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Abstract. This paper presents the first study of building a remote-
accessible persistent radix tree, named CANRT. Unlike prior works that
only focus on designing single-node tree structure for non-volatile mem-
ory, we focus on optimizing remote access performance for a persistent
radix tree while minimizing the persistence overhead. Simply adopt-
ing server-reply paradigm will incur heavy server CPU consumption
and hence lead to high operation latency under concurrent workloads.
Therefore, we design a low-latency node-oriented read mechanism and
a fine-grained lock-based write mechanism to minimize the server CPU
involvement in the critical path. We also devise a non-blocking resizing
scheme in CANRT. The extensive experimental results on commercial
Intel Optane DC Persistent Memory platform show that CANRT out-
performs the state-of-art server-centric persistent radix trees by 1.19x—
1.22x and 1.67x-1.72x in read and write latency, respectively. CANRT
also gains improvement of 7.44x—11.15x in terms of concurrent through-
put under YCSB workloads.

Keywords: Radix tree - Non-volatile memory - RDMA - Data
consistency *+ Concurrent access

1 Introduction

Emerging storage and networking technologies such as non-volatile mem-
ory(NVM) and Remote Direct Memory Access (RDMA) technology are poised
to reshape conventional data storage and memory systems in data centers, bring-
ing new opportunities to achieve efficient remote data storage and access. Non-
volatile memory technologies such as PCM [17], STT-RAM [16] and the recently
released Intel Optane DC Persistent Memory [8] promise non-volatility, byte-
addressability and DRAM-comparable latency. RDMA technology makes it pos-
sible for clients to access remote memory region while bypassing server CPU and
kernel, which contributes to high bandwidth and low latency.
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To further exploit the advantages of NVM and RDMA technology, indexing
data structures and algorithms are required to be carefully redesigned to promise
both data consistency and data concurrency for higher scalability. In recent
years, a large number of tree-based indexing structures are proposed for non-
volatile memory. Most of these works focus on the design of persistent B+-
tree, [1,7,14,19]. They achieve considerable performance by reducing the number
of expensive memory fencing and cache line flush operations.

Lee et al. [12] propose three radix tree variants (i.e., WORT, WOART,
ART+CoW), and demonstrate that radix tree is more appropriate for persistent
memory than B-+-tree variants due to its unique features. For instance, the radix
tree does not demand tree rebalancing operations and each insertion or deletion
only results in a single atomic update operation to the tree, which is perfect for
NVM [12]. However, whether the B-+-tree variants or the radix tree variants in
existing papers are designed for NVM in a single machine environment instead
of distributed systems. Therefore, when deployed in distributed system environ-
ment such as data centers, they may suffer from high access latency and poor
throughput scalability. Even though they can be equipped with RDMA server-
reply paradigm [2,5,9,13|, where both reads and writes are processed by the
server and requires replies to the clients, the limited server CPU resource will
become the bottleneck for highly-concurrent remote requests and impair the
overall performance. The server-bypass merits of RDMA cannot be exploited
with such designs.

In this paper, we propose a client-active NVM-based radix tree for fast remote
access with server-bypass paradigm using RDMA. In the server side, we decouple
the radix tree into two parts: data nodes that store actual key-value pairs with
the same prefix, and prefix nodes that locate the target data nodes. Each data
node contains an 8-byte metadata, which is used to resolve concurrent write
collisions. Specifically, prefix nodes are also stored in all clients to support server-
bypass remote data access. Our contributions can be summarized as follows.

e We propose CANRT, a client-active and NVM-optimized radix tree that lever-
ages RDMA technology to speed up remote data access. To the best of our
knowledge, CANRT is the first persistent radix tree that is optimized for fast
remote access.

e We decouple the radix tree nodes into prefix nodes and data nodes to enable
server-bypass remote data access and utilize a bitmap-assisted strategy for
all types of writes to efficiently guarantee data consistency while resolving
concurrent write collisions.

e We design a node-oriented remote read mechanism and a fine-grained lock-
based remote write mechanism to support low-latency and high-concurrency
remote access to the persistent radix tree. We also propose a non-blocking
resizing scheme for CANRT to boost its performance during tree reconstruc-
tion.

e We conduct extensive experiments for CANRT. The results show that
CANRT outperforms the server-centric persistent radix trees by 1.19x-1.22x
for remote reads, 1.67x—1.72x for remote writes and 3.10x—3.83x for range
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query in terms of latency. For concurrent throughput, CANRT outperforms
the counterparts by up to 11.15x under write-intensive workloads.

Organization. The rest of this paper is organized as follows. Section 2 intro-
duces the background and motivation of our work. Section 3 describes the design
and implementation of CANRT. Section 4 presents experimental results and we
conclude this paper in Sect. 5.

2 Background and Motivation

2.1 Non-Volatile Memory

Emerging memory technologies such as phase change memory(PCM) [17], spin-
transfer torque RAM (STT-RAM) [16] and the recently released Intel Optane
DC Persistent Memory [8], can be directly accessed through the memory bus via
processor loads and stores, delivering DRAM-like performance while providing
persistent data storage [3,15]. NVM provides potential to design efficient persis-
tent index structures [1,7,12,14,19], storage systems [2,3,11,15,18] and etc, with
leveraging its non-volatility, byte-addressability and DRAM-comparable latency.
Data consistency is a significant issue for NVM as there may be partial writes
and reordering writes during system crash, which will lead to inconsistent data
state and unexpected system error. The mainstream solutions are using logging
or copy-on-write techniques to guarantee data consistency [3,11,15]. The per-
sistence ordering is maintained by using cl flush/clwb/cl flushopt and m fence
instructions.

2.2 Remote Direct Memory Access

Remote direct memory access (RDMA) is a new networking technology that sup-
ports low-latency, high-bandwidth, zero-copy and kernel-bypass access to remote
memory region. Since Reliable Connection (RC) provides full support for RDMA
semantics, in this paper, we mainly focus on the RC mode of using RDMA.

Normally, there are two types of RDMA semantics: message semantics and
memory semantics. Message semantics employ SEND/RECV verbs for user-
level message exchange. Due to the requirement of the matching RECV request
posted at the server side, these verbs are generally referred as two-sided RDMA
operations. Memory semantics, on the other hand, are one-sided semantics.
These semantics utilize READ/WRITE verbs and are proved to achieve higher
throughput and lower latency than message semantics [10]. Adopting these
semantics is attractive in that they free server from sending requested data
to clients, replying acknowledge information or coordinate collisions, as well as
continuously polling for the incoming requests [5,6,9,13].

Apart from above semantics, RDMA also support one-sided atomic oper-
ations, including FETCH AND ADD (FAA) and COMPARE AND SWAP
(CAS). Both of these verbs operate on data with 64 bits and are atomic opera-
tions relative to other operations on the same NIC. This paper utilizes FAA to
support concurrent remote write operations to the radix tree.
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Fig. 1. Remote access mechanisms for current tree-based indexing structures

2.3 RDMA-enabled Index Structure

A few recent researches have used RDMA technology in key-value stores to accel-
erate the remote data access [2,5,6,9,13]. However, in these designs, the funda-
mental indexing structures are all hash tables. In fact, few researches have been
proposed to optimize the current tree-based indexing structures using RDMA
to fit in distributed environment for efficient remote data access. This can be
attributed to three challenges.

First, unawareness of data location. Since traversing through an indexing
tree means the retrieval of data at multiple memory addresses, it is relatively
harder to locate the target data than hash tables. Second, data consistency. The
employment of NVM raises consistency issues. While tree structure is often more
complicated compared to hash table, it demands more careful design to avoid
such problems. Third, concurrent write collision. Since the write operations to a
tree tend to affect multiple nodes, concurrent writes are easy to conflict, which
as a result can harm the concurrent performance.

2.4 DPersistent Radix Tree

Most of the previous proposed persistent trees are variants of B+-tree, such as
NVTree [19], wB+tree [1], FPTree [14] and FAST&FAIR [7]. Lee et al. [12] pro-
posed three variants of a radix tree: WORT, WOART and ART+CoW. It is
pointed out that radix tree is actually more appropriate for NVM compared to
B-+-tree variants. For instance, key comparisons in a radix tree are no longer
required since the radix tree structure is decided only by each character of the
inserted keys. Furthermore, updates in node granularity and expensive tree rebal-
ancing operations are also avoided. The experimental results of [12] show that
the radix tree variants outperform most of the current B+-tree variants(i.e.,
NVTree, wB+Tree and FPTree).

Although WORT has already improved the indexing performance on NVM,
it cannot be directly deployed in an RDMA-enabled distributed system environ-
ment since it is designed for a single machine environment. Fortunately, similar
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to previous hashtable-based key-value stores [5,9,13], we can apply the server-
reply paradigm as a general RPC mechanism for WORT to support remote
read and write requests. However, there are two performance limitations: 1)
high server CPU overhead/high latency. Since data access through a radix tree
means the traversing of the tree, clients require the server to coordinate and
process requests to access target data. Taking read request as an example, there
are two methods to execute it which are illustrated in Fig. 1. One method is to
let the server collect all the requested keys and send back to the client (shown
in Fig. 1(a)). Although it can be performed in 1 RTT, the server CPU overhead
will be quite high for concurrent access and thus incurs high operation latency.
The other is to allow the server to only reply addresses to the client and it is the
client’s respounsibility to complete the reads using one-sided READ verb (shown
in Fig. 1(b)). It is almost impossible for clients to directly access data in the
server side within 2 RTTs, which also leads to high operation latency and heavy
bandwidth consumption. As a result, either significant server CPU overhead or
high operation latency will be incurred. 2) poor concurrency. Concurrent access
is demanded in most distributed database systems or key-value store systems.
Unfortunately, WORT does not support concurrent access requests, which is
harmful to both system throughput and latency performance.

1
| 0,
1
([af[AlT W]
________ J
o :""""ﬂ _______ 2, 3,
P :|3||B|D|T|---|:|2||S|U| [ RIalel T} -~ |
________ e e e G (R |
L s, 6, 7':_"":
YTIETETST-' [ [cIp] T-]1'[.[alB]c] ]!
1 1
|012 :34 -~~:567 : !
L T e PR—
0 1 2 5 6 7 N-1
A AB ABS AT ATBE | ATC YAF
data nodes | ABEF | ABF | ABSG ... | ATAB |ATBP | ATCD YYY
Fig. 2. CANRT storage architecture
3 CANRT

3.1 CANRT Data Structures

Figure2 depicts the server-side storage architecture of CANRT. Basically,
CANRT is composed of two major parts:
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Prefix nodes, which exist in both the server and clients, are organized in a
pointer-less format. In CANRT, all the prefix nodes are pre-allocated in a con-
secutive memory space in the server, and will be sent to each client when the
tree is reorganized. Figure3 (a) and Fig.3 (b) illustrate the layouts of prefix
nodes. CANRT does not store explicit keys in its prefix nodes. Instead, a prefix
node consists of an array of characters, each of which represents one character of
the inserted keys. Additionally, each prefix node contain an nChars field, which
records the number of valid characters stored in that node.

Data nodes, which exist only in the server and contain actual key-value pairs,
can be accessed through the node ID stored in the last level of the prefix nodes.
Each key-value pair in the data node is encapsulated in a Dataltem entry and
the Dataltems in each data node are kept unsorted. As depicted in Fig. 3(c) and
Fig. 3(d), to both accelerate data access and enable high write concurrency, an
8-byte metadata structure is adopted in the data node. The metadata contains
a bitmap and a write lock.

In CANRT, only the first k characters of the inserted keys will be stored in
the prefix nodes, which we call the prefix of the key. Here, k also denotes the
height of the prefix nodes. Figure 2 shows an example of a CANRT with k& = 3.
Taking the key ATCD as an example, the prefix is ATC, and each character of
the prefix (i.e., A, T, C) is stored in each level of the prefix nodes. Particularly, in
the last level of the prefix nodes, apart from the character array, there is another
array (denoted as NodelD array) storing the corresponding data node ID (i.e.,
C is stored in the third level of the prefix nodes, and a data node ID 7 is stored
in the corresponding position of the NodelD array which means that keys with
the prefix of ATC are stored in the eighth data node).

! id i
! 1 | metal | meta2 |
L|nChars| Lcl0] | cr11] ... Jem-17] TS
"""""""""" . Dataltem 1
(a) normal prefix node (d) Metadata
P id ': Dataltem 2 key
1 1
c[0] | ¢[1 c[m-1

: nChars d[ 1) cll] d[ 1] : value
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(b) last level of prefix nodes (c) data node (e) Dataltem

Fig. 3. CANRT node layout

3.2 Locating Target Data Node

Both read and write operations in CANRT need to find the target data node
first. In CANRT, the position of each prefix node is fixed and the node ID of
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each prefix node increases sequentially from zero. Hence it can be used to locate
the target prefix node in each level and finally find the target data node ID.

Generally, the i, (i < k) character of the search key will be used to probe
the target node in (i 4+ 1), level, and the k¢, character will finally locate the
data node which contains the search key. For instance, with each prefix node
contains m characters, the i, level of prefix nodes contains m*~! nodes and the
base node ID in (i + 1), level (denoted as b;11) can be calculated by

bi+1 = bz + mifl (1)

where b; is the base node ID in 4, level. Based on the recursive relations in (1),
we can calculate the value of b; by the following equation:
mi~1 —1
b= —— 2
— (2)
Now we can locate the target node ID in (i + 1), level (denoted as Iigrger) using
the equation below:

Itarget - bi+1 + (Icur - bz) *m +p (3)

where I, denotes the node ID of the current node in i, level and p is the
position of the i;, character of the search key in the character array of the
current node. When i = k, the current node is in the last level of prefix nodes,
and the data node ID can be directly obtained from the NodelD array of current
node with the position p.

In the cases when the i;;, character of the request key does not exist in the
corresponding character array, the search process will be terminated and the
target data node ID will be set as the node ID of the last data node. Once the
target data node ID is obtained, the address of the target data node can be
calculated based on the memory address of the first data node and the size of
each data node.

3.3 Fine-Grained Lock-Based Remote Write

To support high-concurrency remote writes, we design a fine-grained lock-based
remote write mechanism. It employs server-bypass paradigm using one-sided
RDMA verbs and makes append-only updates to the server’s persistent region
in order to avoid any data corruption. There are three phases in remote write
procedure, all of which are client-active: locking phase, checking phase and writ-
ing phase. The whole remote write procedure is provided in Algorithm 1.

In the locking phase (lines 1 to 9), the client first calculates the target data
node ID with locally-buffered prefix nodes. Then it uses a FETCH AND ADD
verb to obtain the 8-byte metadata of the target data node from the server,
while atomically adding 1 to the lock field of metadata. If the fetched lock value
is greater than 0, it means that the target data node has been locked by another
client or the server itself. In such cases, the client will wait for random backoff
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Algorithm 1. remote_write(key, value)

/* locking phase: fetch the metadata of target data node */
node_id « findDataNode(key);
raddr « data_base + datanode _size * node id + shadow meta_off;
len « 8;
post_rdma_fetch and add(raddr, len, laddr)
meta «— laddr;
if meta.lock > 0 then
retry from step 5 after random backoff;
9: end if
10: /* checking phase: find a free bit in the bitmap */
11: for bit in meta.bitmap do
12:  if bit == 0 then

13: /* writing phase: write a new Dataltem to the target node */
14: generateDataltem(OPFLAG, key, value, 1);

15: raddr « raddr+meta_size+bit _index * dataitem _size;

16: len < dataitem _size; imm « (node id << 8 | bit_index);
17: post_rdma_write with imm(raddr, len, laddr, imm);

18: return

19:  end if

20: end for

21: imm < (node_id << 8 | RESIZE_FLAG);
22: post send with imm(imm);
23: retry from step 1 after being notified a resizing accomplishment;

time (e.g., 1 us), after which the lock operation will be replayed. Otherwise,
current client successfully locks target node and enters the checking phase.

In the checking phase (lines 10 to 12 and 19 to 23), the client will verify if
there are free bits (i.e., 0-bit) in the bitmap field. If there is one or more free
bits, the client proceeds to the writing phase. Otherwise, it indicates that the
target node is full (i.e., there is no free Dataltem slot), the client will inform the
server to resize the prefix nodes (see Sect.3.5) and resending the request after
the server informs the accomplishment of resizing.

In the writing phase (lines 13 to 18), the Dataltem location corresponding to
the first free bit in the bitmap will be regarded as the target location to append a
new write. For all types of remote write operations, including insert, delete and
update, the write steps in the client side are almost the same, except the opflag
value in each packed Dataltem to be appended. The opflag indicates the specific
operation type. For example, insert, delete and update can be represented by 1, 2
and 3, respectively. The client then immediately transmits the newly-generated
Dataltem to the target location in the server using a WRITE WITH IMM
verb. The carried 32-byte immediate informs the server of both the node ID of
the target data node and the specific location of the newly inserted Dataltem
in the data node. From the perspective of clients, a remote write operation is
completed once the WRITE WITH IMM request has been successfully posted,
which incurs no server CPU involvement in the critical path.
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Algorithm 2. remote read(key, find value)

: /* fetch both metadata and data*/

node id « findDataNode(key);

raddr « data_base + datanode size * node_id;
len < datanode _size;

post_rdma_read(raddr, len, laddr);

datanode « laddr;

(meta, data) « datanode;

: /* local search */

9: find_value «+ NULL ;

10: for i < 0, i < dataitem num, i+-+ do

11:  if meta.bitmap[i] == 1 && data|i].key == key then
12: find _value < datali].value;

13: return find_value;

14:  end if

15: end for

16: return NULL;

In the server side, a background thread will process the appending messages
from clients, which is out of the critical path of client request execution. When
polling a work completion (WC), it will first locate the newly inserted Dataltem
according to the immediate data, and then checks the opflag field to determine
the write operation type. For insert or delete operation, the server simply atom-
ically modifies the metadata of the data node by changing the corresponding bit
(i.e., 0 to 1 for insert and 1 to O for delete) in the bitmap and resetting the lock
field to 0. For update operation, the server will mark the old Dataltem as invalid
and validate the newly inserted Dataltem at the same time with two bit flips. For
all types of write operations, the server will set the valid field in the Dataltem
to 0 once the metadata update completes. To maintain persistence ordering for
data consistency, we utilize clwb and m fence primitives accordingly.

Notice that a remote write operation is only visible after the correspond-
ing metadata in the server is modified, which avoids data inconsistency dur-
ing system crash. Since the modification of the metadata is an 8-byte atomic
write operation, the expensive logging or copy-on-write is unnecessary. The fine-
grained lock-based remote write mechanism of CANRT has two merits: 1) it
enables clients to write data without the involvement of the server CPU, which
considerably reduces the server processing overhead in the critical path; 2) it
allows Dataltems in each data node to be unsorted and no data shift is required,
hence reducing extra writes to NVM.

3.4 Node-Oriented Remote Read

Instead of simply accessing one Dataltem, CANRT fetches an entire node from
the server-side for each single read. Remote Read operations also start with
locating the target data node. As introduced in Sect. 3.2, the target node locating
can be conducted in the client directly. After obtaining the target data node ID,
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Fig. 4. Non-blocking resizing

the client posts a READ request to fetch the target data node in the server
radix tree. Algorithm 2 illustrates the remote read mechanism of CANRT. Since
only one RDMA operation is posted, the total network overhead is only 1 RTT.
After fetching the required data node to local buffer, the client then checks the
bitmap entry in the metadata field and scans the valid Dataltems to retrieve the
matched Dataltem.

Although the unsorted Dataltems increase the searching time inside the data
node, the searching performance is still acceptable since the number of Dataltems
inside a data node is limited (see Sect. 4). Thanks to the bitmap-assisted strategy,
the read operations will never be blocked by any concurrent write operation since
the search process will only check the Dataltems whose bit value is one in the
bitmap.

3.5 Non-blocking Resizing

As the size of each data node is fixed, when one data node is full, the server need
to allocate more space to hold more keys. As such, existing keys in the tree may
be reorganized and migrated to newly-generated data nodes. This procedure is
called radix tree resizing. The resizing can be triggered either by the server itself
or the notification of a client, as lines 21-22 in Algorithm 1 indicate.

We propose a non-blocking resizing scheme for CANRT. That is, even during
data migration, the radix tree in the server can still be accessed by remote
clients. The key idea is using a tick-tock design (see Fig.4) inspired by Redis
dictionary [20] to avoid any modifications to current tree structure during data
migration. Specifically, CANRT maintains two versions of radix tree, one version
as the valid tree and the other as the shadow tree. Any read or write operation
is performed on the valid tree and the shadow tree is exclusively designed for
resizing.

In CANRT, there are two types of resizing: addWidth and addHeight. When
the last data node is full, addWidth resizing is performed to store more characters
in each level of prefix nodes. Otherwise, the resizing procedure is launched in the
addHeight manner. Both addWidth and addHeight will not affect the old data
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nodes, the newly generated data nodes will simply be appended to the end of
old data nodes and the Dataltem migration will be reflected by the metadata.

With the shadow tree, the resizing scheme in CANRT is non-blocking for read
operations, and only a portion of write operations will be blocked due to locking
failure to the full data nodes. Compared to read and write operations, the resizing
procedure seems time-consuming in large CANRT, but the frequency of resizing
can be significantly dropped with more and more prefixes inserted into the prefix
nodes (6.20% when inserting one thousand keys and 1.47% when inserting one
million keys). We believe that such overhead is acceptable.

3.6 Crash Recovery

Inconsistency may occur when system crashes during remote write operations or
resizing procedure and thus recovery is required. The recover procedure starts
with detecting the locked data nodes and then checks the wvalid field of each
Dataltem in those data nodes. The valid field is the last bit of each Dataltem
and indicates both the integrity of the Dataltem and whether the server side
process for that Dataltem is completed. If the valid value is 1, which means the
Dataltem is not processed, the server will simply execute server side metadata
update, as discussed in Sect. 3.3. If the valid value is 0, it means current Dataltem
1) has already been processed by the server or 2) is an incomplete write from
the client. In either case, the server-side data state is consistent.

After fixing the remote write inconsistency, the server will then check the
resizing consistency. We use two state flags (i.e., pzflag and dtflag) to mark
the completion of prefix nodes reconstruction and data migration, respectively.
Only when the two flags are both marked, the system crash does not occur during
resizing procedure. Otherwise, the recover procedure should be performed. When
pzflag is unmarked, it means that the resize procedure just starts, and the
server will simply replay the whole resizing procedure. When px flag is marked
and dt flag is unmarked, it means that system crashes after the reconstruction
of the prefix nodes but before the completion of data migration. In such cases,
the server will perform the data migration recovery. The procedure ends with
atomically marking the dtflag which transforms the shadow tree to the new
valid tree.

4 Evaluation

4.1 Experimental Setup

Different from previous works that leverage a DRAM-based PM performance
emulator (e.g., Intel PMEP/Quartz) to emulate PM latency [1,7,12,14], we
conduct our experiments on a small cluster of three machines, which are all
equipped with commercial Intel Optane DC Persistent Memory, and Intel
Xeon(R) 2.60 GHz CPU (32KB/1MB/24MB L1/L2/L3 cache). Our experi-
ments are performed in the AppDirect mode of AEP, which exposes a separate
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Fig. 5. Remote read and write performance comparisons

persistent memory device. As for RDMA hardware configuration, all of these
machines are equipped with Mellanox ConnectX-5 InfiniBand NIC and run on
Ubuntu 18.04 (kernel version 4.18.04). For each experiment, we use one machine
as server, while the remaining two machines work as clients. Since 16-byte key
has been broadly adopted in current key-value stores [18], we set the key and
value in CANRT to be 16 bytes and 15 bytes, respectively.

For comparison, we implement both WORT and WOART by adding RDMA
mechanism to it. To accelerate remote access, similar to previous RDMA-enabled
hash works [5,9], we design a ring buffer mechanism for both WORT and
WOART. That is, for each client, the server keeps a request ring buffer and
for both remote read and write procedure, clients only need to write requests
to the ring buffer using a WRITE WITH IMM verb. The server dedicatedly
checks the corresponding client ring buffer and makes processing once a request
is found. Afterwards, the server will inform the client using a SEND verb. The
procedure ends once the client receives the server’s reply message. We evaluate
the operation latency with random String workload and test throughput with
the widely-used YCSB [4] benchmark. Each result is averaged for 10 runs.

4.2 Remote Write Latency

Figure5(a) shows the comparison of remote write performance among CANRT
and the other two radix tree variants under random and sequential workloads.
For random workloads, CANRT is roughly 1.7x faster than the other two trees.
Although it seems that CANRT requires more RTTs (i.e., about 1.5 RTTS)
in one remote write operation, it is steady and little affected by the server’s
CPU usage. For WORT and WOART, apart from 1 RTT (i.e., 0.5 RTT for
client’s WRITE and 0.5 RTT for server’s SEND), waiting for the server’s reply
also incurs heavy time consumption, including request polling, key locating,
data persistence, and posting reply message. All these processing steps are in
the critical path of request execution. Since each operation requires interaction
between the client and the server, the latency is more unstable compared with
CANRT. Although WOART has better local write performance than WORT,
the relatively much higher network overhead makes this difference no longer
noticeable. For sequential workloads, the performance of CANRT is dropped by
7.94% compared with random workloads. This is because sequential workloads
contribute to a higher probability of data node access conflict.
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Fig. 6. Throughput and scalability comparisons under YCSB workloads

4.3 Remote Read Latency

Figure 5(b) compares the remote write latency of three radix trees. We observe
that CANRT outperforms its counterparts by 1.19x-1.22x. It is also noticed that
the read latency of CANRT is slightly higher than the write latency shown
in Fig.5(a). Although each remote read operation of CANRT only consumes
one RTT, the size of the data transferred per operation is larger compared
with write operations. For WORT and WOART, the server-reply mechanism
incurs higher latency than CANRT due to the processing overhead in the criti-
cal path. For sequential workloads, the latency of WORT and WOART is lower
than the latency under random workloads. The reduction of server side cache
misses under sequential workloads contributes to the improvement of WORT and
WOART. Although there is almost no performance improvement for CANRT
under sequential workloads, the total latency of CANRT remote read operations
is still lower than WORT and WOART.

4.4 Range Query Latency

Since Dataltems with same prefix are stored in the same data node in CANRT,
we integrate consecutive requests for the same data node into one request, which
significantly improves the range query performance. For WORT and WOART,
due to the structure limitation, the remote range query functions are simply
implemented by calling a remote read request for each key. We collect the range
query performance by querying 10000 and 100000 keys respectively, and the
results shown in Fig. 5(c) demonstrate that CANRT achieves much better per-
formance for range query. When querying 10000 keys, CANRT is roughly 3.1x
faster compared with WORT or WOART. When querying 100000 keys, CANRT
is 3.71x faster than WORT and 3.82x faster than WOART.

4.5 Concurrent Throughput

In the experiments shown in Fig.6(a), we evaluate the concurrent throughput
under four types of YCSB workloads: Write-Only (100% update), Write-Heavy
(50% read + 50% update), Read-Heavy (95% read + 5% update) and Read-
Only (100% read). The experiments are conducted using 16 threads. We can
observe that CANRT consistently outperforms the other two radix trees due
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to its server-bypass remote access mechanism. For WORT and WOART, since
each operation requires the server’s process, the server CPU becomes the bot-
tleneck of the remote access. For CANRT, write-only workload performs best
among the four YCSB workloads, and read-only workload performs worst. This
is because write operations consume less bandwidth. In CANRT, each write
operation only transfers one 8-byte metadata and one Dataltem while the read
operations require fetching the whole data node. However, since each remote
read operation only requires one RTT and the number of Dataltems in one data
node is limited, the remote read throughput is still acceptable.

Figure 6(b) and Fig.6(c) show the scalability performance of three radix
trees under write-heavy and read-heavy workloads, respectively. Due to the
server CPU limitation, WORT and WOART exhibit poor scalability and they
are unable to saturate the network bandwidth. By contrast, the throughput of
CANRT increases with the number of client threads. For Write-Heavy work-
loads, Fig.6(b) shows that when the number of threads increases from 2 to
16, the throughput of CANRT is increased by 10.88x, which almost increases
proportionally to the number of threads. However, for read-heavy workload,
the experimental results in Fig.6(c) show that the performance of CANRT is
increased by a factor of 7.93, when the number of threads increases from 2 to 16,
which increases proportionally to the number of threads only when the number
of threads is less than 8. The reason is that when the number of client threads
reaches 16, the network bandwidth becomes the bottleneck of remote access.
Notice that remote read operations carries larger packet each time than remote
write and hence the read throughput bottleneck is reached earlier.

5 Conclusion

In this paper, we propose CANRT, a client-active NVM-based radix tree for
fast remote access using RDMA technology. We decouple the radix tree nodes
into data nodes and prefix nodes to exert the full potential of both NVM and
RDMA. We design a node-oriented read mechanism for low-latency remote reads
and a fine-grained lock-based write mechanism for fast remote writes. The exper-
imental results show that CANRT performs better than server-centric persistent
radix trees in terms of both remote access latency and throughput.
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