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ABSTRACT
Non-Volatile Memory (NVM) has evolved to achieve non-
volatility and byte-addressability with latency comparable
to DRAM. This inspires the development of a new genera-
tion of file systems, namely NVM-based in-memory file sys-
tems, which include NVM on memory bus and allow in-NVM
data to be directly accessed like DRAM. Meanwhile, an im-
portant issue, the consistency problem, arises as a new chal-
lenge. That is, the direct modification to the in-NVM data
can be interrupted by arbitrary crashes in the system, which
results in part of the modification being durable and others
being lost. Traditional consistency mechanisms assume the
existence of DRAM buffering and hence cannot be applied to
this hybrid memory architecture. While several consistency
methods have been proposed for NVM-based in-memory file
systems, most of them have side-effects including unfriendli-
ness to DRAM and penalties on concurrency control, which
degrade the system performance.

In this paper, we propose a novel mechanism to guaran-
tee the consistency of NVM-based in-memory file systems.
We abstract the storage area as a layered structure and em-
ploy a lazy-validated snapshot strategy to achieve a high
consistency level. Since every consistency method comes
with a cost, we introduce several algorithms to efficiently
deal with block-sharing and reduce the overhead of consis-
tency mechanism. The experimental results show that our
mechanism incurs negligible consistency overhead and out-
performs a state-of-the-art snapshot file system by reducing
the latency of snapshot taking and removal by 95% and 60%
respectively.
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1. INTRODUCTION
Byte-addressable, non-volatile memory (NVM) draws grow-

ing attention from both industry and academia. Technolo-
gies like Memristor [18], Phase Change Memory (PCM) [11]
and 3D XPoint [9] provide fine-grained access control and
persistence for storage with latency comparable to DRAM.
All these benefits prompt the inclusion of NVM in the pro-
cessor memory subsystem where it can provide larger mem-
ory capacity than DRAM and still be competitive in terms
of performance [11]. Specifically, NVM is placed side-by-side
with DRAM on the memory bus, available to ordinary loads
and stores by CPU [5]. Based on such hardware architec-
ture, there has been significantly increasing interest in de-
veloping a new generation of file systems [12, 5, 19], namely
the in-memory file systems. By employing NVM as pri-
mary storage device, those systems eliminate high overhead
imposed by DRAM caching, thus improving I/O through-
put significantly. However, consistency problem comes as a
challenging issue along with such improvement.

Inconsistency occurs when a durable modification is per-
formed in an incomplete way. That is, part of the modifi-
cation becomes durable and others are lost. This is usually
caused by power failures or arbitrary crashes in the sys-
tem. In traditional disk-based file systems, modifications to
data (including both data and metadata) will firstly be per-
formed in DRAM buffers and then be flushed to the disk via
a flushing operation called sync. To avoid the occurrence of
inconsistency, sync is committed as a transactional opera-
tion and hence prevents a modification from being halfway
completed. However, for in-memory file systems, data is typ-
ically updated in NVM without any DRAM buffering. If any
crash occurs before the execution of the sync operation, the
modification to the in-NVM data may become uncommitted,
which results in an incomplete modification. Half-written
data can corrupt existing files and more importantly, incon-
sistency between data and allocation structures [17] (e.g.,
bitmaps, free lists) may contaminate the whole system.

Various approaches have been proposed to address the
consistency problem for NVM-based in-memory file systems.
BPFS [5] uses a tree-based file system structure and per-
forms copy-on-write (CoW) in NVM. File data is updated
before file metadata [17]. Changes are gathered up to the
root of the file system tree until one write is executed to com-
mit all the modifications. By making the last write atomi-

197

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2903150.2903160&domain=pdf&date_stamp=2016-05-16


cally committed, the consistency of the whole file system is
guaranteed. PMFS [12] uses a fine-grained undo journaling
method to guarantee the metadata consistency [4]. When a
file is modified, logs are written first, followed by the mod-
ifications to the medatata. Recovery is performed on the
next mount to undo any existing changes from uncommit-
ted operations. However, all these approaches do not allow
allocation structures to be accessed directly or even stored
in NVM (see details in Section 5). Such kind of implemen-
tation has two major disadvantages as follows.

The first disadvantage is about the system performance.
In-DRAM allocation structures have to be reconstructed ev-
ery time when the file system is being mounted. This re-
construction is not a simple sequential scan of the NVM,
but a logical traverse through the inner index structures of
all files. When the in-use NVM space becomes larger, the
reconstruction will cause extremely high latency. Further-
more, to minimize the storage cost of DRAM, those derived
structures are usually implemented as a linked list for fast
insertion and deletion, therefore it does not allow any ran-
dom access to the list nodes and hinders the concurrency
between file operations.

The second disadvantage is the high storage cost of DRAM.
Consider PMFS [12] as an example. It needs 32 bytes for
containing a free block in its free list. Suppose there are
totally 512GB free space scattered into 4KB blocks, it will
require 4GB exclusive DRAM space for node slab cache.
Such a proportion is unacceptable especially when the cur-
rent DRAM-based main memory systems have been starting
to hit the limit of power and cost [11].

In order to achieve reliability with better overall perfor-
mance and being DRAM-friendly, we introduce a new con-
sistency mechanism for NVM-based in-memory file systems.
By leveraging a layered abstraction of storage area, we de-
sign a novel per-block structure and based on which, we
propose a lazy-validated snapshot strategy and several ef-
ficient block-sharing algorithms to address the consistency
problem. We implement our mechanism in Hybrid Memory
File System (HMFS), which is an open-source in-memory
snapshot file system based on a NVM/DRAM hybrid mem-
ory architecture, available in [2]. The experimental results
show that comparing to a disk-based snapshot file system,
latencies of snapshot functionalities are reduced dramati-
cally. Also, our proposed mechanism provides almost the
same performance as in-memory file systems, which proves
that minor cost is imposed to provide high reliability.

We summarize the contributions of this paper as follows.

• We propose a novel mechanism to guarantee the con-
sistency of NVM-based in-memory file systems. We
abstract the NVM space into different kinds of blocks
and group them into several logical layers, based on
which we employ a lazy-validated snapshot strategy
to achieve a high consistency level.

• To achieve high performance, we introduce a new per-
block structure and several block-sharing algorithms
that can reduce the overhead of snapshot management
significantly.

• We conduct extensive experiments to evaluate the per-
formance of our consistency mechanism. The results
show that our method saves more than 90% and 65%
overhead for snapshot taking and removal respectively,
compared to the state-of-the-art consistency methods.

The rest of the paper is organized as follows. Section 2
gives an overview of HMFS including its system architecture
physical layout, logical structure and DRAM facilities for
consistency maintenance. In Section 3, we introduce our
consistency mechanism. In Section 4, we evaluate how this
mechanism works in practice. Section 5 provides related
work and Section 6 concludes the paper.

User Applications

HMFS

Non-Volatile MemoryDRAM

M M

malloc  free ... read  write  lseek ...
OS

Hardware

C P U

Memory Bus

Figure 1: HMFS Architecture

2. HMFS OVERVIEW
In this section, we provide an overview of our prototype

system, the Hybrid Memory File System (HMFS). Specifi-
cally, we include the system architecture, physical compo-
sition and the layered structure that are the basis of our
consistency mechanism.

2.1 System Architecture
Figure 1 shows the system architecture of HMFS. In the

hardware level, NVM is connected to memory bus and allows
direct access from CPU. In the operating system (OS) level,
Memory Management (MM) manages the DRAM space and
HMFS is responsible for NVM. In user space, applications
can use HMFS like traditional disk-based file systems with
normal file routines.

2.2 Physical Layout
In HMFS, the minimal unit of storage is a 4KB block. Sev-

eral (512 by default) contiguous blocks compose a segment.
Block allocation in a segment is performed sequentially. The
size of a segment is configurable but fixed when the volume
is formatted. By employing this indirect management of
blocks, we are able to allocate space of different sizes effi-
ciently and reduce journal overhead effectively.

Figure 2 shows the physical layout of HMFS for one vol-
ume. It consists of one area for in-place updates (random
writes) and another area for CoW updates (sequential writes).

In the random write area, there are three sub-areas:

• Superblock (SB) stores the basic volume informa-
tion. It takes up one extra block for redundancy backup.

• Block Information Area (BIA) is the allocation
structure. It contains start version number, type, valid
bit and owner information of every block in Main Area.
Start version number identifies the snapshot that val-
idates this block. Owner information is used for op-
timizing reverse lookup and modification. Valid bit
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indicates whether this block is valid or not. BIA only
accepts in-NVM updates and thus will not be cached
in DRAM.

• Segment Information Table (SIT) records usage
information like the last update time and how many
blocks are valid of every segment in Main Area. This
information is consistent with the latest snapshot and
will be used to select victim segment during cleaning
process in garbage collection.

Block allocation is based on BIA and SIT. During mount-
ing, segments with no valid block will be marked as empty
in a in-DRAM bitmap. Every time a segment is full, a new
empty segment will be found in the bitmap. When a block
is allocated, the corresponding BIA entry will be updated
softly, which means information like start version number,
block type and owner information is recorded in the entry,
but valid bit is not set.

Sequential write area, or Main Area, is filled with 4KB
blocks. Block and segment allocations in Main Area are all
log-structured. There are two kinds of segments in this area,
data segments and meta segments. Data segment contains
only data blocks of files (or directories). Meta segment is
more complicated. It contains 6 kinds of blocks:

• Inode Block represents a file (or a directory). Indi-
rect Node Block records node id (NID) of child di-
rect nodes. Direct Node Block has block addresses

pointing to child data blocks. HMFS uses the same
pointer-based file indexing structure with F2FS [8].
We do not further detail such structure in this paper.

• NAT Node Block is a non-leaf node in the index
structure of Node Address Table (NAT), NAT Index
Tree. One block contains 512 addresses of its child
node blocks.

• NAT Entry Block is a leaf node of NAT Index Tree.
It contains several NAT entries. Given a NID, a file
node (including inode, indirect node and direct node)
block can be located through a NAT entry.

• Checkpoint Block identifies a snapshot in HMFS.
It stores a unique version number, system state infor-
mation, connections in checkpoint list and the block
address of the root node in NAT Index Tree.

2.3 Logical Structure
Based on the physical layout, the logical hierarchical struc-

ture of Main Area blocks is shown in Figure 3.
In the first layer, checkpoint blocks are linked pair-wisely

and compose a Checkpoint List. In the second layer, NAT
node blocks form a NAT Index Tree. The whole NAT is
too large to make a complete copy for every snapshot. By
sharing intact nodes between successive snapshots, NAT In-
dex Tree effectively reduces such overhead. In the third
layer, there are the leaf nodes of NAT Index Tree, blocks of
NAT. Grouped by NID, NAT entries are merged in to those
blocks. As is shown in Figure 4, NID can be divided into two
parts. Higher 23 bits indicate the per-level offsets of child
block addresses in parent NAT node blocks. Lower 9 bits
record the inner-block offsets of NAT entries in NAT entry
blocks. Block addresses in the NAT entries point to inode,
indirect node and direct node blocks in the Index-Structured
File, and addresses in those blocks finally point to file data
blocks.

Such a hierarchical structure achieves a very ideal abstrac-
tion of Main Area. Layer 4 absorbs all the file modifications
directly in NVM. Layer 3 is cached in DRAM on demand
for transactional flush process like disk-based file systems.
Layer 2 guarantees a reasonable overhead of each snapshot.
Layer 1 keeps track of every integrated or inconsistent but
recoverable snapshot.

Varied consistency techniques are employed in those lay-
ers. In Layer 2, 3 and 4, we do CoW in Main Area and
Soft Updates in BIA. Deferred block validation in BIA can
be done very efficiently because it only requires a sequential
scan on newly allocated NAT entries. Involved segment en-
tries will be Journaled during flushing. This guarantees the
integrity between BIA, SIT and the latest snapshot. Blocks
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in Layer 1 keep track of snapshots. On every file system
mounting, a File System Check will be done on system state
information in latest snapshot and inconsistencies will be
fixed.

2.4 Volatile Data Structures
To be DRAM-friendly, data blocks, super blocks and BIA

requires direct updates in NVM. However, some metadata
still need to be cached in DRAM. Here we detail why these
metadata need to be cached and how they are managed in
DRAM.

(1) NAT: NAT is cached in DRAM on demand to exhibit
flush process like disk-based file systems. As is shown in
Figure 3, the in-NVM organization of NAT is a index tree.
But in DRAM, cached NAT entries is managed by a NAT
Radix Tree keyed with NID. On system mounting, only NAT
entries of root directory will be added to the tree. When a
certain file node is read, written or allocated, its entry will be
added to the radix tree. This on-demand growth guarantees
a moderate cache cost of DRAM. Also when a file node is
modified, corresponding NAT entry will be inserted into the
Dirty NAT List in ascending order of NID.

(2) SIT: As mentioned before, direct updates in NVM are
not allowed in this area. Hence we use a Segment Entry Ar-
ray to absorb modifications from segment-related operations
(e.g., garbage collection or new block allocation). Involved
segments will be added to Dirty SIT List and flushed back
to SIT after snapshot taking.

(3) Checkpoint: Once been written to NVM, checkpoints
are seldom modified. But when removing a snapshot or
doing garbage collection, the validity of a certain version
number is frequently queried. Thus we cache checkpoints of
active snapshots in Checkpoint Radix Tree to optimize such
work. This tree is keyed by the version numbers of snapshots
and provides validity checking in O(1).

3. CONSISTENCY MECHANISM
In our mechanism, we employ a lazy-validated snapshot

strategy to keep in-NVM allocation structures consistent
with blocks in Main Area: Validation for new block allo-
cation is deferred to snapshot taking, invalidation for file
deletion or truncation is delayed to snapshot removal.

A new problem, block sharing, arises with such strategy.
To deal with it, there are many classic methods like hierar-
chical reference counting [14](ref-count in short), generation
chain [6], reference bitmap [7], etc. However, for two reasons,
the per-block structure ad hoc basis in those designs cannot
be applied to NVM-based in-memory file systems. The first
is about the consistency maintenance between this per-block
structure and allocation structure. Take ref-count as an ex-
ample, every time a block is duplicated by CoW updates
in common file operations(create, write, etc), it requires ex-
plicit increments in its brother blocks’ reference counters.
If such increments are reflected to NVM immediately, ex-

tra tracing journal must be added for decrement in crash
recovery. If such increment is deferred to sync, then extra
per-block journal should be taken. Either way causes unnec-
essary overhead. The second reason is that storing the refer-
ence relationship is not optimal. Additional space is required
by write-ahead logging of batched reference/dereference op-
erations.

In our design, we use a start version number to iden-
tify which snapshot validate the block. Hence immediate
changes in its brother blocks are avoided in CoW updates.
To eliminate unnecessary complexity in write-ahead logging,
we use only a valid bit which supports simplified redo oper-
ation in crash recovery. Detailed algorithm about reference
tracking with this per-block structure will be discussed in
the following section.

3.1 File Updating
Three file operations involves consistency concern: write,

delete and truncate.
When a file is deleted or truncated, their corresponding

NAT entries in DRAM will be set to zero. If the related
blocks is still used by old snapshots, real deletion in NVM
will be done when removing those snapshots. Thus, trunca-
tion and deletion causes no modification in BIA.

There are two kinds of file write in HMFS. If the writ-
ten area overlaps with existed file content from previous
snapshots, then we do block-grained CoW to related data
before writing new data in. This is called Stacking Write.
If those areas do not overlap or related file data is newly
created in this snapshot, we use a more efficient in-place
update method, Normal Write. Normal updates optimize
speed of random writes and avoid meaningless inner snap-
shot garbage.

For both kinds of writes, although related data blocks
and BIT entries are directly updated in NVM, validation is
deferred to snapshot taking process. With this soft update,
unexpected crashes before a snapshot taking will not cause
any inconsistency, i.e. when a crash occurs between two
flushes, all the modifications will be completely discarded
and no recovery needs to be done.

3.2 Snapshot Taking
Taking a snapshot includes re-organizing updated file blocks

and validating newly allocated blocks. It contains two parts
of work: 1) build up a NAT Index Tree, SIT journal, 2)
change the latest snapshot in checkpoint list.

The first part takes up the most time. To make it more
efficient, we use a bottom-up merging strategy. Modified
NAT entries are merged into NAT blocks and then added to
the index tree alternately. As mentioned before, entries in
dirty NAT list are ordered by their NID. Thus such merge
can be done very quickly. After block address of the root
node is recorded in the new checkpoint block, a new NAT
Index Tree for the next snapshot is built. Before changing
the latest snapshot, entries in Dirty SIT List need to be
journaled. The journal overhead is extremely low, which
costs only 16 bytes per modified segment (2MB at least).
Also, the address of new checkpoint block should be recorded
in the latest snapshot’s checkpoint block.

In the second part, the 8-bit file system state in latest
snapshot’s checkpoint block is atomically changed from ‘nor-
mal’ to ‘changing the latest snapshot’. A sequential scan will
then be conducted on the newly allocated NAT entries to
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Figure 5: A scenario of taking and removing snapshots

validate corresponding blocks. When the scan is done, jour-
naled SIT entries are flushed to NVM. After the flushing,
the new checkpoint will be added to the checkpoint list with
super block pointing to it and henceforth a new snapshot is
taken.

A scenario of snapshot taking is illustrated in Figure 5(a),
the number in block presents the start version number, the
letter denotes the block’s alias. Red arrow means CoW, blue
arrow means reference. To facilitate understanding, we show
only NAT node blocks. Take Blockb′ as an example. CoW
from Blockb to Blockb′ will bring in a new reference from
Blocka′ to Blockc. In our design, this reference requires no
explicit change is in Blockc. Thus if a crash occurs during
the first part, no more recovery work will be needed. All the
file modifications are completely lost. SIT and BIA is still
consistent with the latest snapshot.

If a crash occurs during the second part of work, corre-
sponding file system state will be detected on next mounting,
which means interrupted work is able to be recommitted.
We do the recovery by retrieving a newer checkpoint block
address from latest snapshot and following the second part
work like a usual snapshot taking.

3.3 Snapshot Removal
The main body of the snapshot removal is a tree traverse,

and its critical path only covers the blocks that are firstly
referenced by the removing snapshot. From the checkpoint
block to data blocks, one of the following two operations is
taken:

• Invalidate(blk): Mark blk invalid in BIA. Decrease the
valid block counter of corresponding entry in Segment
Entry Array.

• Postpone(blk, version number): Change the start ver-
sion number of blk to version number.

Algorithm 1 shows the per-block action in the removing
traverse. blk is the passing-over block. SV is the start ver-
sion number of blk in BIA. CV, PV, NV represent the ver-
sion number of the removing snapshot, its previous and next
snapshot in checkpoint list respectively.

The most difficult work in Algorithm 1 is to determine
whether a block is further referenced. To deal with it, one
more traverse is simultaneously taken on the next snapshot
from its chekpoint block in the checkpoint list. This twinned
traverse imitates every iteration of the removing traverse
thus causes negligible performance overhead. If an iteration

is not able to be imitated, then the twinned traverse will
always stays in NULL. If the twinned traverse and removing
traverse were passing on the same block, then this block is
further referenced.

Algorithm 1 Per-block procedure in removing traverse

1: if blk is not further referenced then
2: if SV > PV and SV is invalid then
3: Invalidate(blk)
4: iterate children
5: end if
6: else {SV = CV }
7: Postpone(blk,NV )
8: end if

This twinned traverse can only find out shared blocks be-
tween successive snapshots. Suppose we’re removing Snapshot1
in Figure 5(a). Blockg is referenced by Snapshot3. A
twinned traverse on Snapshot2 cannot determine whether
this block is referenced by Snapshot3. To avoid such prob-
lem, deeper iteration is only allowed for invalidation(Line 4).
Traverse will backtrack after postponing a block, leaving its
children unchanged. This policy also guarantees the same
time-efficiency with hierarchical reference counting [14].

BIA entries of these unchanged blocks will become erro-
neous, which means the start version number identifies a
invalid snapshot. Those errors can be corrected by clean-
ing process in Garbage Collection (detailed in Section 3.4).
If not, Line 2 handles this problem with the help of a va-
lidity checking from Checkpoint Radix Tree. Related func-
tionality and optimization of such checking is mentioned in
Section 2.4.

A detailed scenario is illustrated in Figure 5. We assume
that there is no cleaning process throughout the process.
In Figure 5(b), Snapshot1 is removed. Only Blocke and
Blockc are postponed. Blockf and Blockg are not traversed
and contain erroneous version numbers. In Figure 5(c),
Snapshot2 is removed. Since Snapshot1 is removed, 1 be-
comes an invalid version number. Thus Blockf is invali-
dated. Start version number of Blockg is still 1.

The whole process of snapshot removal is 1) recording
snapshot’s version number in latest snapshot, changing sys-
tem state, 2) removing traverse, 3) SIT journaling and up-
dating in NVM, removing the snapshot from checkpoint list,
recovering system state.

With this design, except from a check for current snap-
shot, crash recovery in snapshot removal does the same work
of the above step 2 and 3.
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3.4 Garbage Collection
By reclaiming invalid and scattered blocks, cleaning pro-

cess in Garbage Collection(GC) gets empty segments for fur-
ther allocation. Those emptied segments are called Victims.
Detailed discussion like how to select a victim will not be
mentioned in this paper. In this section, we focus on how to
provide consistency guarantee in block migrations.

When moving a block from victim segment to newly allo-
cated area, block address must be modified correspondingly
in its parent blocks. Crashes occurred during the modifi-
cation will cause obsolete references on already reclaimed
blocks.

There are two solutions to this problem: keep reclaiming
unmoved blocks (Redo) or restore all the modified parent
blocks (Undo). We choose the latter one. Because HMFS
supports online GC, i.e. blocks for stacking writes can be
allocated concurrently with cleaning process. Redo a half-
done cleaning process may make those file blocks become
new garbage, which will cost more space than GC can re-
claim.

Algorithm 2 Per-segment procedure in GC crash recovery

1: for each blk ∈ victim segment do
2: if blk is valid then
3: continue
4: end if
5: src addr ⇐ blk address
6: tar addre⇐ address in first referencer
7: if src addr = tar addr then
8: return
9: end if

10: for subsequent snapshot ∈ checkpoint list do
11: ref addr ⇐ address in snapshot
12: if ref addr = src addr then
13: return
14: else {ref addr 6= tar addr}
15: continue
16: end if
17: ref addr ⇐ src addr
18: end for
19: end for

Algorithm 2 shows the recovery process for GC undo so-
lution. The main body is a sequential scan of every block
in victim segment. To check whether a snapshot is referenc-
ing passing-over block, we use a inductive approach. The
source address(src addr) can be calculated by victim seg-
ment number and block offset. With start verion number
and owner information in BIA, we can get a block address
from its first referencer. If this address is equal to source
address, then GC recovery is done. Otherwise it’s the tar-
get address (tar addr) of block migration in crashed cleaning
process. If the corresponding block address in parent block
of the subsequent snapshot(ref addr) is equal to source ad-
dress, then GC recovery is done. Otherwise, if it is identical
to the target address, then current snapshot is not referenc-
ing this block, recovery process will move to the next block
in victim segment.

In Line 11, an erroneous version number may be used for
fetching (ref addr). When meeting such erroneous number,
GC recovery will replace it with the version number of next
valid snapshot in checkpoint list.

With crash recovery, file system metadata structures (BIA

and SIT) are always consistent with the latest snapshot.
With CoW, file writes will not corrupt existing data. Also,
NAT of every snapshot matches its node blocks, which means
version metadata matches referred data. Thus our mecha-
nism provides high reliability at version consistency [4] level.

4. EVALUATION
In this section, we evaluate how our mechanism functions

in practice. The whole experiment covers three typical file
systems: one NVM-based in-memory file system, PMFS; one
legacy snapshot file system, BTRFS; and our prototype file
system, HMFS. We use the experimental result of BTRFS
as a baseline for comparison.

Our test machine is a commodity server with 64 Intel Xeon
2GHz Processors. It consists of 512GB DRAM, out of which
we configured 128GB as ramdisk for BTRFS and another
128GB as simulated NVM for PMFS and HMFS.

We use Filebench [1] benchmark suite to emulate following
workloads. All the experiments are conducted on CentOS
6.6 using Linux Kernel 3.11. First we examine the band-
width of single file I/O in random and sequential access.
Then we compare the real performance of those file systems
under three common workloads. Lastly, we measure the la-
tency of system sync or snapshot taking and removal in cor-
responding workloads. In the evaluation result, our mech-
anism provides a performance comparable the NVM-based
in-memory file system, demonstrating that higher reliability
incurs minor cost. More importantly, comparing to BTRFS,
our mechanism has effectively reduced the latency of snap-
shot taking and removal by 95% and 60% respectively.

4.1 File I/O
Figure 6(a) shows the benchmark result of read and write

bandwidth in a single file. File size is set to 5GB. 8KB for
random access and 1MB respectively for sequential access in
each I/O operation.

We can see that PMFS and HMFS significantly improved
the bandwidth of random and sequential writes, roughly as
2.0 and 1.8 times as the BTRFS’s. This improvement is
brought by the elimination of DRAM buffering. At the same
time, HMFS is about 8 percent slower than PMFS. This
drop in performance is mainly due to doubled allocation for
a free blocks (one for block and one for NID). Since there is
only one file and it is empty at first, NAT entries are all set
to invalid in NVM. Locality of on-demand growth in NAT
Radix Tree cannot function effectively. Also from the view
of system reliability, PMFS guarantees no data consistency
and requires no CoW for existing file data blocks, which
make it perform better in random writes.

Since DRAM buffering imposed much lower performance
overhead in reading than writing, read bandwidth in NVM-
based in-memory file systems does not improved effectively
like write bandwidth. We can see that HMFS keeps pace
with BTRFS and PMFS in random read. Benefited from
the locality of NAT Radix Tree, sequential read in HMFS is
about 20 percent faster than PMFS.

4.2 Common Workloads
Figure 6(b) presents results from the evaluation of three

multi-threaded application workloads from Filebench suite.
Fileserver emulates a file server on the home directory with
multiple threads. Each thread consists of file operations
like creates, deletes, appends, reads, and writes. Webserver
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Figure 6: Evaluation Result

emulates a webserver with activity characterized by a read-
write ratio of 10:1. It is a read-intensive workload which
involves several lookups followed by whole file reads and
appends. Webproxy emulates a simple web proxy server
hosting directories with depth no more than 1. It exercises
a mix of operations simultaneously from a large number of
threads, combined with appending a simulated proxy log file.
For all three workloads, we use the default configuration in
Filebench.

Under those workloads, there is no significant improve-
ment of performance between in-memory file systems and
BTRFS. But it’s worth noticing that HMFS even outperfor-
mance PMFS because of better concurrency between mul-
tiple operations. For metadata-intensive workloads like file-
server, HMFS’s per-second operations exceed PMFS’s for
about 7% when data and metadata operation is included
at a ratio of 1:1. This improvement is also caused by the
unified management of file nodes in our mechanism. For
read-intensive workloads, locality in volatile structures once
again makes HMFS outperform other systems with a small
margin.

4.3 Latency of Snapshot Functionalities
Figure 6(c) shows the flush latency of corresponding com-

mon workloads in Section 4.2. For HMFS and BTRFS, we
measure the latency by taking a snapshot of a volume. For
PMFS, we do a explicit sync and record elapsed time. Fig-
ure 6(d) shows the normalized latency of removing the cre-
ated snapshots in HMFS and BTRFS.

As we can see from the pictures, except read-intensive
workload like webserver, latency of snapshot related routines
is reduced effectively in our mechanism. Snapshot taking is
20 times quicker than BTRFS and is within the same order
of magnitude of snyc in PMFS. Also, snapshot removal is
about 1.5 time quicker than BTRFS under fileserver and
webproxy workloads.

5. RELATED WORK
Flash Friendly File System (F2FS) [8] is designed for bet-

ter performance on modern flash storage devices. Being
widely available, it’s the first file system designed from scratch
to optimize performance and lifetime of flash devices with
a generic block interface. It contributes a cost-effective in-
dex structure, node address table (NAT), to attack ‘Wander
Tree’ problem [3]. We further exploit NAT in our mecha-
nism to construct a layered abstraction of storage space for
a simplified and efficient consistency maintenance.

B-Tree File System (BTRFS) [16] is a renowned snapshot
file system which combines ideas from ReiserFS [13] and
CoW friendly b-trees suggested by O. Rodeh [14]. Growing
more mature and stable, BTRFS is on its way of becom-
ing the default Linux file system [15]. To deal with the
problem of block sharing, its design of hierarchical refer-
ence counting is the state-of-the-art mechanism in snapshot
file systems. By postponing changes in indirectly referenced
blocks, it’s very efficient but still has a side-effect, Update
Storm [6]. Even when comparing to it’s refined version, Re-
fCount Log [15], our mechanism can provide the same space

203



and time efficiency with less complex interaction with stor-
age device in journaling and crash recovery.

BPFS [5] presents a NVM-based file system and a hard-
ware architecture that enforces the required atomicity and
ordering guarantees. It uses short-circuit shadow paging
technique to provide consistency and improved performance
at the same time. But for CoW and ordered updating, mod-
ifications to the allocation structures are scattered and re-
quire several commit writes to be executed. Merging those
writes and file writes will cause serious write amplification.
Thus it does not allow allocation structures to be stored in
NVM.

Persistent Memory File System (PMFS) [12] takes advan-
tages of some hardware features like the processor’s paging
and memory ordering to optimize its consistency guarantees
(fine-grained logging) and memory-mapped I/O (transpar-
ent large page support). Its implementation of eXecute In
Place (XIP) interface efficiently avoids the block device layer
and page buffering. These optimization offers a considerable
improvement of speed. However, because the huge journal
overhead of double copying file data is unacceptable, PMFS
allows the existence of corrupted file content after a unex-
pected system crash. Also, the huge overhead of ordering
and journaling per-block data structures at runtime is also
unacceptable. Hence, a free block list which is derived from
files is kept in the volatile memory. To amortize the latency
of initializing this list, PMFS stores the allocator structures
in a reserved file on a clean unmount.

Three different levels of consistency concerning system
crash is introduced in [4]: metadata consistency, data con-
sistency and version consistency. PMFS guarantees no data
consistency, thus it only provides metadata consistency. Both
our and BPFS’s mechanism guarantee version consistency.
However, to ensure the ACID properties for transactions [10],
BPFS requires immediate reflection to persistent memory in
each file system call, which will impose a huge performance
penalty of write amplification especially when file writes are
small but scattered.

6. CONCLUSIONS
In this paper, we present a consistency mechanism for

in-memory file systems. It’s explicitly designed for NVM in-
cluded memory architecture. This mechanism provides high
reliability at version consistency level and powerful function-
alities of snapshots. Evaluation results show that the extra
cost of this mechanism is reasonable enough to provide per-
formance equivalent to a NVM-based in-memory file system,
and the latency of snapshot functionalities is much smaller
than a state-of-the-art snapshot file system.
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