistency

and minimizes the extra performance overhead caused by

write amplification and double write in the critical path.

Moreover, ReoFS uses fine-grained short logging mecha-

nism to coalesce multiple writes to the same data block and

improves the endurance of PM.

Buffering and Caching. Buffering and caching are wide-

ly employed to improve the performance of storage systems

[27]–[29]. For flash-based storage systems, a flash-aware

SSD cache is introduced to improve the efficiency of write

and erase operations. H. Jo et al. [27] use a flash-aware write

buffer and optimizes the traditional LRU policy to select

a victim based on its page utilization. S. Kang et al. [28]

emulate a block device using flash memory and offers Cold
and Largest Cluster Policy to accommodate both temporal

locality and cluster size. However, these flash-based cachings

manage the memory space at the page granularity and match

the characteristics of flash (e.g., slower erase operation).

Therefore, these write buffer managements are not suitable

for authentic persistent memory. E. Lee and H. Bahn [29]

present a new buffer cache management scheme for PCM-

based storage systems. However, this cache technique still

maintains OS page cache and assumes that persistent memo-

ry is attached to the I/O bus. In contrast, ReoFS bypasses the

OS page cache and employs a DRAM log node buffer layer

184

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 28,2024 at 07:43:32 UTC from IEEE Xplore. Restrictions apply.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 3 5 7 9

Th
ro
ug

hp
ut
(M

B/
s)

ReoFS ReoFS_0 EXT4_DAX EXT4_DBA NOVA

(a) Fileserver with different threads

0

1000

2000

3000

4000

5000

6000

7000

1 3 5 7 9

Th
ro

ug
hp

ut
(M

B/
s)

ReoFS ReoFS_0 EXT4_DAX EXT4_DBA NOVA

(b) Webserver with different threads

0

500

1000

1500

2000

2500

3000

1 3 5 7 9

Th
ro

ug
hp

ut
(M

B/
s)

ReoFS ReoFS_0 EXT4_DAX EXT4_DBA NOVA

(c) Varmail with different threads

0

100

200

300

400

500

600

1k 2K 3K 4K

Th
ro

ug
hp

ut
(M

B/
s)

ReoFS ReoFS_0 EXT4_DBA NOVA

(d) Sequential write

0
50

100
150
200
250
300
350
400
450
500

1k 2K 3K 4K

Th
ro

ug
hp

ut
(M

B/
s)

ReoFS ReoFS_0 EXT4_DBA NOVA

(e) Random write

Figure 8. Scalability and Sensitivity

while persistent memory is placed on the memory bus. Fur-

thermore, with the high performance of emerging persistent

memory technologies, system designers should care about

the write and copy overhead for persistent memory buffering.

Taking advantages of PM’s byte-addressability and non-

volatility, we devise backup buffering and fine-grained short
logging mechanisms to eliminate the double write overhead

off the critical path.

VI. CONCLUSION

We develop a novel PM-aware file system named ReoFS,

which can achieve efficient read and lightweight write while

guaranteeing strong data consistency. We propose a backup

buffering mechanism for metadata writes to support fast in-

place updates and opportunistic concurrent reads. We design

a fine-grained short logging mechanism for data writes to

migrate writes to persistent log blocks and enable eager

commit. Both of these two mechanisms remove the double

write overhead off the critical path, which tend to achieve

low latency and high throughput. The experimental results

demonstrate that ReoFS gains better performance than the

compared PM-aware file systems.

ACKNOWLEDGEMENTS

This work is supported by the National Key Research and
Development Program of China (No.2018YFB1003302), the
China Scholarship Council (No. 201906230180) and SJTU-
Huawei Innovation Research Lab Funding.

REFERENCES

[1] A. M. Caulfield, J. Coburn, T. I. Mollov, A. De,
A. Akel, J. He, A. Jagatheesan, R. K. Gupta, A. Snavely,
and S. Swanson, “Understanding the impact of emerging
non-volatile memories on high-performance, io-intensive

computing,” in Conference on High Performance Computing
Networking, Storage and Analysis, SC 2010, New Orleans,
LA, USA, November 13-19, 2010. IEEE, 2010, pp. 1–11.
[Online]. Available: https://doi.org/10.1109/SC.2010.56

[2] T. Kawahara, “Scalable spin-transfer torque RAM technology
for normally-off computing,” IEEE Des. Test Comput.,
vol. 28, no. 1, pp. 52–63, 2011. [Online]. Available:
https://doi.org/10.1109/MDT.2010.97

[3] “Intel and micron produce breakthrough memory technolo-
gy,” https://www.i-micronews.com/intel-and-micron-produce-
breakthrough-memory-technology/.

[4] “Intel optane dc persistent memory,”
https://www.intel.com/content/www/us/en/architecture-
and-technology/optane-dc-persistent-memory.html.

[5] C. Chen, J. Yang, Q. Wei, C. Wang, and M. Xue,
“Fine-grained metadata journaling on NVM,” in 32nd
Symposium on Mass Storage Systems and Technologies,
MSST 2016, Santa Clara, CA, USA, May 2-6, 2016. IEEE
Computer Society, 2016, pp. 1–13. [Online]. Available:
https://doi.org/10.1109/MSST.2016.7897077

[6] D. Hwang, W. Kim, Y. Won, and B. Nam, “Endurable
transient inconsistency in byte-addressable persistent b+-
tree,” in 16th USENIX Conference on File and Storage
Technologies, FAST 2018, Oakland, CA, USA, February 12-
15, 2018, N. Agrawal and R. Rangaswami, Eds. USENIX
Association, 2018, pp. 187–200. [Online]. Available:
https://www.usenix.org/conference/fast18/presentation/hwang

[7] P. Zuo, Y. Hua, and J. Wu, “Write-optimized and
high-performance hashing index scheme for persistent
memory,” in 13th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2018,
Carlsbad, CA, USA, October 8-10, 2018, A. C.
Arpaci-Dusseau and G. Voelker, Eds. USENIX
Association, 2018, pp. 461–476. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/zuo

[8] R. Fang, H. Hsiao, B. He, C. Mohan, and Y. Wang, “High
performance database logging using storage class memory,”
in Proceedings of the 27th International Conference on

185

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 28,2024 at 07:43:32 UTC from IEEE Xplore. Restrictions apply.

Data Engineering, ICDE 2011, April 11-16, 2011, Hannover,
Germany, S. Abiteboul, K. Böhm, C. Koch, and K. Tan, Eds.
IEEE Computer Society, 2011, pp. 1221–1231. [Online].
Available: https://doi.org/10.1109/ICDE.2011.5767918

[9] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee, “Better i/o through byte-
addressable, persistent memory,” in Acm Symposium on Op-
erating Systems Principles, 2009.

[10] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,
D. Reddy, R. Sankaran, and J. Jackson, “System software for
persistent memory,” in European Conference on Computer
Systems, 2014.

[11] J. Xu and S. Swanson, “NOVA: A log-structured file system
for hybrid volatile/non-volatile main memories,” in 14th
USENIX Conference on File and Storage Technologies,
FAST 2016, Santa Clara, CA, USA, February 22-
25, 2016, A. D. Brown and F. I. Popovici, Eds.
USENIX Association, 2016, pp. 323–338. [Online]. Avail-
able: https://www.usenix.org/conference/fast16/technical-
sessions/presentation/xu

[12] Y. Chen, J. Shu, J. Ou, and Y. Lu, “Hinfs: A persistent
memory file system with both buffering and direct-access,”
TOS, vol. 14, no. 1, pp. 4:1–4:30, 2018. [Online]. Available:
https://doi.org/10.1145/3204454

[13] S. Zheng, H. Liu, L. Huang, Y. Shen, and Y. Zhu,
“HMVFS: A versioning file system on DRAM/NVM
hybrid memory,” J. Parallel Distributed Comput.,
vol. 120, pp. 355–368, 2018. [Online]. Available:
https://doi.org/10.1016/j.jpdc.2017.10.022

[14] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “Consistency without ordering,”
in Proceedings of the 10th USENIX conference on File
and Storage Technologies, FAST 2012, San Jose, CA,
USA, February 14-17, 2012, W. J. Bolosky and J. Flinn,
Eds. USENIX Association, 2012, p. 9. [Online]. Avail-
able: https://www.usenix.org/conference/fast12/consistency-
without-ordering

[15] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “Optimistic crash consistency,”
in ACM SIGOPS 24th Symposium on Operating
Systems Principles, SOSP ’13, Farmington, PA, USA,
November 3-6, 2013, M. Kaminsky and M. Dahlin,
Eds. ACM, 2013, pp. 228–243. [Online]. Available:
https://doi.org/10.1145/2517349.2522726

[16] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne:
lightweight persistent memory,” in Proceedings of the
16th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
2011, Newport Beach, CA, USA, March 5-11, 2011, R. Gupta
and T. C. Mowry, Eds. ACM, 2011, pp. 91–104. [Online].
Available: https://doi.org/10.1145/1950365.1950379

[17] Y. Zhang and S. Swanson, “A study of application
performance with non-volatile main memory,” in IEEE 31st
Symposium on Mass Storage Systems and Technologies,
MSST 2015, Santa Clara, CA, USA, May 30 - June 5,
2015. IEEE Computer Society, 2015, pp. 1–10. [Online].
Available: https://doi.org/10.1109/MSST.2015.7208275

[18] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson, “Nv-heaps: making
persistent objects fast and safe with next-generation, non-
volatile memories,” in Proceedings of the 16th International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2011, Newport
Beach, CA, USA, March 5-11, 2011, R. Gupta and T. C.

Mowry, Eds. ACM, 2011, pp. 105–118. [Online]. Available:
https://doi.org/10.1145/1950365.1950380

[19] A. Kolli, S. Pelley, A. G. Saidi, P. M. Chen, and
T. F. Wenisch, “High-performance transactions for persistent
memories,” in Proceedings of the Twenty-First International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’16, Atlanta,
GA, USA, April 2-6, 2016, T. Conte and Y. Zhou,
Eds. ACM, 2016, pp. 399–411. [Online]. Available:
https://doi.org/10.1145/2872362.2872381

[20] E. Giles, K. Doshi, and P. J. Varman, “Softwrap:
A lightweight framework for transactional support of
storage class memory,” in IEEE 31st Symposium on
Mass Storage Systems and Technologies, MSST 2015,
Santa Clara, CA, USA, May 30 - June 5, 2015. IEEE
Computer Society, 2015, pp. 1–14. [Online]. Available:
https://doi.org/10.1109/MSST.2015.7208276

[21] J. Gray, P. R. McJones, M. W. Blasgen, B. G. Lindsay, R. A.
Lorie, T. G. Price, G. R. Putzolu, and I. L. Traiger, “The
recovery manager of the system R database manager,” ACM
Comput. Surv., vol. 13, no. 2, pp. 223–243, 1981. [Online].
Available: https://doi.org/10.1145/356842.356847

[22] M. Wilcox, “Dax: Page cache bypass for filesystems on
memory storage,” https://lwn.net/Articles/618064/.

[23] Y. Wang, T. Wang, D. Liu, Z. Shao, and J. Xue, “Fine
grained, direct access file system support for storage class
memory,” J. Syst. Archit., vol. 72, pp. 80–92, 2017. [Online].
Available: https://doi.org/10.1016/j.sysarc.2016.07.003

[24] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani,
“Scaling memcache at facebook,” in Proceedings of the
10th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2013, Lombard, IL, USA,
April 2-5, 2013, N. Feamster and J. C. Mogul, Eds.
USENIX Association, 2013, pp. 385–398. [Online]. Avail-
able: https://www.usenix.org/conference/nsdi13/technical-
sessions/presentation/nishtala

[25] V. Alvarez, S. Richter, X. Chen, and J. Dittrich, “A
comparison of adaptive radix trees and hash tables,” in 31st
IEEE International Conference on Data Engineering, ICDE
2015, Seoul, South Korea, April 13-17, 2015, J. Gehrke,
W. Lehner, K. Shim, S. K. Cha, and G. M. Lohman, Eds.
IEEE Computer Society, 2015, pp. 1227–1238. [Online].
Available: https://doi.org/10.1109/ICDE.2015.7113370

[26] “Filebench file system benchmark,” http-
s://sourceforge.net/projects/filebench/.

[27] H. Jo, J. Kang, S. Park, J. Kim, and J. Lee,
“FAB: flash-aware buffer management policy for portable
media players,” IEEE Trans. Consumer Electronics,
vol. 52, no. 2, pp. 485–493, 2006. [Online]. Available:
https://doi.org/10.1109/TCE.2006.1649669

[28] S. Kang, S. Park, H. Jung, H. Shim, and J. Cha,
“Performance trade-offs in using NVRAM write buffer
for flash memory-based storage devices,” IEEE Trans.
Computers, vol. 58, no. 6, pp. 744–758, 2009. [Online].
Available: https://doi.org/10.1109/TC.2008.224

[29] E. Lee and H. Bahn, “Caching strategies for high-performance
storage media,” TOS, vol. 10, no. 3, pp. 11:1–11:22, 2014.
[Online]. Available: https://doi.org/10.1145/2633691

186

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 28,2024 at 07:43:32 UTC from IEEE Xplore. Restrictions apply.

