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Abstract. Byte-addressable non-volatile memory (NVM) offers fast,
fine-grained random access to persistent storage, which revolutionizes
the architecture design of file systems. Existing NVM-based file systems
seldom optimize the directory-access performance despite that directory
operations significantly impact application performance. These file sys-
tems still follow the traditional design of multi-level directory namespace
which is inadequate for byte-addressable NVM and involves redundant
access overhead.

In this paper, we propose an adaptive directory accelerating mech-
anism (ADAM) for NVM-based file systems. ADAM analyzes differ-
ent directory states including read/write frequency and size and then
builds adaptive full-name directory namespace (AFDN) areas as well
as an evolving strategy. Compared with multi-level directory names-
pace, AFDN areas offer fast read access and low write latency. Besides,
the evolving strategy helps AFDN areas maintain a stable performance
during system runtime. We implement ADAM on NOn-Volatile mem-
ory Accelerated (NOVA) log-structured file system and build an effi-
cient hybrid index for DRAM/NVMM architecture. Experiments show
that NOVA with ADAM achieves up to 43% latency reduction and
76% throughput improvement, compared with original NOVA. More-
over, ADAM generally outperforms other state-of-the-art NVM-based
file systems in various tests.
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1 Introduction

Emerging non-volatile memory (NVM) techniques promise to offer both byte-
addressability and persistent memory storage, e.g., spin-torque transfer, phase
change [13], resistive memories [19], and Intel and Micron’s 3D-XPoint [11] tech-
nology, which revolutionize the architecture design of file systems. As a result,
many file systems are proposed to exploit the performance benefit of NVM, such
as NOVA [16], PMFS [6], SCMFS [14] and HMVFS [20]. These NVM-based file
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systems significantly improve the performance through redesigning structures
which are considered to be inefficient or unsuitable for NVM characteristics.

Directory operations have a large impact on application performance [9,10,
12]. There are two main traditional designs of directory namespace: multi-level
directory namespace and full-name directory namespace. Multi-level directory
namespace supports fast renames but increases read latency because of recur-
sive scans [18]. This kind of mechanism tightly couples directory metadata and
inode since the directory index and update involve both directory names and
inode numbers, thus it brings a large overhead in consistency guarantee. On the
contrary, full-name directory namespace offers fast direct access but brings heavy
write overhead in renames, because changes of the path name may cause a large
amount of small random writes which are amplified [8] in traditional disk-based
file systems.

It is a trade-off to choose one of the above mechanisms for a disk-based file
system, however, both of which are not suitable for NVM-based file systems.
For multi-level directory namespace, it is unnecessary to sacrifice directory read
performance because the write amplification problem no longer exists in byte-
addressable NVM. Besides, the tight coupling of directory metadata and inodes
causes redundant access to inodes and large NVM writes which have a negative
impact on access performance. For these reasons, full-name directory namespace
is more appropriate for NVM. However, problems arise when implementing full-
name directory namespace on NVM-based file systems since it naturally brings
a large number of random writes when renaming directories. Current NVM-
based file systems seldom consider these issues and implement their directory
mechanisms following the improper traditional design of multi-level directory
namespace.

In this paper, we propose ADAM, an adaptive directory accelerating mech-
anism, which provides fast read access as well as low write overhead. ADAM
introduces a new design of directory layout called adaptive full-name directory
namespace (AFDN). Each AFDN area defines a root directory with a full path
name and sub-directories with adaptive path names relative to the root directory
name. The adaptive path names not only avoid the rename overhead when the
root directory name changes, but also improve both read and write performance
of directories by decoupling directory metadata and inodes.

Moreover, ADAM classifies directory states based on read frequency, write
frequency and directory size. We introduce an evolving strategy which defines
three evolvements for AFDN areas: splitting, merging and inheriting. The evolv-
ing strategy ensures that each AFDN area is selected reasonably and keeps the
division of AFDN areas always be adaptive to the directory changing states
during system runtime.

We implement ADAM on NOVA, a hybrid DRAM/NVMM file system, and
build an efficient hybrid index includes hash tables and radix trees.

We conclude our contributions as follows:
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e We analyze the previous, unsuitable directory designs in NVM-based file sys-
tems and propose ADAM, an adaptive directory accelerating mechanism,
which offers fast directory access as well as low write overhead.

e We introduce AFDN, adaptive full-name directory namespace which labels
different directory states in the state-map and reduces directory access over-
head by decoupling directories/files and inodes.

e We propose an evolving strategy to keep the most beneficial namespace divi-
sion and a stable performance of AFDN areas during system runtime by
involving three evolvements for AFDN areas.

e We implement an efficient index including radix trees in DRAM and multi-
level hash tables in NVM. The hybrid index ensures the best utilization of
both larger, persistent NVM and faster, volatile DRAM.

e We implement ADAM on NOVA [16] and evaluate the performance on several
benchmarks. The results show that NOVA with ADAM achieves up to 43%
latency reduction and 76% throughput improvement compared with origi-
nal NOVA and generally outperforms other state-of-the-art NVM-based file
systems.

The rest of this paper is organized as follows. We introduce the ADAM design
in Sect. 3 and implementation details in Sect. 4. We discuss the evaluation results
in Sect. 5. Finally, we provide related works in Sect. 6 and conclude our paper in
Sect. 7.

2 Background and Motivation

2.1 Non-volatile Memory

Table 1 summarizes the characteristics of different memory technologies. NVM
provides slightly shorted read latency to DRAM, while its write latency is appar-
ently longer than DRAM. Similar to NAND Flash, the write endurance of NVM
is limited especially for PCM. But unlike flash that is block-addressable, NVM
is byte-addressable. Besides, NVM has high performance of random access like
DRAM, which is better than traditional Flash.

Table 1. Comparison of different memory characteristics [7,17]

Category Read latency | Write latency | Write endurance | Byte- addressable
DRAM 60 ns 60 ns 10'¢ Yes
PCM 50-70ns 150-1000ns | 10° Yes
ReRAM 25ns 500 ns 10 Yes
NAND Flash | 35us 350ps 10° No

In hybrid DRAM/NVMM architecture, the drawback of NVM is the long
write latency while the advantage of NVM is byte-addressability [1]. Thus, our
work aims to accelerate the directory access by designing a new directory mech-
anism, which suits NVM byte-addressability and reduces the number of writes.
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2.2 High Directory Access Overhead

The directory mechanism significantly impacts file system performance since
directory operations are commonly involved in many applications such as tar,
git-clone, and git-diff. However, there are three problems in current NVM-based
file systems directory mecahnisms: (i) Current NVM-based file systems mainly
follow the traditional directory design, which is suitable for the block-addressable
disk but not byte-addressable NVM. Though NVM solves the write-amplification
problem, known as the bottleneck of full-name directory namespace, the write
overhead remains heavy when renaming the full path names, and slows down
directory operations. (ii) The directory name is not unique and can not be
considered as an independent index in current multilevel directory namespace.
Therefore, directory metadata and inodes are tightly coupled, which increases
the write overhead to keep consistency for inode and directory metadata. (iii)
The states of directories, e.g., read/write-frequency and directory size, always
change in system lifetime and have a different impact on system performance
while it is not well utilized in current file systems.

To overcome the above problems, it is necessary for us to design an NVM-
friendly directory mechanism which accelerates directory access. The new direc-
tory design needs to weaken the coupling between directories and inodes so not
only do we reduce the write overhead of consistency guarantee but also we reduce
the access latency to directories and files. Besides, it is beneficial to utilize dif-
ferent directory states and design an adaptive mechanism to make the system
maintain the best performance during runtime.

3 Design

3.1 ADAM Layout

Figure 1 shows the design of ADAM layout which contains four parts: AFDN
areas, Multi-level hashtables, AMT areas and DRAM cache trees.

AFDN Areas. ADAM initializes each AFDN area in a 2 MB block array.
Each directory and file entry is initially aligned on a 128-Byte boundary. ADAM
assigns new directory/file entries to the AFDN area in a round-robin order, so
that directories/files are evenly distributed among AFDN areas.

Each AFDN area has a root directory with a full path name and plenty of
sub-directories which stores an adaptive path name relative to the root directory
name. Therefore, AFDN decouples directory metadata and inodes by using this
kind of unique path names. Moreover, renaming a directory that is the root of an
AFDN area causes no write overhead to the sub-directories. Every AFDN area
has an area_ID which is the hash value of the root name. As shown in Fig. 2, an
AFDN area contains two parts: directory/file entries and a state-map.

State-Map. A state-map is a two-bit bitmap, in which each slot labels the state
of an entry in the AFDN area. As shown in Fig. 2, the state-map is in the head
of an AFDN area. A 2-bit slot in a state-map can represent four different states:
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Fig. 2. AFDN areas and hash tables

00 represents an invalid entry in AFDN area, 01 represents a valid file or a cold
directory, 10 and 11 represent warm directories and hot directories respectively.
Hot labels represent higher access overhead. ADAM gains the best performance
when hot directories are selected as root directories in order to reduce rename
overhead and read latency. The computation and design details of the state labels
are introduced in Sect. 3.3.

Multi-level Hash Tables. We build multi-level hash tables for each AFDN
area to support fast directory/file locating as shown in Fig.2. A hash entry
contains a hash value of an adaptive path name and the position of an AFDN
entry as a hash pair. To reduce the hash table size, each hash entry contains a
valid bit, thus we can reuse invalid hash entries for new files and directories.

Area Manage Table (AMT). The AMT records the addresses of both AFDN
areas and corresponding hash tables, and it is allocated and initialized as a 4 KB
block as shown in Fig.1. An AMT has two parts: a bitmap and 54-Byte slots.
The bitmap manages the allocations and releases of the slots and each slot is
cached in DRAM in order to reduce index latency.
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DRAM Cache Trees. ADAM keeps two kinds of radix tree in DRAM: an
AMT radix tree and status radix trees. The status radix tree is used to calculate
the directory states and it records the read frequency, write frequency and the
directory size for each accessed directory.c The leaves of the AMT radix tree store
the same information as NVM AMT slots. The AMT radix tree is an important
part of the hybrid index which is introduced in Sect. 3.2.

3.2 Hybrid Index

Since the index structure has a great influence on hybrid DRAM/NVMM storage
systems [3], we pay close attention to the directory searching and design an
efficient hybrid index.

The hybrid index contains three parts: AFDN hash tables, AMT and DRAM
radix trees. The multi-level hash tables provide a good solution to hash conflicts
and offer a fast access at the same time. We use a radix tree because there is a
mature, well-tested, widely-used implementation in the Linux kernel. Through-
out DRAM radix tree searching, we can easily and quickly find the right AFDN
area and corresponding hash tables. According to Tablel, DRAM owns the
fastest access speed which is suitable to store the most frequently accessed index
structures. It is easy to see that the AMT has a high-frequency access with small
space requirement for DRAM space.

Applications can quickly locate the directory and file with our hybrid index
through the following step: (i) calculate the AFDN area_ID with the path name;
(ii) searching the right leaf in the AMT radix tree; (iii) find the address of
AFDN area and the corresponding hash table; (iv) locate the directory by the
hash key-value pair.

Table 2. Directory states and state-map labels

States Label | Bit-value
Size | Write Read

small | frequent | frequent | warm | 10

rare

rare frequent | cold 01

rare

large | frequent | frequent | hot 11

rare

rare frequent

rare warm | 10

invalid invalid | 00
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3.3 States of Directories

We consider read frequency, write frequency and size as three important states
to label different directories. The state of a directory changes among different
applications and is categorized into 5 groups: {small size, large size, frequently
read, rarely read, frequently write, rarely write}. The write overhead is caused
mainly by directory renames and creates. And we define 3 labels to classify dif-
ferent directories, they are {hot, warm, cold}. Different labels represent different
access overhead, which means a hot directory brings the largest access overhead.
Table 2 lists the mapping from directory states to labels.

Three Important States: Read frequency is an important state because select-
ing a large, frequently read directory to be a root directory of a new AFDN area
will greatly reduce the access latency to this new root and its sub-directories.
Root directories or children of root directories only need one calculation to find
which AFDN area the target file belongs to, while others need more recursive
calculations for the correct AFDN area. The worst case involves the same num-
ber of calculations as the number of recursive scans in traditional multi-level
directory namespace.

Since write overhead affects most to the performance of NVM, we consider
write frequency as the prime factor in calculating directory labels.

Size is also an important factor because larger directories are more likely to
generate a large amount of write overhead.

Calculation: To calculate the read frequency, ADAM first counts access times
for each accessed directory and records the value in DRAM status tree. And
then ADAM calculates the average read time of the AFDN area. Third, ADAM
marks frequently read if the directory access time is more than the average value
or marks rarely read if less than the average value.

Since rename brings the largest write overhead, ADAM marks a directory
frequently write once it is renamed. A rarely write directory is the one which is
never renamed during the runtime.

In size calculation, ADAM introduces Size_Max and Size_Min to determine
the size state of a directory. Each directory that is not the root of its AFDN
area has the size at most Size_Mazx. Each area has size at least Size_Min.
In our implementation, Size_-Max = Size_Min = 512KB [18]. ADAM marks
a directory large when its size is larger than Size_Maz, and small when it is
smaller than Size_Min.

According to the above calculating rules and the mapping ralation shown in
Table 2, we update the values stored in NVM state-map every 5 s before executing
our evolving strategy which is introduced in Sect. 3.4.

3.4 Evolving Strategy

For purpose of adapting to changing states during system runtime, we define
three evolvements among AFDN areas: splitting, merging and inheriting, shown
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Fig. 3. Adaptive evolving strategy

in Fig.3. ADAM executes these evolvements on the base of labels recorded in
the state-map.

Splitting is the way to create new AFDN areas as well as to select corre-
sponding root directories. When splitting happens, ADAM copies all the sub-
files and sub-directories to the new allocated AFDN area and then changes their
adaptive names. The root directory still stays in the original AFDN area. ADAM
executes splitting when the system periodically checks labels in a state-map and
finds a hot directory which brings a large access overhead.

Merging happens when an old AFDN area is small and seldom accessed.
This kind of AFDN area wastes nearly a 2MB block array because the invalid
entries take up the most space and the rest sub-directories and sub-files are
seldom visited or renamed. Once we find a root directory satisfies the conditions
we will merge the directories and files back to their parent AFDN area and then
free this area to make it reusable.

Inheriting defines an AFDN evolvement that a strong sub-directory replaces
its parent root directory. The strong sub-directory represents a kind of the direc-
tory which owns large size and contributes to the vast majority access to the
AFDN area.

For an inheriting evolvement, the operations follow the steps shown in Fig. 3.
First, ADAM detects the directory /C, which is a strong sub-directory in AFDN
/R/A/B and meets the inheriting conditions. Second, ADAM merges /C and
its brother-directories/files back to the parent AFDN area /R and sets their new
adaptive path names. Third, ADAM changes the type of the old root directory
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/A/B to normal directory and sets /A/B/C as the new root directory. Fourth,
ADAM changes the full path name of AFDN area from /R/A/B to /R/A/B/C.
Fifth, ADAM resets the state-map for both AFDN /R and AFDN /R/A/B/C.

The evolving strategy keeps the system adaptive to different states and
maintains the best and stable performance during runtime. In our implemen-
tation, ADAM checks the state-map of all accessed AFDN areas every 5s at
the background and then updates the corresponding state-map before execut-
ing the evolving strategy. The evolving strategy brings small space overhead for
copying splitting directories entries. However, compared with the total size of
files and directory when splitting happens, it is reasonable to sacrifice the small
space overhead to accelerate directory access and keep the system stable during
runtime.

4 Implementation

We implement ADAM on NOVA [16], a state-of-the-art log-structured NVM-
based file system. Note that ADAM can also be implemented in other NVM-
based file systems, such as PMFS [6] or HMVFS [20] to accelerate directory
access and reduce write overhead.

Optimized Index. Considering that DRAM and NVM show different char-
acteristics, the index in hybrid DRAM/NVMM file system should utilize the
strength of both faster DRAM and larger NVM. It is not yet well-balanced in
NOVA as it caches all directories and files in DRAM [16], which take too much
space of DRAM. Inspired by HiKV [15], we implement an optimized hybrid direc-
tory index with large hash tables in NVM and frequently accessed radix trees in
DRAM which only caches the index of AFDN areas to save DRAM space over-
head. Moreover, compared with the linear linked list for directory log-entries in
NOVA, hash tables can greatly accelerate name searching for directories and
files.

Efficient Logging. NOVA involves large overhead for keeping the consistency
between DRAM radix trees and NVM structures since it copies all the directories
and files into DRAM. The consistency overhead includes checking the large radix
tree and journalling for logs. ADAM reduces the scale needed to write logs. In our
mechanism, we atomically update 2-bit slots of the NVM state-map by writing
to a log buffer first. The log buffer size is fixed to the same size of a state-
map, which is much smaller than keeping a large number of log entries for each
cached directory and file in NOVA. Under this consideration, ADAM greatly
reduced the consistency overhead compared with NOVA. Besides, we enforce
write ordering by using instructions of mfence and clflush in ADAM which are
widely implemented in NVM-based storage systems [5,16] to ensure consistency.

Lightweight Update. Since multi-level directory namespace tightly couples
directories and inodes, the file systems which follows this traditional mechanism
brings heavy write overhead in frequent directory/inode logging and updating.
However, directories in ADAM with adaptive path names are able to be found
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and updated independently, which avoids the redundant updates to and caused
by inode updates. Therefore, ADAM greatly reduces the frequency of updating
and minimized the directory update overhead.

5 Evaluation

5.1 Experimental Setup

We evaluate the performance of ADAM with NOVA against PMFS, original
NOVA, and EXT4-DAX. We conduct experiments on a commodity server with
64 Intel Xeon 2 GHz processors and 128G DRAM, running Linux 4.3.0 kernel,
and we change the kernel to 3.11.0 for PMFS. For EXT4-DAX, we use ramdisk
carved from DRAM and configure 64 GB as ramdisk to simulate NVM. For
PMFS and NOVA, we reserve 64 GB of memory using the grub option memmap.
User processes and buffer cache use the rest of the free DRAM space. Since NVM
has similar read performance but apparently slower write performance compared
with DRAM, we introduce extra latencies for NVM write to emulate the longer
write latency of NVM. We consider the write latency as 500ns which is the
average value of different NVMs shown in Table 1.

Table 3. Micro-benchmark characteristics

Name | Workload
filetest | (i) create (10*) (ii) unlink (10%)
dirtest | (i) mkdir (10*) (ii) rmdir (10%)

5.2 Write Performance Improvement

Micro-benchmarks. We use two single-threaded micro-benchmarks to evaluate
the write performance of ADAM-NOVA, as shown in Table 3. The filetest create
10* files in one directory and then deletes all of them. The dirtest is similar to
the filetest but the operated objects are directories instead of files. Our micro-
benchmarks are write-sensitive since both of the create and delete operations
for directories and files involve large write overhead. All the results are averaged
over five runs.

Figure 4 shows the experimental results of filetest and dirtest, with through-
put and latency in (a) and (b) respectively. Among the assessed operations
create, mkdir, unlink, and rmdir, ADAM-NOVA consistently achieves the best
performance. In create and mkdir tests, compared with NOVA, ADAM-NOVA
increases throughput by 8.6% and 24% and reduces latency by 7.7% and 19%.
In wnlink and rmdir tests, ADAM-NOVA outperforms NOVA by 76% and 37%
in throughput and outperforms NOVA by 43% and 29% in latency.
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We attribute the write performance improvement to the reduction of NVM
writes. ADAM offers each directory and each file an adaptive path name which
makes them independent of their inodes. Thus, system calls is excuted without
redundant access to inodes which increases the total access latency. On the
contrary, directories/files are tightly coupled with inodes in original NOVA. In
order to quickly update the directory entry, NOVA maintains two pointers in
inodes which point to the coupling directory entries. Such pointers produce large
write overhead once the old directory is changed or a new directory is appended.

Except for excessive write operations, PMFS has high latency and low
throughput because the cost of write overhead grows linearly with the num-
ber of directory entries. This is notable for create and mkdir since one insertion
to directory needs to scan all existing dentries to find an available slot. ADAM
reduces the latency by 74% to 79% for create and mkdir compared with PMFS.
EXT4-DAX leverages hashed B-tree to speed up directory access, thus it achieves
better performance than PMFS for create and mkdir, and in these cases, ADAM
outperforms EXT4-DAX by 34% to 44%.

5.3 Read Performance Improvement

Filebench. We evaluate the read performance of ADAM-NOVA with a real-
world application by running a Listdir workload in Filebench. We choose the
Listdir workload of 10000 directories and run it with 1 to 10 threads. We run
these experiments multiple times and report the average results.

As shown in Fig.5, the performance of ListDirs increases rapidly when
thread < 4. ADAM-NOVA performs better than original NOVA and EXT4-
DAX. ADAM improves up to 9.7% throughput compared with original NOVA
and outperforms EXT4-DAX by up to 41%.

ADAM shows faster read than original NOVA because (i) each directory in
indexed by multilevel hash tables; (ii) each directory in NVM is read directly
by adaptive path name without recursive scans. NOVA also performs well when
thread increases, since it leverages in-DRAM radix trees to manage directories.
However, these radix trees consume much more DRAM space which is optimized
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in ADAM by a hybrid index. EXT4-DAX performs the worst because the hashed
B-tree is not suitable for the in-memory file system which is mainly used to
optimize the disk I/0.

5.4 Benifits of Strategy

We evaluate the directory rename performance for ADAM with evolving strategy
and ADAM without evolving strategy. Then we choose one directory named Dir-
A in dirtest microbenchmark and create 1-10000 subfiles. Then we increasing
the access time of Dir-A by accessing this directory multiple times to make it a
read frequently directory. Note there is no difference to make a large directory
hot by increasing the read frequency or changing the write frequency.

As shown in Fig. 6, the rename latency is similar for ADAM with evolving
strategy and ADAM without evolving strategy when the number of subfiles is
< 4000. It is decreased in ADAM with evolving strategy when the number of
subfiles is > 4000. Because in our implementation, the size of a directory is con-
sidered large when the size of it takes more than 512 KB. ADAM with evolving
strategy performs a low and stable rename latency compared with ADAM with
evolving strategy. For ADAM without evolving strategy, the rename latency
keeps increasing when the number of subfiles increases.

ADAM with evolving strategy performs lower rename latency because the
Dir-A is split to be a root directory of a new AFDN when it is large and its label
becomes hot. The rename of root directory involves no overhead to sub-files and
sub-directories. For ADAM without evolving strategy, the rename of directory
cause a large rename overhead for its sub-files and sub-directories. Therefore the
evolving strategy shows great benefits to reduce the rename latency and keeps
system stable during runtime.

5.5 Sensitivity to Different NVMs

Although NVM has similar read latency compared with DRAM, different NVM
technologies have different write latencies which are all longer than DRAM. NVM
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built by PCM [13] and 3DX-Point [11] is expected to have 150ns to 1000ns write
latency according to Table1, while the write latency of DRAM is 60ns. We
simulate different NVM technologies by inserting different delays [5] to evaluate
the sensitivity of both ADAM-NOVA and original NOVA.
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Fig. 7. Latency with different delays

Figure 7 shows the latency of directory operations and file operations in our
micro-benchmarks with different delays. In different cases of mkdir, rmdir, create,
unlink, original NOVA shows drastically increasing latency, while ADAM-NOVA
performs more stable because of the reduction of writes. Increasing the delay
from 0 to 1000ns, the latency of original NOVA increases 1.

21% for mkdir, 193% for rmdir, 57% for create, 291% for unlink compared
with its original values, while the corresponding increases of ADAM-NOVA are
54% for mkdir, 65% for rmdir, 7% for create, 56% for unlink.

ADAM performs better on involving fewer NVM writes. Because ADAM
provides adaptive path names for each directory and file, which decouples direc-
tories/files and inodes. In contrast, the design of multi-level directory namespace
in original NOVA tightly couples directories/files and inodes which involves a
large number of redundant write for consistency guarantees during system calls.
Therefore, ADAM performs better scalability to different NVMs.

To summarize, ADAM achieves a significant improvement for both read
and write performance compared with original NOVA, PMFS, and EXT4-DAX.
Besides, ADAM successfully reduces the rename overhead by executing the evolv-
ing strategy which keeps the systems adaptive to different states during system
runtime. Moreover, ADAM is more suitable for NVM characteristics which are
decided by different write latencies.

6 Related Work

NOVA is a state-of-the-art log-structured NVM-based file system, which per-
forms well in file/directory access and atomic updates. However, NOVA imple-
ments their directory mechanism following the traditional multi-level directory
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namespace which is not suitable for NVM characteristics and involves long access
latency. We implement ADAM in NOVA to optimize the problems and experi-
ments show that we greatly reduce the access latency.

BetrFS 0.2 [18] uses write-optimized dictionaries [2] and proposes zones
to optimize file system performance. However, BetrF'S 0.2 is designed for disk-
based storage and uses write-optimized dictionaries to combine the small random
writes into large sequential writes which are not necessary for NVM with byte-
addressable random access. Besides, the detection of zones is only based on the
size of directories and files, which is not accurate in zone-root selection.

HiKV [15] introduces an efficient hybrid index for DRAM/NVMM KV-
store [4] mixture systems. Our mechanism optimizes it in NVM-besed file systems
by implementing radix trees in DRAM which suits well in Linux kernel and using
multi-level hash tables to avoid hash conflicting.

7 Conclusion

In this paper, we propose ADAM, an adaptive directory accelerating mechanism,
which suits byte-addressable NVM and offers fast read performance as well as
low write latency for NVM-based file systems. ADAM is adaptive to different
states of directories and keeps good, stable performance during system runtime.
We also implement an efficient hybrid index to combine the best characteristics
of DRAM and NVM. Our experiments show that NOVA with ADAM achieves
up to 43% latency reduction and 76% throughput improvement compared with
original NOVA and generally performs better than other state-of-the-art NVM-
based file systems.
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