
A DAX-enabled Mmap Mechanism for
Log-structured In-memory File Systems

Zhixiang Mao∗, Shengan Zheng∗, Linpeng Huang∗, Yanyan Shen∗
∗Department of Computer Science and Engineering

Shanghai Jiao Tong University
Email: {mzxsusilo, venero1209, lphuang, shenyy}@sjtu.edu.cn

Abstract—Emerging byte-addressable Non-Volatile Mem-
ory(NVM) technologies offer fine-grained access to persistent
data with latency comparable to DRAM. This presents both
challenges and opportunities to system software designers. To
utilize the fascinating features of NVM, a lot of works have been
done to develop NVM-based file systems. Direct access (DAX) is a
key feature provided by most NVM-based file systems, it enables
applications to directly access NVM without going through the
page cache layer. However, DAX-style mmap may cause serious
consistency issues in versioning in-memory file systems that adopt
CoW to solve block sharing problem among snapshots.

In this paper, we propose a new mmap mechanism called
versioning-mmap which solves the consistency issue of memory-
mapped I/O in DAX-enabled versioning in-memory file systems.
We implement our proposed mechanism in HMVFS and do
a series of experiments based on our implementation. Results
show that our mechanism achieves consistency while imposing
negligible performance overhead compared to PMFS and NOVA.

I. INTRODUCTION

Conventional computer systems usually adopt a two-level
storage model, with fast, byte-addressable, volatile DRAM
serving as a buffer to cache the working set of programs and
files, and slower, non-volatile block storage serving as back-
end device to persist data. However, emerging non-volatile-
memory(NVM) technologies, such as phase change memory
(PCM)[1], spin-torque transfer memory(STT-RAM)[2], and
resistive memory(ReRAM)[3], are expected to revolutionize
this two-level storage model in the near future. The reason for
this insight is that NVM possesses the best features of both
DRAM and Disk. Its performance is comparable to DRAM,
while the data stored in NVM can persist without power just
like disks. This presents a lot of opportunities and challenges
for computer architecture designers as well as system software
programmers[4][5].

File systems have always been designed and optimized to
exploit the characteristics of storage media. For examples,
F2FS[6] is designed to fully leverage the usage of the NAND
flash media, ramfs[8] and tmpfs[7] are in-memory file systems
designed for DRAM to store temporary data. With the devel-
opment of NVM technology, researchers have been trying to
optimize file systems to accommodate the fascinating features
that NVM provides. Several works have already been done,
such as SCMFS[9], PMFS[14], BPFS[10] and NOVA[15].

Performance and consistency are two key components
one should bear in mind when designing a file system.

To maximize the performance of NVM-based file system,
researchers have proposed a method called XIP(execute-in-
place) or DAX(direct access), which bypasses the page cache
layer and operates directly on NVM pages. Take memory-
mapped I/O as an example, in traditional file systems, the
requested page in a memory-mapped file will first be copied to
DRAM(page cache) on a page fault and then the buffered page
in DRAM will be mapped into application’s address space.
This is useful in Disk-based file systems since the performance
gap between disk and DRAM is huge and disks are not byte-
addressable. But when it comes to NVM, page cache seems to
be unnecessary or even harmful to the performance because the
access latency of NVM is expected to be close to DRAM, and
NVM is byte-addressable. Therefore in DAX-mmap, NVM
page will be directly mapped to application’s address space
without copying to DRAM.

As for consistency, snapshotting is a well-known method.
Snapshotting provides strong consistency by enabling users to
reverse the entire file system to a previous consistent state
on a system crash. It is widely adopted by many modern
file systems, such as BTRFS[11] and NILFS[12] and it has
been proven to be an efficient consistency mechanism which
is suitable for NVM-based file systems in HMVFS[17]. The
implementation of a snapshotting file system is a little bit
tricky because consecutive snapshots usually share a lot of
data, and an efficient way of managing those shared data is
required. A commonly used approach is Rodeh’s hierarchical
reference counting mechanism[13], which is adopted by both
HMVFS and BTRFS. Rodeh’s hierarchical reference count-
ing mechanism is based on the idea of copy-on-write(CoW)
friendly B-tree, which means write a file block shared by the
previous snapshots will trigger a CoW operation.

To design a high-performance NVM-based file system,
one would suggest a DAX enabled versioning file system.
However, DAX-style mmap mechanism may cause serious
consistency issue in versioning file systems. Consider the
following scenario: 1) a file is memory-mapped and a data
block in the file is accessed by store operation in the current
version, 2) a snapshot is created, and the data block is written
in the new version by file system write operation. Step 1 will
create a PTE(page table entry) in application’s address space
that directly maps a virtual address to the PFN(page frame
number) of the data block. In step 2, the write operation to
the memory-mapped file will trigger a CoW operation since

978-1-5090-6468-7/17/$31.00 ©2017 IEEE
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 28,2024 at 07:18:41 UTC from IEEE Xplore. Restrictions apply.

the target data block is shared by both current and previous
version. After the CoW operation finishes, the write and read
operations will be performed on the newly allocated data
block. However, the load and store operations to the data
blocks in the memory-mapped file are still performed on the
old data block since the page table entry is not updated along
with the read or write operations. As a result, memory-mapped
I/O and file system read/write operations operate on different
files, thus the file system is in an inconsistent state.

To address this problem, we propose versioning-mmap, a
new mmap mechanism designed for versioning in-memory file
systems which records the mapping between application’s ad-
dress space and file data blocks on page faults and remaps the
memory-mapped data blocks during the creation of a snapshot.
We propose two remapping methods: passive remapping and
initiative remapping. Passive remapping invalidates the page
table entries(PTE) created in the last version for memory-
mapped I/O and leave the page fault handler to handle the
consistency issue. Initiative remapping creates a new copy of
the memory-mapped data block and swaps the version between
the old and the copied data blocks so that the memory-
mapped data block is always exclusively owned by the current
version. Passive remapping introduces extra page faults which
result in a performance degradation of memory-mapped I/O,
while initiative remapping introduces overhead to snapshot
creation. To achieve a balance between memory-mapped I/O
and snapshot creation performance, we propose an adaptive
remapping method, which dynamically chooses which method
to be used based on how frequently the data block is accessed.

In designing and implementing versioning-mmap, we make
following contributions:

• We discover a consistency issue related to DAX-style
mmap mechanism in some versioning in-memory file
systems.

• We propose a new mmap mechanism which solves the
problem we’ve discovered. To the best of our knowledge,
we are the first to integrate DAX-style mmap into version-
ing in-memory file system with consistency guarantee.

• We implement our proposed mechanism in HMVFS and
conduct a variety of experiments based on our implemen-
tations. Experiments show that versioning-mmap incur
minor performance overhead.

The remainder of the paper is organized as follows. Section
2 gives some background knowledge and thorough explanation
of our motivation. In section 3, we describe the design and
implementation details. In section 4, we evaluate our proposed
mechanism. Section 5 lists some related works and finally in
section 6, we conclude our work.

II. BACKGROUND AND MOTIVATION

A. HMVFS Overview

HMVFS is a versioning file system designed for NVM,
it achieves space-efficient snapshotting with little impact on
I/O performance by using so called Stratified File System
Tree(SFST). In HMVFS, each version of the file system is

Superblock

Superblock

Segment
Information

Table
(SIT)

Block
Information

Table
(BIT)

Node Blocks

Node Address Tree

Data Blocks

Checkpoint Blocks

Auxiliary Information Main Area (SFST)

Fig. 1. Physical Layout of HMVFS

a branch of SFST, and data is shared between versions by
sharing subtrees of SFST.

1) Physical Layout: The physical layout of HMVFS is
shown in figure 1. As is illustrated in the picture, the entire
NVM space managed by HMVFS is divided into two area:
auxiliary information and main area. NVM space in the main
area is further divided into blocks(NVM pages) with size of
4KB. A block in the main area is either one of the following
four types:

• Data Block stores the actual file data.
• Node Block contains pointers which point to data blocks

(if it is a direct node block) or point to a lower level node
block (if it is an indirect node block).

• NAT Block is a node of NAT(Node Address Tree),
which is an extended version of Node Address Table
implemented in F2FS. It is used to convert a node id
to a physical address in NVM.

• Checkpoint Block contains the checkpoint information
of a snapshot.

Auxiliary information area stores some supervisory infor-
mation about HMVFS. Super Block contains the overall
management information of the entire file system. And Block
Information Table and Segment Information Table respec-
tively store the status of blocks and segments in the main area.

2) Node Address Tree: Unlike traditional file structure
in which blocks are indexed by physical address, HMVFS
indexes all blocks except data blocks by NID(node id). So in
HMVFS, same inode number may appear in different versions,
yet they are stored in separate locations. This is possible
because of the adoption of NAT. NAT is actually a multi-
version node address table which translates NIDs to physical
addresses in NVM. Each NAT root in SFST gives a separate
virtual NVM address space, thus indicate a version of the
file system. Since the translation between NIDs and physical
addresses happens frequently, HMVFS caches NAT in DRAM.

3) Snapshotting: When a snapshot is to be taken, HMVFS
first flushes all dirty NAT entries cached in DRAM to form
a new NAT in NVM and then writes a checkpoint block.
Finally, HMVFS modifies the checkpoint pointer stored in
superblock to this checkpoint. Once the snapshot is taken, all
data belongs to the previous snapshot becomes read-only, and
a CoW operation will be triggered if an application tries to
write the data.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 28,2024 at 07:18:41 UTC from IEEE Xplore. Restrictions apply.

Application

MMU HMVFS

NVM

mmap read/write

(a) Before Snapshootting

Application

MMU HMVFS

NVM

mmap read/write

COW

(b) After Snapshotting

Fig. 2. Inconsistency caused by DAX-style mmap int HMVFS

B. Motivation

Suppose a file is memory-mapped with DAX-style mmap in
HMVFS. Access to the file will result in page faults, and links
between virtual memory addresses and the physical addresses
of the file data blocks will be added to application’s address
space. After that, load/store or read/write operations will all
be performed directly on the same data blocks. Figure 2a
illustrates this situation.

However, once a snapshot is taken, write to the data blocks
that belong to the previous version will trigger CoW operations
which result in the following accesses in current version to
be performed on newly allocated data blocks. As is shown in
figure 2b, if a file is memory-mapped and accessed in previous
version and written in the current version, the read/write
operation will be performed on the newly allocated data
blocks, while load/store operation will still be performed on
the old data blocks that belong to the previous version since
page table entries remain unchanged after CoW operations.
As a result, load/store and read/write to the same data block
operate on different physical data blocks, leaving the file
system in an inconsistent state.

Besides HMVFS, other in-memory file systems that adopt
CoW will face a similar problem if DAX-style memory-
mapped I/O is enabled. For example, NOVA, a log-structured
file system designed for hybrid volatile/non-volatile memory
system, uses CoW to update file. Data blocks in NOVA will be
copied to new locations whenever been written while memory-
mapped I/O operates on fixed data blocks.

III. DESIGN AND IMPLEMENTATION

In this section, we provide design and implementation
details of versioning-mmap in HMVFS. Even though our
mechanism aims to solve the consistency issue of memory-
mapped I/O between snapshots in versioning in-memory file
systems, it can be easily adopted by other DAX-enabled log-
structured in-memory file systems, such as NOVA, with little

Block Locater

Mapping
Mapping

Information
Recorder

Adaptive
Remapping

Page Table

Passive Remapping

Initiative Remapping

Create PTE

Page fault

Snapshotting

Fig. 3. Architecture

modification to solve the similar consistency issue as we
discussed before.

A. Overview

As is shown in figure 3, our overall mechanism can be
roughly divided into four modules: block locator module,
mapping module, mapping information recorder module and
adaptive remapping module.

Block locator module is responsible for the acquisition of
page frame number(PFN) given the page offset in a file.
Mapping information recorder module records the mapping
information between application’s virtual memory address
space and NVM address space. Mapping module handles page
faults, it obtains PFN from Block Locater, adds mapping
information to Mapping Information Recorder, and finally,
creates page table entry(PTE). Adaptive remapping module is
called during creation of a snapshot to maintain consistency
between snapshots for memory-mapped I/O. It reads mapping
information from mapping information recorder. For every
recorded memory-mapped page, it checks whether the page
is frequently accessed among snapshots or not. If the page is
not frequently accessed, passive remapping method is adopted,
otherwise, initiative remapping is used. Passive remapping is
done by finding and invalidating the PTE so that access to
the page after a snapshot is taken will re-trigger a page fault,

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 28,2024 at 07:18:41 UTC from IEEE Xplore. Restrictions apply.

vma
entry

vma
entry

…

… …

… …

…

… …

… ……

page
entry

page
entry

page
entry

page
entry

page
entry

page
entry

page
entry

Fig. 4. Mapping Data Structure

and a CoWed data block which belongs to current version
exclusively will be memory-mapped. Initiative remapping does
not alter the page table, it creates a copy of the data block,
and swap the pointers in corresponding direct node blocks so
that the old data block which belongs to the last version now
belongs to the current version, and the newly allocated data
block is reassigned to the last version.

B. Block Locater

To establish the mapping between the memory mapped
virtual memory area and the file data blocks in NVM, we
must be able to find the page frame number of a data block
given its page offset in the file. So we implemente a procedure
called get xip block() which accepts a inode pointer and a
page offset as its arguments and returns the PFN of the
corresponding data block.

get xip block() first tries to locate the data block by follow-
ing the links of node blocks. A typical searching path would
be: inode → indirect node → direct node → data. As we
mentioned before, node blocks are indexed by NIDs instead of
physical block address. So traversing the links would require
the translation between NIDs and the physical block address,
which is done by looking up NAT.

After the physical address of the data block is obtained,
we check the version number of the page which is stored in
Block Information Table. If the version number of the page is
equal to the current version number, then the PFN of this data
block is returned. If not, which means the data block is shared
among previous versions, we copy the page to a new location
and modify the pointer in its parent direct node block to point
to the new page and the PFN of the newly allocated data block
will be returned. This ensures that the data block obtained by
get xip block() is exclusively held by current version.

C. Mapping Information Recorder

Mapping information are recorded during handling page
faults to provide useful information to do remapping when
creating a snapshot. Initiative remapping needs to find the
direct node blocks, so the inode number of the file to which
the memory-mapped data block belongs and the page offset
in the file are needed. Meanwhile, passive remapping needs to

find the PTE which is identified by a page table and a virtual
memory address in that page table. So there are four pieces
of information we need to record in handling page faults:

• inode of the memory-mapped file
• page offset of accessed file block
• page table pointer
• virtual memory address in the page table

To efficiently record these information, we designed a data
structure which is shown in figure 4. There are two key
components in our Mapping Data Structure: vma_entry
and page_entry. vma_entry holds a pointer that points
to the memory-mapped virtual memory area (VMA), thus
indicates a memory-mapped file. page_entry represents the
memory-mapped data blocks in the file. The definition of
page_entry is given as follow:

typedef enum {INITIATIVE, PASSIVE} remapping_method;
struct hmvfs_mmap_page_entry {

unsigned long pgoff;
int access_cnt;
remapping_method rm_method;

};

• pgoff is the page offset of this data block within the file.
• access cnt denotes how frequently the page is accessed

by memory-mapped I/O among snapshots. access_cnt
is increased by 2 on every page fault, and decrease by 1
when a snapshot is taken. So if a page fault happens in
the last snapshot, access_cnt will be increase by 1,
otherwise decrease by 1. The larger the access_cnt
is, the more frequently the page is accessed among
snapshots.

• rm method is the remapping method indicator. Its value
is either INITIATIVE which indicates the page will be
remapped with initiative remapping method or PASSIVE
which indicates the page will be remapped with passive
remapping method.

page_entrys belonging to the same memory-mapped file
are indexed using a radix tree to enable fast lookup. The
tree root is stored in the corresponding vma_entry, and
vma_entrys are organized in a doubly linked list.

Now we describe how required information is fetched
from Mapping Data Structure. Given a vma_entry and a
page_entry, page table can be found by following refer-
ences:

struct mm_struct* mm = vma->vm_mm;
pgd_t* pgd = mm->pgd;

the virtual memory address can be calculated as follow:

offset = (pgoff - vma->pgoff) * PAGE_SIZE;
vaddr = vma->vm_start + offset;

the inode of the memory-mapped file and the page offset in
the file can be obtained by:

inode =vma_entry->vma->vm_file->f_mapping->host;
page_offset = page_entry->pgoff;

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 28,2024 at 07:18:41 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Page Fault Handling Routine
1: function HMVFSDOPAGEFAULT(vma, vmf)
2: pgoff = vmf→pgoff
3: inode = vma→vm file→f mapping→host
4: pfn = get xip block(inode, pgoff)
5: vaddr = vmf→virtual address
6: if vma is mapped with MAP SHARED flag then
7: AddMappingEntry(vma, pgoff)
8: end if
9: add mapping (vaddr, pfn) to page table

10: end function
11: function ADDMAPPINGENTRY(vma, pgoff)
12: vma entry = find vma entry in vma entry list
13: if vma is not found in the vma entry list then
14: vma entry = create a new vma entry
15: end if
16: page entry = find page entry in radix tree
17: if page entry not found then
18: page entry = create a new page entry
19: page entry→rm method = PASSIVE
20: page entry→access cnt = 0
21: end if
22: page entry→access cnt += 2
23: end function

D. Mapping

Linux uses demand paging to manage virtual memory. So
the mapping between a memory-mapped virtual memory area
and NVM address space will not be created until accessed.
When an application tries to operate on a page in memory-
mapped virtual memory area for the first time, a page fault
will be triggered and the handling of the page fault will be
delegated to the fault() method defined in VMA operations
(struct vm operation struct) which is registered to VMA
during handling of mmap system call. So the core logic of
mapping module is implemented in fault() method.

Our page fault handling procedure, illustrated in Algorithm
1, starts by getting the PFN of the target data block with
get_xip_block(). It then checks if the map is shared
by testing if VM SHARED flag is set in vma->vm_flags.
If the file is privately mapped, all pages in the VMA will
be marked as CoW page, which means the application will
hold an exclusive copy of the mapped content, thus no
consistency issue will occur. Therefore we will not record the
mapping information if the file is mapped privately. However,
if a file is mapped with MAP SHARED flag, consistency
issue would arise as we discussed before, so the mapping
information will be recorded. The recording job is done by
AddMappingEntry().
AddMappingEntry() first iterates the vma_entry list

to find the vma_entry that points to the given VMA. If
it is not found, a new entry will be created and initialized.
It then searches the radix tree with page offset as the key
to find the corresponding page_entry. If not found, a new

page_entry will be created. rm_method will be initialized
to be PASSIVE for newly created page_entry which means
the default remapping method is passive remapping. Finally,
it increases the access_cnt by 2.

After all the above job is done, we create a page
table entry in current application’s address space with
vm_insert_mixed(). Since the PFNs of the mapped
data blocks are obtained by get_xip_block() and
get_xip_block() copies data blocks that are shared with
previous versions to new locations, memory-mapped I/O and
file system read/write operations are guaranteed to be per-
formed on same data blocks in current version.

E. Adaptive Remapping

Algorithm 2 Adaptive Remapping Procedure
1: for each vma entry and page entry do
2: if page entry→access cnt > 0 then
3: page entry→access cnt -= 1
4: end if
5: if page entry→access cnt ≥ I THRESHOLD then
6: page entry→rm method = INITIATIVE
7: end if
8: if page entry→access cnt ≤ P THRESHOLD then
9: page entry→rm method = PASSIVE

10: end if
11: if page entry→method == INITIATIVE then
12: InitiativeRemapping(vma entry, page entry)
13: else
14: PassiveRemapping(vma entry, page entry)
15: end if
16: end for

In order to maintain consistency between snapshots for
memory-mapped I/O, a remap job must be done when creating
a snapshot. We propose two remapping methods: passive
remapping and initiative remapping.

passive remapping is done by invalidating the PTE es-
tablished in the last version. Given a vma_entry and a
page_entry, the page table and the virtual memory address
can be obtained as described in subsection B. By traversing the
page table, we can then find and delete the target page table
entry. Once the snapshot is created, passive remapping ensures
that all page table entries related to shared memory-mapped
I/O have been destroyed. So operate on the memory mapped
virtual memory area for the first time in current version will
always trigger a page fault. The page fault handling routine,
described in the last section, will either copy the data block
to a new location and map the newly allocated data block
to application’s address space if the page is not yet been
written in the current version or map the data block directly
to application’s address space if the block has already been
written in the current version. Either of that will ensure both
memory mapped I/O and file system read/write operations
operate on the same data block. Therefore the consistency is
guaranteed.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 28,2024 at 07:18:41 UTC from IEEE Xplore. Restrictions apply.

Direct
Node
#v1,v2

Data Block
#v1,v2

Inode
#v2

HMVFSMMU

Application

mmap read

#v1: version 1

#v2: version 2

(a) Initial state

Direct
Node
#v1

Direct
Node
#v2

Data Block
#v1

Data Block
#v2

Inode
#v2

HMVFSMMU

Application

mmap read/write

Copy

(b) Create a new copy

Direct
Node
#v1

Direct
Node
#v2

Data Block
#v2

Data Block
#v1

Inode
#v2

HMVFSMMU

Application

mmap read/write

(c) Swap pointers in direct node block

Fig. 5. Initiative Remapping

Initiative remapping is done by copying the memory-
mapped data block to a new location to form a new version
of the data block which is exclusively held by current version
and swap the pointers in the direct node blocks of the two
version. Figure 5 gives a demonstration of initiative remapping
process. In figure 5a, the data block is memory-mapped and
accessed in the last version, and the snapshot is created. At
this time, the data block is shared by last and current version.
If the snapshot creation process stops here, write operation to
the data block through HMVFS will trigger a CoW, which
results in the load/store operation through memory-mapped
I/O and read/write operation via HMVFS to be performed
on different data blocks. To prevent this from happening,
initiative remapping creates a copy of the memory-mapped
data block, as shown in figure 5b, and exchange the data block
pointers in the direct node blocks of the two version, shown
in figure 5c. This ensures that the memory-mapped data block
is always exclusively owned by the current version. Therefore
no CoW will be triggered on memory-mapped data blocks.
The consistency issue is thereby eliminated.

Passive remapping will degrade the performance of
memory-mapped I/O because more page faults will be trig-
gered, and handling page faults is quite time-consuming.
Meanwhile, the snapshotting performance will drop if ini-
tiative remapping is adopted. To achieve a balance between
memory-mapped I/O and snapshot creation performance, we
propose an adaptive remapping method, which dynamically
chooses whether passive or initiative remapping method should
be used based on how frequently the memory-mapped page is
accessed among snapshots. If a page is frequently accessed,
it is very likely to be accessed in next version, so initiative
remapping is adopted to avoid page fault. If a page is not
frequently accessed, we can assume the page will unlikely be
accessed in next version, so passive remapping is used to avoid
unnecessary block copying.

The adaptive remapping procedure is further described in
Algorithm 2. As we mentioned in subsection B, access_cnt
indicates how frequently the memory-mapped page is ac-
cessed. The value of access_cnt is increased by 2 on every
page fault and decreased by 1 when a snapshot is created.

The default remapping method is passive remapping and is
switched to initiative remapping when access_cnt reaches
a threshold I THRESHOLD. When the remapping method
of a page is set to initiative remapping, access to the page
after the creation of a snapshot will not trigger page fault
and access_cnt will drop by 1 on every snapshot. Once
the access_cnt drops to a threshold P THRESHOLD, the
remapping method is then reset to passive mapping. The
reason of the adoption of P THRESHOLD is, if the page is
considered as frequently accessed, we assume that in the next
I THIRESHOLD − P THRESHOLD versions, the page will
likely be accessed.

IV. EVALUATION

In this section, we evaluate our mmap mechanism based
on our implementation in HMVFS. We first briefly introduce
our experimental setup. Then we compare the performance of
proposed mechanism against several state of art NVM-based
file systems. Finally, we study the impact of I THRESHOLD.

A. Experimental Setup

Our experiments are conducted on a Supermicro X10DRH-
I-O server with NVDIMM support. The server has two Intel
Xeon E5 processors, each processor runs at 3.4GHz, has six
cores and supports 8 DDR4 Channels. The total memory
capacity is 32GB, with 16GB RDIMM DRAM and 16GB
NVDIMM. The entire NVDIMM is reserved for file systems
by using the grub option memmap.

B. Memory-mapped I/O performance

We use fio[16] benchmark to compare the performance of
memory-mapped I/O in our implementation against PMFS and
NOVA. We test the random read and write performance of
memory-mapped I/O with different size.

The results can be found in figure 6. As is illustrated
in the figure, both HMVFS and PMFS outperform NOVA.
This is reasonable because both HMVFS and PMFS enable
applications to directly access NVM without going through
the page cache layer, while NOVA uses atomic-mmap to
support strong consistency. atomic-mmap allocates replica
NVM pages and copies the file data to replicated pages when

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 28,2024 at 07:18:41 UTC from IEEE Xplore. Restrictions apply.

W
rit

e
Ba

nd
w

id
th

 (i
n

M
B/

s)

0

750

1500

2250

3000

Size (in Bytes)
256 1k 4k 16k

PMFS NOVA HMVFS + Versioning-mmap

(a) Random Write

Re
ad

 B
an

dw
id

th
 (i

n
M

B/
s)

0

1250

2500

3750

5000

Size (in Bytes)
256 1k 4k 16k

PMFS NOVA HMVFS + Versioning-mmap

(b) Random Read

Fig. 6. Memory-mapped I/O performance

Ru
n

Ti
m

e
(i

n
se

co
nd

s)

1

1.275

1.55

1.825

2.1

I_THRESHOLD
1 2 3 4 5 6 7

Store Snapshot

(a) Store and Snapshot Time

Nu
m

be
r o

f P
ag

e
Fa

ul
ts

125000

156250

187500

218750

250000

I_THRESHOLD
1 2 3 4 5 6 7

Page Faults

(b) Number of Page Faults

Fig. 7. Impact of I THRESHOLD

a file is memory-mapped, read and write operations will be
performed on replicated pages instead of original pages, and
dirty replicated pages will be written back when msync is
called. Compared to PMFS, memory-mapped I/O in HMVFS
is about 10% slower, this overhead is mainly caused by
recording mapping information in handling page faults.

C. Impact of I THRESHOLD

I THRESHOLD is the threshold on which we switch
remapping method to initiative remapping. When the remap-
ping method of a page is switched to initiative remap-
ping, all remapping job will be done during snapshotting
and no page fault will happen on this page in the next
I THRESHOLD−P THRESHOLD versions. To study how
I THRESHOLD would affect the performance of memory-
mapped I/O and snapshotting, we map a file with the size of
64MB and perform random writes on the mapped file. For

a fixed I THRESHOLD, we perform 30 rounds of writing
with a snapshot created for each round, time spent on store
operations and snapshotting are recorded as well as the number
of page faults during the whole process. Figure 7a gives a
demonstration of our result. Note that P THRESHOLD is set
to I THRESHOLD − 1 in our experiment.

As is shown in figure 7(a), the time consumed by
store operations to the memory-mapped file is increasing as
I THRESHOLD goes up while time spent on snapshotting
is dropping. The reason for this is, with the increasing of
I THRESHOLD, memory-mapped pages need to be accessed
more frequently among snapshots in order to switch remapping
method to initiative remapping, which result in more pages to
be remapped with passive remapping method and more page
faults to be triggered, as shown in figure 7b. Both store and
snapshot time approaches a fixed value as I THRESHOLD in-

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 28,2024 at 07:18:41 UTC from IEEE Xplore. Restrictions apply.

creased because our adaptive remapping method will degrade
to passive remapping if a large enough I THRESHOLD is
applied.

V. RELATED WORK

PMFS[14] is a light-weight POSIX compliant file system
optimized for NVM. It enables applications to directly access
NVM without going through the block layer. The implementa-
tion of memory-mapped I/O in PMFS is quite different from
those in traditional file systems. In traditional file systems,
memory-mapped I/O would first copy the mapped content of
the file into DRAM(page cache) on a page fault, and then map
the DRAM pages that hold the copy of the mapped content
into application’s address space. However, in PMFS, the NVM
pages are directly mapped into application’s address space
without copying them into DRAM. PMFS uses copy-on-write
to guarantee the consistency of file data. Since file data will
be copied to another location on every write and memory-
mapped I/O operate directly on NVM pages, PMFS will face
a similar problem we mentioned in this paper if a file is written
by memory-mapped I/O and file system write operation at the
same time.

NOVA[15] is a log-structured file system designed for
hybrid memory systems. The main goal of NOVA is to
provide strong consistent guarantee while preserving the per-
formance. To achieve consistency for memory-mapped I/O,
NOVA proposed so called atomic-mmap mechanism, which
is similar to the method implemented in traditional file sys-
tems. When applications try to map a file into its address
space, NOVA first makes a copy of the mapped content in
NVM, and then maps the copied NVM pages to applications
address space. When msync is called, NOVA then writes the
copied NVM pages back to the memory-mapped file. In our
implementation, consistency of memory mapped I/O is also
guaranteed. Since HMVFS is periodically checkpointed, and
memory-mapped file is guaranteed to be consistent between
checkpoints by our proposed versioning-mmap mechanism.
We just need to mount the last checkpoint on recovery from a
sudden system failure and remap the file. Whether file system
should provide failure-atomic mmap is still in debate, some
researchers think that memory-mapped I/O is too low level,
hence they proposed some higher level libraries, such as NV-
Heap[21], Mnemosyne[22], and NVML[20], to manage NVM
by memory-mapped I/O.

DAX[18] is a set of programming interfaces provided by
Linux kernel to support direct access to NVMs. It is supposed
to be the standard way of doing direct accessing to NVMs in
Linux since kernel verison 4.0. Several state of art file systems,
such as ext2, ext4, and xfs have already supported DAX. Since
our implementation relies on HMVFS which is built on kernel
version 3.10, we don’t use the standard DAX interface, but the
idea behind is similar.

VI. CONCLUSION

DAX is a feature enabled in most NVM-based file systems
to bypass the page cache. However, DAX-style mmap may

cause serious consistency issue in versioning file systems that
utilize CoW to solve block sharing problem. In this paper, we
design a mmap mechanism that aims to solve this consistency
issue. We propose an adaptive remapping method to remap the
memory-mapped pages during the creation of a snapshot. We
implement our proposed mmap mechanism in HMVFS and
conduct a series of experiments based on our implementation.
Experiment results show that our mechanism can achieve
consistency with little performance overhead.

VII. ACKNOWLEGEMENT

This work is supported by the National High Tech-
nology Research and Development Program of China
(No.2015AA015303) and the National Natural Science Foun-
dation of China (No.61472241).

REFERENCES

[1] Wong, H. S. P., Raoux, S., Kim, S., Liang, J., Reifenberg, J. P., Rajendran,
B., ... & Goodson, K. E. (2010). Phase change memory. Proceedings of
the IEEE, 98(12), 2201-2227.

[2] Chen, E., et al. ”Advances and future prospects of spin-transfer torque
random access memory.” IEEE Transactions on Magnetics 46.6 (2010):
1873-1878.

[3] Strukov, Dmitri B., et al. ”The missing memristor found.” nature 453.7191
(2008): 80-83.

[4] Liu, Ren-Shuo, et al. ”NVM Duet: Unified working memory and persis-
tent store architecture.” ACM SIGARCH Computer Architecture News
42.1 (2014): 455-470.

[5] Ren, Jinglei, et al. ”ThyNVM: Enabling software-transparent crash con-
sistency in persistent memory systems.” Microarchitecture (MICRO),
2015 48th Annual IEEE/ACM International Symposium on. IEEE, 2015.

[6] Lee, Changman, et al. ”F2FS: A New File System for Flash Storage.”
FAST. 2015.

[7] Snyder, Peter. ”tmpfs: A virtual memory file system.” Proceedings of the
autumn 1990 EUUG Conference. 1990.

[8] McKusick, Marshall K., Michael J. Karels, and Keith Bostic. ”A Pageable
Memory Based Filesystem.” USENIX Summer. Vol. 52. 1990.

[9] Wu, Xiaojian, and A. L. Reddy. ”SCMFS: a file system for storage
class memory.” Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, 2011.

[10] Condit, Jeremy, et al. ”Better I/O through byte-addressable, persistent
memory.” Proceedings of the ACM SIGOPS 22nd symposium on Oper-
ating systems principles. ACM, 2009.

[11] Rodeh, Ohad, Josef Bacik, and Chris Mason. ”BTRFS: The Linux B-tree
filesystem.” ACM Transactions on Storage (TOS) 9.3 (2013): 9.

[12] Konishi, Ryusuke, et al. ”The Linux implementation of a log-structured
file system.” ACM SIGOPS Operating Systems Review 40.3 (2006): 102-
107.

[13] Rodeh, Ohad. ”B-trees, shadowing, and clones.” ACM Transactions on
Storage (TOS) 3.4 (2008): 2.

[14] Dulloor, Subramanya R., et al. ”System software for persistent memory.”
Proceedings of the Ninth European Conference on Computer Systems.
ACM, 2014.

[15] Xu, Jian, and Steven Swanson. ”NOVA: A Log-structured File System
for Hybrid Volatile/Non-volatile Main Memories.” FAST. 2016.

[16] Axboe, Jens. ”Flexible io tester.” https://github. comlaxboe/fio (2015).
[17] Zheng, Shengan, et al. ”Hmvfs: A hybrid memory versioning file

system.” Mass Storage Systems and Technologies (MSST), 2016 32nd
Symposium on. IEEE, 2016.

[18] DAX: https://www.kernel.org/doc/Documentation/filesystems/dax.txt
[19] XIP: https://lwn.net/Articles/135472/
[20] nvml: https://github.com/pmem/nvml/
[21] Coburn, Joel, et al. ”NV-Heaps: making persistent objects fast and safe

with next-generation, non-volatile memories.” ACM Sigplan Notices 46.3
(2011): 105-118.

[22] Volos, Haris, Andres Jaan Tack, and Michael M. Swift. ”Mnemosyne:
Lightweight persistent memory.” ACM SIGARCH Computer Architecture
News. Vol. 39. No. 1. ACM, 2011.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 28,2024 at 07:18:41 UTC from IEEE Xplore. Restrictions apply.

