
1

Adaptive Prefetching for Accelerating Read
and Write in NVM-based File Systems

Shengan Zheng, Hong Mei, Linpeng Huang,
Yanyan Shen, Yanmin Zhu

Department of Computer Science and Engineering

Shanghai Jiao Tong University

2

NVMM File Systems

• Non-Volatile Memory
√ Non-Volatile
√ Byte-addressable
× Longer latency than DRAM
× Lower bandwidth than DRAM

• NVMM file systems
– SCMFS, BPFS, PMFS
– NOVA, SIMFS, HiNFS
– Not adaptive to different file access

patterns

3

Motivation

Faster Read Faster Write
Bottlenecks Indirection of file inner structure NVM write latency
Approaches Continuous file address space DRAM buffer
Proposed by SIMFS (TOC '16) HiNFS (EuroSys '16)

• Higher performance

• Faster read & write

4

Motivation – Faster Read

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

• Bottleneck: locating pages with software routines
• Continuous file address space
• Normal access routine

• Continuous file address space

• Not suitable for out-of-place writes

Metadata

Data block

Metadata

Data block

5

Motivation – Faster Write

NVMM File System

NVMM

DRAM

Lazy-Persistent
Write

Read

Eager-Persistent
Write

Read

Memory Interface

• Bottleneck: High write latency
of NVM

• DRAM write buffer

• Perform write back on SYNC

• Introduces additional lookup
overhead for read

WriteRead

Applications

6

Motivation – Merge

• NVMM File system with the best performance:

• Read with continuous file address space

• Write with DRAM write buffer

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Optimized Write

Normal Write

Optimized Read

Normal Read

Locating Data Read Latency Write Latency

7

Motivation

Faster Read Faster Write
Bottlenecks Indirection of file inner structure NVM write latency
Approaches Continuous file address space DRAM buffer
Proposed by SIMFS (TOC '16) HiNFS (EuroSys '16)

Can we merge them into one NVM-based file system intuitively? No.

Reasons Not for out-of-place writes Additional lookup overhead

Optimized read Slower write Optimized write Slower read

8

Goal

• Merge the read and write
optimization approaches
into one file system

Application

DRAM

NVM

Write BufferContinuous File
Address Space

Main Area

Read Optimization Write Optimization

9

Challenges

• Merge the read and write
optimization approaches
into one file system
– Adaptive optimization

– Allocation overhead

– Consistency

Application

DRAM

NVM

Write BufferContinuous File
Address Space

Main Area

Read Optimization Write Optimization

10

Design – WARP Classifier

• Classify read/write intensive
accesses to files
– Opened with READ_ONLY or

WRITE_ONLY flag

– Tagged with read/write-intensive
by WARP benefit model

• Assign to different acceleration
approaches accordingly

Application

DRAM

NVM

Write Buffer

WARP
Classifier

Address Space

Main Area

File IO

Read Intensive Write Intensive

Normal
File IO

WARP WriteWARP Read

• WARP: Write And Read Prefetch

Continuous File

11

Design – WARP benefit model

• To choose the best acceleration
approach

• WARP benefit model
– NVM characteristics

– File access patterns

• Estimated access latency:
T = NRead × LReadLatency + SRead × VReadBandwidth

-1

+ NWrite ×LWriteLatency + SWrite ×VWriteBandwidth
-1

Application

DRAM

NVM

Write Buffer Metadata Cache
Address Space

Main Area Auxiliary Information

File IO

Read Intensive Write Intensive

Normal
File IO

WARP WriteWARP Read

WARP Benefit Model

WARP
ClassifierContinuous File

12

Design – Access Pattern Prediction

• Prefetching
– Move the allocation steps out of

critical path

– Pre-allocation before files are
accessed

• Collect file access traces and
patterns
– Which: successor prediction

– How: access pattern prediction

Application

DRAM

NVM

Write Buffer Metadata Cache
Address Space

Main Area Auxiliary Information

File IO

Read Intensive Write Intensive

Normal
File IO

WARP WriteWARP Read

Access Pattern Prediction WARP Benefit Model

WARP Prefetching

WARP
ClassifierContinuous File

13

Design – WARP Prefetching

• WARP Prefetching
– Whenever a file is accessed,

prefetch the next.

– File-based / process-based

• High overall performance

• High prefetch accuracy

Application

DRAM

NVM

Write Buffer Metadata Cache
Address Space

Main Area Auxiliary Information

File IO

Read Intensive Write Intensive

Normal
File IO

WARP WriteWARP Read

Access Pattern Prediction

WARP Prefetching

WARP Benefit Model

WARP
ClassifierContinuous File

14

Implementation – Granularity

• Granularity not too small (cacheline, block)
– Adjacent data blocks share similar access patterns

– The size of metadata will be enlarged

• Granularity not too big (file)
– Optimization not precise

– Additional optimization overhead

• We choose 2MB as the granularity for our implementation

15

Implementation – Read Optimization

File A

File B File CB1 B2 B3 B4 B5 B6File A A1 A2 A3 A4 C1 C 2 C 3 C4

DRAM Buffer

A1 A2

Kernel Virtual
Address Space

A3 A4 B2

B1 C 2 C3 C 4

B3 B4 B5

File B
Radix
Tree
Root

File A

File C

RB Tree Root

RB Tree Root

RB Tree Root

WARP Write

WARP ReadFile B

• Frequently-read nodes or files opened with READ_ONLY

• After prefetching
– Accessed directly and continuously through the page table entries via MMU

– Handling out-of-place write: update the mapping address accordingly

• Background thread: warp_prefetch
– Allocate virtual address space for

the whole file

– Map each valid block of the node

16

Implementation – Read Optimization

File A

File B File CB1 B2 B3 B4 B5 B6File A A1 A2 A3 A4 C1 C 2 C 3 C4

DRAM Buffer

A1 A2

Kernel Virtual
Address Space

A3 A4 B2

B1 C 2 C3 C 4

B3 B4 B5

File B
Radix
Tree
Root

File A

File C

RB Tree Root

RB Tree Root

RB Tree Root

WARP Write

WARP ReadFile B

17

Implementation – Write Optimization

File A

File B File CB1 B2 B3 B4 B5 B6File A A1 A2 A3 A4 C1 C 2 C 3 C4

DRAM Buffer

A1 A2

Kernel Virtual
Address Space

A3 A4 B2

B1 C 2 C3 C 4

B3 B4 B5

File B
Radix
Tree
Root

File A

File C

RB Tree Root

RB Tree Root

RB Tree Root

WARP Write

WARP ReadFile B

• Frequently written nodes or files opened with WRITE_ONLY

• After prefetching
– Writes are intercepted by DRAM write buffer

– Write back to NVM only when SYNC

• Background thread: warp_prefetch
– Radix tree for files

– Red-black tree for nodes

18

File B File CB1 B2 B3 B4 B5 B6File A A1 A2 A3 A4 C1 C2 C 3 C 4

Implementation – Successor Prediction

• Predict future node and file access

• Inner-file prediction
– The next node within the file to be accessed

– Stored in the metadata of node block

• Inter-file prediction
– The next file to be accessed

– Stored in the metadata of inode block

• Prefetch both inner-file and inter-file successor
Inter-file Prefetch

Inner-file Prefetch

19

Implementation – WARP benefit model

• Objective: minimizing the node’s overall I/O time between two
consecutive checkpoints

• T = [Read overhead] + [Write overhead] + [*Writeback overhead]
• T = 𝑁ோ௘௔ௗ × 𝐿ோ௘௔ௗ௅௔௧௘௡௖௬ + 𝑆ோ௘௔ௗ × 𝑉ோ௘௔ௗ஻௔௡ௗ௪௜ௗ௧௛

ିଵ + 𝑁ௐ௥௜௧௘ × 𝐿ௐ௥௜௧௘௅௔௧௘௡௖௬ + 𝑆ௐ௥௜௧௘ × 𝑉ௐ௥௜௧௘஻௔௡ௗ௪௜ௗ௧௛
ିଵ

• N: The number of access times L: The access latency of file inner structure and memory

• S: The total size of the I/O access V : The transmission bandwidth of memory

8KB 64KB

Checkpoint i Checkpoint i+1Read Write

64KB

Write

64KB

Write

• T=2*(250+50)+8KB*(8GB/s)-1+48*(250+500)+192KB*(2GB/s)-1=134μs

8KB 64KB64KB64KB

20

Implementation – WARP benefit model

• T(Read Opt.)

• Continuous file inner structure reduces the access latency

8KB 64KB

Checkpoint i Checkpoint i+1Read Write

64KB

Write

64KB

Write

• T=1*(100+50)+8KB*(8GB/s)-1+48*(250+500)+192KB*(2GB/s)-1=133μs10011 100

= 𝑁ோ௘௔ௗ × 𝐿ோ௘௔ௗ௅௔௧௘௡௖௬ + 𝑆ோ௘௔ௗ × 𝑉ோ௘௔ௗ஻௔௡ௗ௪௜ௗ௧௛
ିଵ + 𝑁ௐ௥௜௧௘ × 𝐿ௐ௥௜௧௘௅௔௧௘௡௖௬ + 𝑆ௐ௥௜௧௘ × 𝑉ௐ௥௜௧௘஻௔௡ௗ௪௜ௗ௧௛

ିଵ

21

Implementation – WARP benefit model

• T(Write Opt.)

• Writes to DRAM instead of NVM

• Write back to NVM on SYNC

64KB

Checkpoint i Checkpoint i+1Write

64KB

Write

64KB

Write

• T=2*(250+15)+8KB*(15GB/s)-1+48*(250+15)+192KB*(10GB/s)-1

+ 16*(250+500)+64KB*(2GB/s)-1 =77μs

15 15

500

15

500

15

8KB

Read

1515 1010

22

= 𝑁ோ௘௔ௗ × 𝐿ோ௘௔ௗ௅௔௧௘௡௖௬ + 𝑆ோ௘௔ௗ × 𝑉ோ௘௔ௗ஻௔௡ௗ௪௜ௗ௧௛
ିଵ + 𝑁ௐ௥௜௧௘ × 𝐿ௐ௥௜௧௘௅௔௧௘௡௖௬ + 𝑆ௐ௥௜௧௘ × 𝑉ௐ௥௜௧௘஻௔௡ௗ௪௜ௗ௧௛

ିଵ + 𝑇ௐ஻

22

T = 134μs T = 133μs (0%) T = 77μs (74%)

T = 28μs T = 14μs (100%) T = 24μs (17%)

T = 39μs T = 35μs (9%) T = 23μs (66%)

16KB 16KB 16KB 16KB 16KB

Implementation – WARP benefit model

8KB 64KB

Checkpoint i Checkpoint i+1Read Write

64KB

Write

64KB

Write

8KB64KB

Checkpoint i Checkpoint i+1WriteRead

64KB

Read

64KB

Read

16KB

Checkpoint i Checkpoint i+1WriteReadWriteRead ReadWrite

23

Implementation – Prefetching

Accessed
Node

Inner-file
Successor Node

Inter-file
Successor Node

Acceleration
Type

Read Prefetch

Write Prefetch

Successor
Prediction Model

WARP benefit
Model

Prefetch
Approaches

Background thread: warp_prefetch
Foreground

File data operations

• Runtime

Read(), Write(),
Allocate(), …

24

Evaluation – Micro-benchmarks

File Read File Write

• Experimental Setup
– A commodity server with 64 Intel Xeon 2GHz processors

and 128GB DRAM

– Latency: Read 50ns Write 500ns

– Bandwidth limitation: Read 10GB/s Write 2GB/s

Up to 24%

Up to 37%

25

Evaluation – Macro-benchmarks

Fileserver

Webproxy

Webserver

Varmail

26

Evaluation – Prefetching accuracy

0%
20%
40%
60%
80%

100%

Prefetching accuracy

27

Conclusion

• Design adaptive prefetching strategy to deploy read/write
optimization approach

• Implement file access successor prediction model to predict
future file access pattern

• Implement WARP benefit model to calculate the most beneficial
optimization approach

• Efficient prefetching for NVM-based file systems

28

Thanks!

