
Exploiting Persistent CPU Cache for Scalable
Persistent Hash Index

Bowen Zhang†, Shengan Zheng∗‡, Liangxu Nie†, Zhenlin Qi†, Linpeng Huang∗†, Hong Mei†
†Department of Computer Science and Engineering, Shanghai Jiao Tong University
‡MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University

{bowenzhang, shengan, nieliangxu, qizhenlin, lphuang, meih}@sjtu.edu.cn

Abstract—Byte-addressable persistent memory (PM) has been
widely studied in the past few years. Recently, the emerging
eADR technology further incorporates CPU cache into the
persistence domain. The persistent CPU cache is promising to
optimize the write performance of PM-based storage systems
and facilitate the design of concurrent crash-consistent data
structures. In this paper, we propose Spash, a highly scalable
persistent hash index for PM systems with persistent CPU cache.
Spash fully exploits the benefits of persistent CPU cache to
implement a durable linearizable index with low PM access
overhead and high concurrency. Spash employs a fine-grained
extendible hash architecture and a metadata-free segment design
to minimize the number of PM accesses. Moreover, Spash adopts
adaptive in-place updates and compacted-flush insertions, which
dramatically conserve scarce PM write bandwidth by absorbing
a large amount of PM write in the persistent CPU cache.
Furthermore, Spash proposes a two-phase concurrency protocol
and a collaborative staged doubling mechanism, which leverage
the persistent CPU cache and hardware transactional memory to
achieve lock-free concurrency and durable linearizability. Spash
outperforms the other state-of-the-art persistent hash indexes in
YCSB workloads by up to 19.6×.

Index Terms—Persistent Memory, Persistent CPU Cache, Hash
Index

I. INTRODUCTION

Byte-addressable persistent memory (PM) promises data

durability with DRAM-comparable performance. The release

of Intel’s first generation Optane DC Persistent Memory

Module (DCPMM) [1] in 2019 has spawned a slew of re-

search proposals and prototype systems [2]–[9]. These studies

mostly assumed that CPU cache is volatile since the ADR

(Asynchronous DRAM Refresh) [10] mechanism of Optane

DCPMM only guarantees the persistence of the memory and

write pending queues (WPQ). Two years later, Intel unveiled

the second generation Optane DCPMM [11], along with a

new platform feature called eADR (extended ADR) [12].

eADR further pushes the boundaries of the persistence domain

to incorporate CPU cache. During a power outage, eADR

guarantees the persistence of the CPU cache by flushing the

data of the CPU cache to PM with the reserved energy.

Persistent CPU cache offers new opportunities to fully

unleash the write and concurrent performance of PM-based

systems. First, PM-based systems are anticipated to squeeze

the most write performance out of PM by effectively leverag-

ing the persistent CPU cache. PM has a relatively low write

∗Linpeng Huang and Shengan Zheng are the corresponding authors.

bandwidth, which is around 3× lower than its read bandwidth

and 5× lower than DRAM write bandwidth. Moreover, when

the CPU cache is volatile, PM-based systems must flush each

modified cacheline to PM synchronously to ensure data dura-

bility, which increases the write latency and exacerbates the

scarce PM write bandwidth [13]. With persistent CPU cache,

synchronous flush instructions are no longer necessary, thereby

reducing PM write latency on the critical path. Moreover, PM

write bandwidth is also conserved substantially by eliminating

the repetitive flushes to hot PM regions.

Second, persistent CPU cache facilitates the design of con-

current crash-consistent data structures with high scalability.

The key challenge for concurrent PM-based data structures is

the guarantee of durable linearizability [14], which preserves

the linearizability of data structures even in the case of power

failure. Previously, the volatile CPU cache created a gap

between an update being globally visible in CPU cache and

durable in PM. This can lead to inconsistency when concurrent

threads access data that is not yet durable [15]–[17]. Persistent

CPU cache eliminates this gap, thereby presenting an excel-

lent opportunity to optimize the concurrency control in PM

programming. In particular, we can leverage HTM (Hardware

Transactional Memory) [18]–[21] to design lock-free data

structures with the guarantee of durable linearizability. HTM

provides a simple and efficient interface to atomically make the

effect of multiple-word updates visible in a lock-free manner.

With the persistent CPU cache, HTM can further ensure the

persistence of those updates, which makes HTM well-suited

for building data structures with durable linearizability.

In the past few years, PM-based persistent indexes [22]–

[30] have received increasingly high interest. However, most

of them are designed for platforms with volatile CPU cache.

With persistent CPU cache, we found that simply removing

flush instructions from those indexes does not yield a signif-

icant performance improvement for two reasons: (1) Existing

designs do not fully leverage the persistent CPU cache to

reduce PM writes. Without a cache-friendly design to increase

write locality, PM writes are not reduced by removing flush

instructions since dirty cachelines will eventually be evicted

to PM media. Worse even, random cacheline evictions might

cause write amplification due to the mismatch between the

access granularity of PM media and cacheline-size, further de-

grading the write performance. (2) Previous PM-based indexes

employ inefficient protocols to ensure durable linearizability.

3851

2024 IEEE 40th International Conference on Data Engineering (ICDE)

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00295

20
24

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
79

-8
-3

50
3-

17
15

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
60

14
6.

20
24

.0
02

95

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:57:24 UTC from IEEE Xplore. Restrictions apply.

The majority of them adopt locks to coordinate concurrent

accesses, preventing them from achieving high concurrency.

Moreover, they produce excessive PM accesses to maintain

various metadata (e.g., bitmap, lock, and version) to guarantee

durable linearizability, resulting in performance degradation.
In this paper, we propose a highly scalable persistent hash

index named Spash to address the above challenges. Spash

fully exploits the benefits of persistent CPU cache to reduce

the consumption of PM write bandwidth and the overhead

associated with ensuring durable linearizability.
First, Spash integrates persistent CPU cache and HTM to

achieve durable linearizability with low PM access overhead

and high concurrency. Specifically, Spash employs a fine-

grained extendible hash structure, which utilizes a volatile

directory to divide hash space into multiple metadata-free

segments. This architecture not only reduces PM accesses

but also achieves strong compatibility with HTM transactions.

To ensure durable linearizability and lock-free concurrent

accesses, Spash employs a two-phase concurrency protocol

and a collaborative staged doubling mechanism based on

HTM. The two-phase concurrency protocol decouples hash

operations into the preparation phase and transaction phase,

minimizing data conflicts in the HTM transactions. Collabo-

rative staged doubling divides the directory doubling of Spash

into numerous minor stages that can be accomplished by

either a doubling thread or concurrent threads. This mechanism

obviates the capacity abort of HTM transactions and the

blocking of concurrent threads during the directory doubling.
Furthermore, we propose an adaptive in-place update and a

compacted-flush insertion mechanism for Spash to enhance the

utilization of PM write bandwidth with persistent CPU cache.

The adaptive in-place update absorbs the frequent updates to

hot key-value entries in the CPU cache, thereby minimizing

PM writes. Additionally, it adaptively flushes the updates of

cold key-value entries to reduce write amplification resulting

from the random cacheline eviction. Moreover, the compacted-

flush mechanism compacts the consecutive small insertions in

the persistent CPU cache and asynchronously flushes them

back to PM in XPLine-sized (the access granularity in PM

media) chunks, thereby reducing write amplification.
In summary, the contributions of this paper include:

• We thoroughly investigate the characteristics of PM and

the impact of persistent CPU cache on PM systems. Based

on this, we conclude several valuable design principles for

PM systems on platforms with persistent CPU cache.

• We propose Spash, the first persistent hash index that

fully exploits the benefits of persistent CPU cache. Spash

integrates the persistent CPU cache and HTM to minimize

the PM access overhead and enable lock-free concurrency.

• For Spash, we further propose adaptive in-place update

and compacted-flush insertion, which fully leverage the

persistent CPU cache to improve write performance.

• We conduct comprehensive evaluations on the perfor-

mance of Spash and compare it with the state-of-the-

art persistent hash tables. In YCSB evaluation, Spash

outperforms other counterparts by up to 19.6×.

II. BACKGROUND AND MOTIVATION

In this section, we begin by introducing the background

of persistent memory in Section II-A. Then, we conduct an

in-depth analysis of how persistent CPU cache influences

the flush strategies for PM writes in Section II-B. Finally,

in Section II-C, we explore the opportunities for designing

highly scalable concurrent crash-consistent data structures

with persistent CPU cache.

A. Persistent Memory

Persistent memory (PM) (e.g., MRAM [31], Re-RAM [32],

PCM [33]) provides many attractive features, such as byte ad-

dressability, and DRAM-comparable performance. In the past

decade, numerous use cases of PM, such as databases [34]–

[36], key-value store [37]–[39], and file systems [40], [41],

have been studied in both academia and industry.

Intel Optane DCPMM is the first commercially available

PM product, which has two generations so far, AEP (Apache

Pass, 2019) and BPS (Barlow Pass, 2021). The key distinction

between AEP and BPS is their persistence domain. AEP-

equipped platforms support the ADR mechanism [10], which

ensures that data residing in the write pending queues (WPQ)

can be flushed into the PM after a power failure. However,

the CPU cache is still excluded from the persistence domain.

Programmers need to issue explicit cacheline flush instructions

(e.g., clwb, clflush, and clflushopt) and memory

barriers (e.g., mfence, and sfence) to ensure data persis-

tence. BPS-equipped platforms introduce a new mechanism

called eADR [12], which further incorporates CPU cache

into the persistence domain with enhanced backup energy.

With the persistence guarantee of CPU cache, cacheline flush

instructions are no longer necessary for data persistence.

Through a comprehensive evaluation of Optane DCPMM,

we conclude the unique PM characteristics as follows:

Observation 1: PM has lower write bandwidth and higher
read latency than DRAM. Previous works [42] found that the

access granularity of physical media (3D-XPoint) in Optane

PM is 256-byte (XPLine). Therefore, accessing PM with

blocks that are a multiple of XPLine-aligned can maximize the

utilization of memory bandwidth. In our testbed (detailed con-

figuration is described in Section VI), PM writes with 256-byte

access granularity can achieve peak bandwidth (∼15GB/s),

which is 5× lower than DRAM (∼75GB/s). Although PM

read has a much higher bandwidth (∼50GB/s), the latency of

PM read (∼350ns) is 3.5× higher than DRAM (∼100ns).

Hence, for PM-based systems, we have DP (Design Prin-
ciple) 1: Avoid excessive PM accesses and take the XPLine-
access granularity into consideration.

B. The Flush Strategies for PM Writes

As mentioned in Section II-A, the persistent CPU cache

obviates the need for cacheline flush instructions to ensure

the durability of PM writes. Therefore, programmers have the

flexibility to decide whether and when to use cacheline flush

instructions for optimizing performance. In this section, we

conduct a thorough analysis of the impact of persistent CPU

3852

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:57:24 UTC from IEEE Xplore. Restrictions apply.

(a) Uniform access distribution (b) Zipfian access distribution

Fig. 1. The PM write performance under different flush strategies. (56 threads)

cache by evaluating the performance of write-f (store
that is followed by a flush instruction) and write-nf
(store that is not followed by a flush instruction) under

various access granularities and access patterns. Our evaluation

leads to three observations:

Observation 2: Using write-nf for cold memory regions
with more than 1 cacheline causes write amplification.
Figure 1(a) shows the performance of PM write under uni-

form access distribution. In the uniform access pattern, the

majority of writes access the cold memory regions and cannot

hit CPU cache. In such a situation, we observe that the

write-nf has lower throughput than write-f when the

access size is larger than 1 cacheline (64-byte). This is due to

the write amplification caused by the asynchronous cacheline

eviction [42], [43] and the XPLine access granularity of PM.

When we modify the cold memory chunks larger than 1

cacheline, multiple cachelines are likely to be evicted to PM

in random order if we do not explicitly use flush instructions.

Therefore, the large sequential writes will be divided into

multiple cacheline-sized random writes, which mismatches the

internal access granularity of PM (XPLine), leading to the

write amplification. In contrast, the flush instructions after

the write operations allows PM to aggregate those sequential

writes in a small XPBuffer [42], maximizing the utilization of

PM write bandwidth.

Observation 3: Using write-nf for hot memory regions
saves PM write bandwidth. Figure 1(b) shows the performance

of PM write under the zipfian access distribution (skew-

ness=0.99), in which most memory accesses are concentrated

in small hot regions. We discover that using write-nf has

a significantly higher throughput than using write-f. The

reason is that the writes on the hot memory region are likely

to hit CPU cache, without consuming PM write bandwidth.

The flush instructions for the hot memory region produce

unnecessary data movement between CPU cache and PM

media. Meanwhile, we found that for access sizes larger than

64-byte, using write-nf exclusively for the top 1% hot

memory region outperforms using 100% write-nf. This is

because using write-f on the cold memory regions that

are larger than 1 cacheline can avoid the write amplification,

which is already mentioned in Observation 2.

Observation 4: Using write-nf is the best choice when the
access size is less than a cacheline (64-byte). As shown in

Figure 1(a) and 1(b), using write-nf achieves the highest

throughput when the access size is less than a cacheline.

The reason is that write-nf can not only exploit the CPU

cache to conserve PM bandwidth but eliminate the latency of

the flush instructions. Meanwhile, write-f can not alleviate

write amplification when the access size is within a cacheline.

Therefore, for the usage of flush instructions in PM-capable

platforms with the persistent CPU cache, we have DP2: Use
write-f for the writes on cold memory regions that are
larger than 1 cacheline. Use write-nf for the writes on
hot memory regions or the small writes within 1 cacheline.

C. Concurrent Crash-consistent Data Structures

In this section, we first present the influence of persistent

CPU cache on the design of concurrent data structures fea-

turing durable linearizability. Following this, we explore the

potential of integrating persistent CPU cache and Hardware

Transactional Memory (HTM) to enhance the scalability of

concurrent crash-consistent data structures.

1) Durable linearizability: The correctness standard for

PM-based concurrent crash-consistent data structures is

durable linearizability [14], [15], which consists of the fol-

lowing two aspects:

• Concurrent consistency. In the absence of a crash, concur-

rent operations in PM-based data structures should ensure

linearizability just as the DRAM-based data structures.

Linearizability requires that each concurrent operation take

effect atomically at some point during its execution [44].

• Crash consistency. After a crash, all previously completed

operations should remain completed and their effects should

remain visible after a crash. The operations not completed

upon a crash should provide all-or-nothing semantics.

For PM-capable platforms with volatile CPU cache, it is

challenging to preserve durable linearizability since there is

a gap between data being visible in CPU cache and being

durable in PM. The durable linearizability might be violated if

a crash happens when the effect of the operations is visible but

not durable. In such a situation, the effect of those operations

can be observed before the crash but not after it, which violates

the crash consistency.

Fortunately, the gap between visibility and durability is

eliminated with the persistent CPU cache, which facilitates

the design of concurrent crash-consistent data structures. The

persistent CPU cache makes it possible to adopt hardware

transactional memory (HTM) to effectively implement lock-

free and durable linearizable data structures in PM.

2) Hardware Transactional Memory: HTM is a hardware

approach to making a batch of writes within a transaction

atomically visible in CPU cache. Taking Intel’s Restricted

Transactional Memory (RTM) [45] as an example, program-

mers can execute a transaction by wrapping the critical section

with the _xbegin() and _xend(). If the transaction com-

mits without any conflicts with concurrent memory operations,

the writes in the transaction will atomically become visible in

CPU cache. Otherwise, any conflicts detected by the hardware

will result in a transaction abort, which rolls back all opera-

tions and restarts the transaction. Compared with the lock-free

3853

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:57:24 UTC from IEEE Xplore. Restrictions apply.

�������
�	
�

�
�������
����
�

���� ����	
 ��� ��� ��� ��� ��� ��� ��� ���

�����������
���� ������

������ �� !� "# $"����#

%%

&��&
�!''�(

��

)%

))

)����� *�� '��+�#$#���

������ *�� "# $"����#

����

"��#' ",

"��#' ",

"��#' ",

&
�

�!�*�� ��$�
'"# �)� ��

����� "��#' ", ����(
)����� "��#' ", '��+�#$#���

�-	�.
��������

�	

��

��

&��&��!''�(��)�/
 &��&��!''�(����
 ��

�-��.
��������

��

��

����

�	

�

����

��

���	
	�	�����
������ �������

����

���!$��� �� �&� *�� ,��& &��& �!''�(�%)�

���!$��� �� �&� *�� ,��& "�&�# &��& �!''�(��

���� �� � � "�

Fig. 2. The overall architecture of Spash.

data structures relying on the atomic memory operations (e.g.,

CAS) that only ensure the atomicity of 8-byte writes, HTM

offers the assurance of the atomicity for a batch of writes

(within the L1 Cache capacity), greatly simplifying the lock-

free design.

Previously, HTM was incompatible with PM in the plat-

forms with volatile CPU cache. To achieve durable lineariz-

ability, programmers need to issue flush instructions in the

HTM transaction, ensuring the durability of the writes. How-

ever, the flush instructions will trigger the abortion of the HTM

transaction [46], leading to an incompatibility between HTM

and PM programming. If the flush instructions are executed af-

ter the completion of HTM transaction, the non-durable effect

of transaction operations can be seen by concurrent threads,

which violates the requirement of durable linearizability.

With the persistent CPU cache, HTM can ensure both

visibility and durability of the writes without using flush

instructions since the data in the CPU cache is guaranteed to be

persisted. Therefore, we can use the simple interface provided

by HTM to implement durable linearizable data structures,

which dramatically reduces the complexity of design and

programming. Meanwhile, the lock-free nature of HTM also

improves the scalability of the data structures.

Nevertheless, there are still some challenges that prevent

us from directly using HTM for all memory operations [19].

The first one is the capacity limitation. As HTM uses the

CPU’s private cache to track its read/write set, the transaction

with large memory footprints will suffer the capacity abort.
The second one is data conflicts. HTM transactions may

experience frequent conflict aborts due to long code paths

or high contentions. Hence, additional designs are needed to

address the above two problems.

III. SPASH

In this section, we present Spash, a scalable persistent hash

index that fully exploits the benefits of persistent CPU cache.

����0

���� ��	
��

��������� ����	�

���� ��	
�� �

�
���� ��	
�� �

�

�

���
���

Fig. 3. The segment split of Spash.

We begin by describing the hash structure in Section III-A,

which minimizes the PM accesses in hash operations and

facilitates the HTM concurrency control (Section IV). To

further leverage the persistent CPU cache to save scarce

PM write bandwidth for Spash, we introduce adaptive in-

place update in Section III-B and compacted-flush insertion

in Section III-C. Then, we summarize the execution flow of

Spash and propose a pipeline optimization in Section III-D.

A. Hash Structure

For Spash, we propose a fine-grained extendible hash

structure, metadata-free segment design, and compound slots,

which mainly aim to achieve the following three design goals.

First, we minimize the number of PM accesses based on DP1
rather than reducing the flush instructions in the previous

works since Spash targets platforms with persistent CPU

cache. Second, the hash structure design has to consider both

the limitations and the benefits of HTM as we mentioned

in Section II-C2 since we employ HTM to ensure durable

linearizability. Third, the hash structure should have a high

memory utilization and alleviate the performance degradation

caused by resizing.

Fine-grained Extendible Structure. As shown in Figure 2,

Spash is a variant of extendible hash [7], [22], which employs

a DRAM-based directory to divide the hash space into multiple

fine-grained (XPLine-sized) segments in PM. Through the

directory, each hash operation uses the highest few bits of the

key hash (hash prefix) to locate the address of the segment,

which stores the target key-value entries. Spash achieves

dynamical expansion and shrinkage by splitting or merging

the fine-grained segments. As depicted in Figure 3, the key-

value entries with the hash prefix “11” are initially stored in the

left segment, which is shared by directory entries “110” and

“111”. Once this segment reaches capacity, it initiates a split

operation to rehash the key-value entries with the hash prefix

“111” into a newly allocated segment and redirects the pointer

in the directory entry “111” to the new segment. The directory

doubling is triggered when the directory cannot accommodate

the new segment, which will be discussed in Section IV-B.

Conversely, segment merging is the reverse process of segment

splitting.

The fine-grained extendible hash structure accomplishes the

design goals of Spash in the following ways. First, the fine-

grained resizing (split/merge) has better compatibility with

HTM-based concurrency control (see details in Section IV)

and low PM access overhead. Large-grained segment re-

sizing [7], [22] and level-based resizing [23], [47] in the

3854

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:57:24 UTC from IEEE Xplore. Restrictions apply.

previous PM-based hash indexes are not suitable for HTM-

based concurrency control due to their large memory footprint,

which increases the possibility of data conflicts or even triggers

the capacity abort. Therefore, fine-grained segment facilitates

HTM-based concurrency control during the resizing. Mean-

while, the resizing-incurred performance degradations in the

previous works [7], [22], [23], [47] will also be addressed in

Spash due to the lightweight resizing. Moreover, the XPLine-

sized segment in Spash matches the internal access granularity

of PM media, which improves the bandwidth utilization of

resizing.

Second, the PM access overhead during the base hash oper-

ation (Insert/Update/Delete/Search) is also reduced. During a

base operation, the directory access is absorbed in DRAM and

the segment access only incurs an XPLine-sized PM access in

the worst case.

Metadata-free Segments. To further reduce the number of

PM accesses during the hash operations without sacrificing

memory utilization, we propose a metadata-free segment struc-

ture with the support of HTM and persistent CPU cache.

As shown in Figure 2, Spash directly divides a segment into

four cacheline-sized buckets without maintaining any metadata

in the header of the segment. To process a query, Spash locates

the main bucket of a requested key in the target segment ac-

cording to the lowest 2 bits of the key hash (e.g., bucket 01 for

K1). Then, Spash inserts/updates/deletes/searches a key-value

entry in the main bucket, which only incurs one cacheline-

sized PM access. The additional PM accesses on the metadata

are eliminated in Spash. Specifically, the various metadata

(e.g., lock, version, and bitmap) used in the previous works [7],

[22], [23] for crash consistency and concurrent consistency

is unnecessary for Spash, since the durable linearizability

of Spash is guaranteed by HTM and persistent CPU cache

(see details in Section IV). Meanwhile, for other metadata to

accelerate searching (e.g., fingerprints), Spash offloads them

to compound key-value slots, which will be discussed later.

To avoid segment splitting immediately when one of its

buckets is full, we propose circular probing to improve the

memory utilization of segments with few additional PM ac-

cesses. For insertions in Spash, if the main bucket of the

requested key is full, the key-value entry can be inserted into

the other three buckets, named overflow buckets. Specifically,

to find a free slot for an insertion, Spash starts the probing

procedure from its main bucket and proceeds in a circular

order to check the overflow buckets. For example, (K2, V 2)
in Figure 2 is inserted into the first free slot of the overflow

bucket 10 if its main bucket 01 is full. This design ensures that

the segments in Spash do not split until all of its buckets are

full. The additional probing overhead is tolerable in the fine-

grained segments since it happens infrequently and the probing

buckets reside in the same XPLine as the main bucket.

Compound Slots. Spash applies compound key-value slots

to support variable-sized key-value entries and reduce unnec-

essary PM reads during the search operations. As shown in

Figure 2, each bucket contains four 16-byte key-value slots,

which store inline keys and values for small-sized key-value

entries (e.g., K2, V1) while storing pointers to the actual key

and value for large-sized key-value entries (e.g., K1, V2).

Since 48-bit is sufficient for a pointer to indicate the memory

address, Spash reserves the highest 16-bit of both key and

value fields to reduce PM reads during the search operations.

To accelerate the search for key-value entries in the overflow

buckets, Spash stores their hints in the value fields of the

main bucket. As shown in Figure 2, the main bucket of K2
stores the lowest 3-14 bits of K2’s hash value (overflow
fingerprint) and the position of K2 in the segment

(overflow index). The overflow fingerprint can

be used to filter the unmatched key without probing the

overflow buckets, and the overflow index can directly

identify the position of the target key-value entry. Moreover,

Spash stores the key fingerprint (the lowest 3-16 bits

of the hash value) in the key field to reduce PM reads

for searching the large-sized key-value entries. In this way,

hash operations can filter the unmatched keys through key
fingerprint, reducing PM reads caused by the pointer

dereference.

PM Overhead Analysis. For inlined key-value entries, search

operations in Spash produce a cacheline-sized PM read to

access a main bucket in most cases. In rare cases (∼9%),

search operations need to access an extra cacheline-sized

overflow bucket that is stored in the same XPLine as the

main bucket. Compared with the search operation, the write

operations (Insert/Update/Delete) in Spash produce one more

cacheline-sized PM write to modify a key-value slot. For

large-sized key-value entries, all hash operations should further

access the key or value via the pointers in the key-value slot.

B. Adaptive In-place Update

The real-world applications often have obvious hotspots, as

well as variable-sized key-value entries [29], [48]–[51]. In

this section, we propose an adaptive in-place update strat-

egy, which leverages persistent CPU cache to maximize the

utilization of PM write bandwidth in such a situation. We

first describe our update strategies for the key-value entries

with various hotnesses and sizes. Then, we introduce our

lightweight hotspot detector, which identifies the hotness of

the key-value entries with low overhead.

Update Policy. Spash employs in-place update for variable-

sized key-value updates. Compared with the out-of-place up-

date that was employed in most previous works [16], [28],

[47], in-place updates for frequently accessed key-value entries

are likely to be completed in CPU cache, conserving scarce

PM write bandwidth. Meanwhile, in-place update produces

fewer PM writes than out-of-place update since it does not

need to install a new pointer in the hash structure.

Driven by the DP2 mentioned in Section II-B for the usage

of flush instructions, Spash employs different flush strategies

to accommodate the key-value entries with different hotnesses

and sizes. As shown in Table I, for hot key-value entries, Spash

employs in-place update without using flush instructions. It

is because that in-place updates to hot data are likely to hit

CPU cache, which reduces writes to PM media. The flush

3855

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:57:24 UTC from IEEE Xplore. Restrictions apply.

TABLE I
ADAPTIVE FLUSH STRATEGY FOR THE UPDATES OF KEY-VALUE ENTRIES

WITH DIFFERENT HOTNESSES AND SIZES.

Hotness Hot Cold
Size All ≤ 64-byte > 64-byte
Flush strategy w/o flush w/ flush

instructions should be removed since they cause repeated data

movements between CPU cache and PM, wasting PM write

bandwidth. For cold key-value entries, if their sizes are larger

than 64 bytes, Spash issues an asynchronous flush instruction

after each update. The reason is that those cold key-value

entries will hardly be accessed again in a short time. The

flush instruction can force multiple modified cachelines to

sequentially write back to PM, making the best use of PM

write bandwidth. Otherwise, dirty cachelines will randomly

write back to PM according to the cache replacement policy,

leading to the write amplification. If the sizes of the cold key-

value entries are smaller than 64 bytes, Spash omits flush

instructions. The reason is that actively flushing a single

cacheline won’t alleviate write amplification.

We fully leverage the persistent CPU cache to overcome

two obstacles that prevent the use of in-place update in the

previous PM-based indexes. First, in-place update is incapable

of atomically modifying and persisting the key-value entries

that are larger than 8-byte, resulting in anomalies, such as

partial write [52]–[54], and dirty read [16], [55], which violate

the requirement of durable linearizability. Spash guarantees

the atomic persistence of in-place updates by integrating HTM

transactions and persistent CPU cache, which will be discussed

in Section IV in detail. To avoid transaction aborts, cacheline

flush instructions (e.g., clwb) can asynchronously be exe-

cuted after the completion of the HTM transaction. Note that

ntstore should not be used for cold key-value updates since

it is incompatible with HTM transactions [46]. Second, for

platforms with volatile CPU cache, the hot key-value entries

are not benefit from in-place update. The reason is that each

update must be synchronously flushed to PM for persistence,

which consumes significant PM write bandwidth even when

the writes hit CPU cache. With persistent CPU cache, Spash

adaptively decides whether to issue flush instructions based on

the hotnesses and sizes of the updated key-value entries for

the best utilization of PM write bandwidth.

Hotspot Detector. To support the adaptive update strategy, we

propose a lightweight hotspot detector to identify the hotness

of the key-value entries. The basic idea of our hotspot detector

is to maintain a hot-key list in DRAM, which contains the

frequently accessed keys. Spash decides which update strategy

to use by checking if the requested key is in the hot-key list.

Spash proposes the hash partitioning approach to reduce the

overhead of scanning the hot-key list. Spash divides the hash

structure into multiple partitions according to the highest p
bits of the hash prefix. For each partition, the hot-key list

maintains q local hot keys, which is updated according to

the LRU replacement policy (The detailed choice of p and q
will be discussed in Section VI). In this way, the overhead of

���� ����� �����

-����
��������/�����

	
/�����

��/�����

��� ������	

�

�

�

-��
�-��

����
��-����

������ .�	� �	�

������ .��� ���

������ .��� ���

������������
���
�� �����

 ����� �

Fig. 4. Compacted-flush insertion.

identifying the hotness of the key can be reduced dramatically

since Spash only needs to scan the local hot-keys of the

partition where the requested key resides. The size of the hot-

key list is small enough in our implementation to fit in the

CPU cache, which also reduces the overhead of our hotspot

detector. Moreover, our hotspot detector can accurately find

out hot keys through the hash partition. Due to the randomness

of the hash function, the union of the local hot-keys of each

partition can effectively represent the global hot-keys.

C. Compacted-flush Insertion

To support the insertion of variable-sized key-value entries

in persistent indexes, a widely used approach is out-of-place

insert, which installs a pointer in the index structure to indicate

the actual key-value entries. However, this approach suffers

from severe write amplification when inserting small-sized

key-value entries (≤128-byte) since the access granularity of

PM physical media is 256-byte. To deal with this problem, we

propose a compacted-flush mechanism for inserting variable-

sized key-value entries, which leverages the persistent CPU

cache to fully utilize PM write bandwidth.

The main idea of compacted-flush insertion is to compact

multiple small insertions in the persistent CPU cache and then

asynchronously flush them to PM in an XPLine-sized granu-

larity. As shown in Figure 4, to serve small insertions (≤128-

byte), Spash allocates a thread-local XPLine-sized memory

chunk and populates it in an append-only manner. Hence,

the consecutive small random insertions tend to compact in

the persistent CPU cache. Meanwhile, the persistent CPU

cache allows each insertion to commit without initiating a

synchronous flush instruction, which avoids high latency and

bandwidth-wasting induced by the repetitive flushes to the

same cacheline [9], [39]. Instead, Spash asynchronously issues

a flush instruction when an XPLine-sized memory chunk is

exhausted, preventing the random cacheline eviction from

causing write amplification (DP 2). With the compacted-flush

mechanism, Spash achieves the best utilization of PM write

bandwidth for inserting small-sized key-value entries.

To manage XPLine-sized memory chunks with different size

classes, Spash employs a state-of-the-art persistent allocator,

DCMM [29], which maintains multiple free block lists with

various size classes for each thread. In particular, the block

classes with small sizes (≤128-byte) are managed in XPLine-

sized chunks to better support our compacted-flush insertion.

3856

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:57:24 UTC from IEEE Xplore. Restrictions apply.

�� ��
��

���

���

� �

�
��

��	

�
��

���

���������

		
 ���

	

��������

��/���	
��

�
	���
	�	
��� 	����
�

�

�

��

��	
��
	
�� ���	
��
	
��

�� �� �

�� �� �

�� �� �

(a) Pipeline optimization

��������
��
�����

	�������
��
�����

���
	��
��

���� ���

���� �

��
�

(b) Two-phase concurrency protocol

Fig. 5. The execution framework of hash operations.(�: Get the address of segment; �:Load the main bucket; �: Locate the key-value slot; �: Load the
key-value entry; �: Process (insert/update/delete/search) the key-value entry.)

D. Execution Flow

In this section, we first summarize the execution flow of

hash operations in Spash. Then, we introduce a pipeline

optimization for Spash to hide long PM read latency and

thoroughly squeeze the high read bandwidth out of PM.

As shown in Figure 5(a), Spash divides the execution of

hash operations into five steps. The first four steps are shared

by all hash operations (Insert/Update/Delete/Search). First,

Spash obtains the address of the target segment from the

volatile directory according to the hash prefix of the requested

key (step 1). Second, Spash loads the main bucket of the target

segment from PM to CPU cache according to the hash suffix

of the requested key (step 2). Third, Spash locates the key-

value slot corresponding to the requested key following the

procedure described in Section III-A (step 3). Fourth, for large-

sized key-value entries, Spash loads the corresponding key-

value pairs from PM into CPU cache according to the pointer

stored in the key-value slot (step 4). For inlined key-value

entries, Spash directly retrieves the key-value information from

the target key-value slot.

After locating the requested key in the hash table, Spash

processes the target key-value entry according to the operation

type (step 5). Search operations directly return the value of the

requested key. Update operations perform adaptive in-place

update to the corresponding values while delete operations set

the corresponding keys (pointers) to null. For insert operations,

Spash inserts a key-value entry into a free slot and adopts the

compacted-flush approach to best utilize PM write bandwidth.

To fully utilize high PM read bandwidth and hide high

PM read latency, Spash employs a pipeline optimization on

the execution of hash operations. As shown in Figure 5(a),

Spash allows each CPU core to concurrently execute multiple

requests in a pipelined manner. Specifically, the PM read

operations in step 2 and 4 can be executed asynchronously by

using memory prefetch instruction. During the asynchronous

PM reads, CPU core is free to execute the critical tasks (step

1 and 3) of the subsequent few requests if the request queue

is not empty. Consequently, multiple PM read operations can

be executed in parallel to exploit high PM read bandwidth.

Moreover, it is necessary to choose a proper pipeline depth

(the number of parallelly executed requests in a single core) to

avoid increasing operation latency. Our evaluation shows that

4 parallelly executed requests are sufficient to hide PM read

latency and utilize most of PM read bandwidth.

IV. CONCURRENCY CONTROL

In this section, we introduce our HTM-based concurrency

control strategy, including a two-phase concurrency protocol

(Section IV-A) for base operations and a collaborative staged

doubling mechanism (Section IV-B) for the directory doubling.

A. Two-phase Concurrency Protocol

To achieve lock-free concurrency control and guarantee

durable linearizability of Spash, we propose a two-phase

concurrency protocol based on HTM. As shown in Figure 5(b),

Spash decouples the pipelined hash operations into two phases:

preparation phase and transaction phase. The preparation phase

includes step 1-4 of pipelined hash operations, which locates

the target key-value entry. The transactions phase only includes

step 5, which processes the key-value entry.

The transaction phase employs HTM to ensure the atom-

icity of memory operations during the key-value processing.

Although multiple words need to be modified during the key-

value processing (e.g., in-place update of large-sized key-value

entries, segment split initiated by inserting to a full segment),

HTM transactions can atomically make the effect of those

operations visible and durable as mentioned in Section II-C2,

thereby ensuring the durable linearizability of concurrent hash

operations. Moreover, the lock-free nature of HTM transac-

tions also improves the multi-core scalability of Spash.

Meanwhile, we leave the preparation phase outside of the

HTM transaction, which brings the following two benefits: (1)

It reduces the conflict abort in HTM transactions. Excluding

the computations and the memory load operations from HTM

shortens the critical path of the transaction, thereby reduc-

ing the possibility of conflicts with concurrent operations.

(2) It avoids the overlapping of HTM transactions during

the pipeline executions. HTM does not support the creation

of multiple overlapping transactions in a pipelined manner.

Hence, we only wrap step 5 into the HTM transaction, so

that multiple requests in the same pipeline batch can serially

execute their HTM transactions as shown in Figure 5(a).

Moreover, the transaction phase includes an additional vali-

dation step to ensure the correctness of the preparation phase.

Since the preparation phase is not protected by HTM, the

concurrent operations might move the target key-value entry

to a different segment or slot from the one obtained in Step

1 and Step 3. Hence, in the transaction phase, Spash checks

whether the segment address and the target key-value slot have

3857

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:57:24 UTC from IEEE Xplore. Restrictions apply.

��� �"��� �����	
�

�
�	��

�
��

������ �

������ 	

� � � � � � � � � � � � � � � �
����

��������� ��������� 	

��� �	������� !!�� !!�� !!�� !!��

!!��� !!��� !!��� !!��� !!��� !!��� !!��� !!������ �	�������

�����
��

�
�	�"

������ ���
����� �� �����	
� ������

������ ����������	���� ���
����� �� �
�	� ������

Fig. 6. Collaborative Staged Doubling

been changed. If so, Spash should actively abort the HTM

transaction and retry the preparation phase.

We also provide a fallback path for the transaction phase

when the time of HTM aborts in a single hash operation

reaches a preset threshold. In such a rare case, the segment

lock stored in the first bit of its corresponding directory entry

will be taken. The concurrent operations on the locked segment

do not start the HTM transaction until the lock is released.

B. Collaborative Staged Doubling

Directory doubling happens when the directory lacks suf-

ficient space for the insertion of newly allocated segments.

Directly using an HTM transaction to wrap the execution

of directory doubling often lead to capacity abort since it

involves a large memory footprint. To deal with this prob-

lem, we propose collaborative staged doubling to ensure the

concurrent consistency of directory doubling. Collaborative

staged doubling avoids the capacity aborts by accomplishing

the doubling procedure in numerous small stages and improves

the scalability of Spash by enabling the concurrent operations

collaboratively completing the directory doubling (note that

directory halving is handled similarly).

As shown in Figure 6, unlike the traditional design, col-

laborative staged doubling contains multiple small stages.

During the directory doubling, Spash first allocates a double-

sized directory, then logically divides the old directory into

multiple cacheline-sized directory partitions. Each stage in the

collaborative staged doubling is responsible for doubling a

small directory partition. Specifically, for each stage, Spash

invokes an HTM transaction to copy the segment pointers of a

directory partition from the old directory to the new directory.

In this way, the capacity aborts can be avoided since each

directory partition has a small memory footprint.

Moreover, collaborative staged doubling does not block

concurrent base operations. For the concurrent modifications

(e.g., split) on the directory during the doubling procedure,

Spash allows them to operate on the new directory to avoid

the lost update anomaly [16]. As shown in Figure 6, if a split

operation (e.g., split1 and split2 in thread2) needs to modify

a directory partition that has not yet been copied to the new

directory, it will initiate an HTM transaction to collaboratively

assist the doubling thread in completing the corresponding

pending stage. Then, the split operation can safely modify the

new directory despite the directory doubling not having been

completed. For concurrent reads, if the corresponding directory

partition has not finished its doubling procedure, they obtain

the segment pointers in the old directory. Otherwise, they will

be redirected to the new directory to get the latest segment

pointers. Collaborative staged doubling can significantly im-

prove the overall throughput and reduce the tail latency by

enabling lock-free concurrent accesses.

V. DISCUSSION

Generality of the Spash’s design to other persistent in-
dexes. Most of the design of Spash can be applied to other

PM-based indexes (e.g., B+-Tree, and radix tree). Specifically,

the adaptive in-place update and compacted-flush insertion

techniques can be directly employed on any persistent indexes

to improve write performance. The HTM-based concurrency

control is also applicable for ensuring both durable lineariz-

ability and high scalability of other persistent data structures.

The pipeline optimization can be used in other index structures

to fully utilize memory bandwidth.

Generality of the Spash’s design to other PM prod-
ucts. In addition to Intel Optane PM, many manufacturers

(e.g., Fujitsu [56], Samsung [31], Xi’an UniIC [57], and

SK Hynix [58]) are developing their PM products due to

its huge application value and mature ecosystem. Although

Spash is implemented atop the Optane DCPMM, our design

is likely to take effect on other PM products for the following

reasons. First, most of the non-volatile media exhibit similar

characteristics, such as asymmetric read/write performance,

higher latency and lower bandwidth than DRAM. Second,

CPU cache persistence techniques (e.g., eADR [12], battery-

backed cache [59], non-volatile cache [60]–[62]) is promising

to be adopted in the future PM-equipped platform since it has

been widely studied in the last few years.

Generality of the Spash’s design to the future CXL devices.
Compute express link (CXL) [63] is a recently published

industry open standard for high-speed communication. CXL

has attracted great attention from industry and academia since

it can be used to expand both memory capacity and memory

bandwidth. The design of indexes for CXL devices can also

employ the techniques proposed in Spash since CXL-based

memory devices have higher latency than DDR-based DRAM,

which is similar to PM.

VI. EVALUATION

In this section, we evaluate the performance of Spash and

compare it with the state-of-the-art persistent hash tables.

We first describe our experiment setup (Section VI-A). Then,

we introduce the evaluation of both micro-benchmarks (Sec-

tion VI-B) and macro-benchmarks (Section VI-C). Finally, we

conduct a comprehensive analysis of the impact of each design

component in Spash (Section VI-D).

3858

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:57:24 UTC from IEEE Xplore. Restrictions apply.

(a) Search (b) Insert (c) Update (d) Delete

Fig. 7. The throughput of hash operations. (Uniform access distribution, inlined key-value entries)

(a) Search (b) Insert (c) Update (d) Delete

Fig. 8. The average number of XPLine and cacheline accesses to PM during the hash operations.

A. Experiment Setup

Testbed. Our testbed machine is a dual-socket server with

two Intel Xeon Gold 6348 CPUs, the third-generation Xeon

Scalable processors that support eADR and TSX. Each CPU

has 28 cores (56 hyper-threads) and a shared 42MB L3 cache,

while each CPU core has a 48KB L1D cache, 32KB L1I cache,

1280KB L2 cache. Each socket is equipped with 8×32GB

DDR4 DRAM and 8×256GB Barlow Pass (BPS) DIMM.

Compared Systems. We compare Spash against six state-of-

the-art persistent hash, including CCEH [22], Dash [7], Level

hashing [23], CLevel [47], Plush [64], and Halo [65]. Among

them, CCEH, Dash, and Level can not support both variable-

sized keys and values. Therefore, for micro-benchmarks (Sec-

tion VI-B) with small-sized key-value entries that can be

accommodated within 8B-8B key-value slots, we employ the

original implementations of these baseline systems. Mean-

while, we implement extended versions for CCEH, Dash, and

Level hashing to handle the macro-benchmarks (Section VI-C)

containing large-sized key-value entries (ranging from 16B

to 1024B). These extended implementations manage variable-

sized key-value entries by storing a pointer to the actual key or

value and adopting out-of-place update/insert, which is widely

used in previous works [16], [28], [47]. For fairness and sim-

plicity, we remove cacheline flush instructions and the memory

barriers for persistence (we retain the memory barriers for

thread synchronization) from the compared systems, enabling

them to leverage the persistent CPU cache.

B. Micro-benchmarks

In this section, we evaluate the performance of each hash

operation (Search, Insert, Update, and Delete) and the load

factors for different persistent hash indexes. We initialize each

persistent hash with 20M inlined key-value entries. Then,

we run individual base operations with uniform distribution.

Specifically, we execute 8 billion insert, 8 billion search,

8 billion update, and 8 billion delete in order. Meanwhile,

we employ ipmctl [66] to calculate the average number

of XPLine and cacheline accesses to PM during each base

operation. Furthermore, we record the load factor (the num-

ber of inserted key-value entries divided by the capacity of

hash tables) of each index during the execution to evaluate

their memory utilization. Halo is excluded from the micro-

benchmark since it crashes during the executions. The primary

reason is that Halo needs to maintain a complete hash table

in DRAM for performance improvement, resulting in the

exhaustion of DRAM space in a large dataset.

Read(Search). As shown in Figure 7(a), for search operations,

Spash achieves 3.1∼7.1× higher throughput than other persis-

tent hash tables under 56 threads. This is primarily because

Spash produces minimal PM read in search operations by

using a fine-grained extendible hash structure and metadata-

free segments. As shown in Figure 8(a), Spash only reads 1.1

cacheline and 1.0 XPLine of PM in each search operation

on average, which is 3.7∼10.9× lower than other counter-

parts. Moreover, the pipeline optimization further improves the

search performance of Spash by 2.0× due to the full utilization

of PM read bandwidth.

In contrast, Level hashing and CLevel need to read at most

four buckets for each search operation, which is costly because

these buckets do not reside in a contiguous memory region.

Meanwhile, Level hashing and CCEH produce PM writes to

maintain read locks, which slows down the search operations.

Dash incurs multiple XPLine-sized bucket-reads for each

search operation, which has a significantly higher overhead

than Spash. Plush employs an LSM-Tree-based structure,

requiring an average traveral of O(logN) (N represents the

number of key-values) levels to retrieve a key-value entry.

Write(Insert/Update/Delete). As shown in Figure 7(b)-7(d),

Spash outperforms other hash tables by 1.4∼19.0× for insert,

2.0∼4.4× for update and 1.8∼3.9× for delete. We also

attribute this to our fine-grained extendible architecture and

metadata-free segment design, which reduces PM writes. As

3859

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:57:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. The load factors of different hash indexes when varying the number
of inserted key-value entries.

shown in Figure 8, for each update or delete operation,

Spash generates 1.0 cacheline write and 1.0 XPLine write

on average, which is much lower than other persistent hash

indexes. Moreover, Spash has minimal PM write overhead

during the insert operation. Although each insert operation

of Spash produces 2.0 cacheline write on average, it only

writes 1.1 XPLine. This is because around 35% of cacheline

write of insert operation comes from the split operations. A

split operation must modify two XPLine-sized segments, each

containing 4 cachelines from the same XPLine. Fortunately,

the split operations are bandwidth-efficient due to the XPLine

granularity of PM.

Other persistent hash tables produce more PM writes to

maintain metadata for durable linearizability. Those metadata

modifications are avoided in Spash by using HTM-based con-

currency protocol, which ensures both concurrent consistency

and crash consistency. Moreover, Level hashing and CLevel

perform poorly in insertions owing to the large overhead of

the full-table rehashing. In Spash, the full-table rehashing is

obviated by using extendible hashing architecture. Although

Plush adopts a DRAM buffer with write-ahead logs to reduce

PM writes, it still generates more PM writes than Spash. The

primary reason for this lies in its LSM-Tree-based structure,

which leads to a large volume of PM writes when flushing

DRAM buffer to PM and merging PM-based hash tables across

different levels.

We also find that the pipeline design does not have a

significant influence on the peak throughput for write-intensive

workloads since PM write bandwidth is the performance

bottleneck in this case.

Load Factor. We evaluate the memory utilization of hash

tables by calculating their load factors with increasing key-

value entries. As shown in Figure 9, Spash has a much higher

load factor than CCEH due to the design of fine-grained

extendible architecture and circular probing in the segments.

Meanwhile, Spash achieves a similar average load factor with

Dash and Level hashing. Although Dash and Level hashing

have a higher maximum load factor than Spash, their load

factors fluctuate greatly with the number of inserted key-

value entries. The reason is that Spash dynamically allocates

the fine-grained segments on demand while other hash tables

perform level-based resizing or large-grained segment split-

ting. The load factor of Plush is relatively low and exhibits

significant fluctuations as Plush allocates a 16× larger level

when the current levels cannot accommodate new insertions.

Fig. 10. YCSB throughput under inlined key-value entries. (Zipfian access
distribution, inlined key-value entries, 56 threads)

C. Macro-benchmarks

In this section, we conduct the evaluation on the YCSB

workload, a real-world workload with skewed access patterns.

The experiment with YCSB workloads consists of the load

phase and run phase, both of which run under 56 threads. In

the load phase, each persistent hash is initialized with 100M

key-value entries. In the run phase, each hash table handles

100M queries, which are a mixture of read (Search) and write

(Update). The key access pattern follows the zipfian distri-

bution with the default zipfian parameter (0.99). We evaluate

the YCSB performance under both inlined and variable-sized

(16-1024 bytes) key-value entries.

Inlined Key-value. Figure 10 shows the performance of each

persistent hash under load phase and three YCSB work-

loads: read-intensive (search:update = 90:10), write-intensive

(search:update = 10:90), balanced (search:update = 50:50).

Spash outperforms other hash tables by 1.1∼31.2× in the load

phase and 2.0∼19.6× in three YCSB workloads. Our proposed

HTM-based concurrency controls significantly improve the

performance of Spash under skewed workloads by eliding

locks for both read and write operations. Moreover, Spash

performs the in-place update for inlined key-value entries. The

updates for frequently accessed key-value entries are likely to

be served in CPU cache, which saves PM write bandwidth.

Other persistent hash tables can not perform as well as

Spash due to their lock-based design or the under-utilization

of CPU cache. Level hashing performs poorly across all three

YCSB workloads because it uses locks for both read and

write operations. Although CLevel is a lock-free hash table, it

employs out-of-place update for any key-value entries, which

can not utilize the CPU cache to absorb the updates of hot

keys. As for Dash and Halo, their performance on the write-

intensive workload is inferior to the read-intensive workload

since they implement lock-free reads and lock-based writes.

Halo performs worse than Dash, especially for write-intensive

workloads, since its log-structured architecture produces more

PM writes during the invalidation and reclamation of log

entries. CCEH performs poorly in read-intensive and balanced

workloads as it employs the read-write locks. The YCSB

performance of Plush is also restrained by both lock-based

out-of-place write and shared write-ahead logs. Additionally,

Plush achieves comparable performance with Spash in the load

phase since the merging overhead is relatively low when the

number of key-values is small.

3860

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:57:24 UTC from IEEE Xplore. Restrictions apply.

(a) Load (b) Write Intensive (c) Balanced (d) Read Intensive

Fig. 11. YCSB throughput under 16-byte key and variable-sized values. (Zipfian access distribution, 56 threads)

(a) The effect of adaptive in-place
update. (Update-only workloads, zip-
fian access distribution, 56 threads)

(b) The effect of compacted-flush in-
sertion. (Insert-only workloads, uni-
form access distribution, 56 threads)

(c) The effect of HTM-based concur-
rency control. (YCSB workloads, zip-
fian access distribution, inlined key-
value entries, 56 threads)

(d) The pipelined search performance
under different pipeline depth (PD)
and thread numbers. (1,7,...,to 56 with
a step of 7)

Fig. 12. The effect of each design component in Spash.

Variable-sized Key-value. Figure 11 shows the YCSB perfor-

mance under 16-byte key and various value sizes. In the load

phase, Spash delivers up to 28.0× higher throughput than the

state-of-the-art hash tables. Besides the few PM writes men-

tioned previously, the compacted-flush insertion contributes

the most to the high performance of Spash. The compacted-

flush approach is capable of fully utilizing PM write bandwidth

by compacting multiple small insertions (≤ 128-byte) into

an XPLine-sized memory chunk. In the meantime, Spash

asynchronously flushes those insertions to PM in the XPLine-

granularity, which further avoids write amplification induced

by the random cacheline evictions.

In the run phase, Spash achieves up to 13.4× higher

throughput than other counterparts in the write-intensive work-

loads. We attribute this to our proposed adaptive in-place

update technique. Spash effectively identifies the hotspots

of the workloads and removes the flush instructions for the

updates of frequently accessed keys. In this way, the updates of

the hot key-value entries are likely to hit the CPU cache, which

drastically reduces the consumption of PM write bandwidth.

Meanwhile, Spash actively flushes the update of cold key-

value entries with large sizes (> 64-byte), which effectively

alleviates write amplification, saving scarce PM write band-

width. As for other persistent hash tables, they use the out-of-

place update for all circumstances, which prevents them from

utilizing CPU cache to improve scalability. Moreover, Spash

performs the best in the read-intensive workload and balanced

workload due to both adaptive update strategies and pipeline

framework as we mentioned above.

D. In-depth Analysis

We conduct four optimizations for Spash, including adaptive

in-place update, compacted-flush insertion, HTM-based con-

currency control, and pipeline executions, which efficiently

support Spash to obtain high scalability. We evaluate the

effects of those optimizations in this section.

Adaptive In-place Update. Our proposed adaptive in-place

update mechanism significantly conserves PM write bandwidth

in platforms with the persistent CPU cache by adopting dif-

ferent update strategies for the key-value entries with various

hotnesses and sizes. To show the impact of the adaptive in-

place update, we evaluate the YCSB throughput of Spash using

the adaptive update strategy and other update strategies. As

shown in Figure 12(a), the adaptive update strategy delivers

1.2∼2.2× higher throughput than in-place update (w/ flush)

under various key-value sizes. The reason is that using flush

instructions for the updates of hot key-value entries produces

unnecessary PM writes. Meanwhile, adaptive update outper-

forms in-place update (w/o flush) by up to 2.1× when the

value size is larger than 64-byte. This is because removing the

flush instructions for the cold key-value entries with large sizes

causes write amplification. In a nutshell, using adaptive update

strategies for the key-value entries with various hotnesses and

sizes can make the best use of PM write bandwidth.

To support the adaptive updates, we heuristically maintain a

small hot-key list with 8K entries (each partition has two hot-

keys), which works well for the workloads with different key-

value sizes as shown in Figure 12(a). A small hotspot detector

is enough to achieve significant performance improvement

since most of the accesses are often concentrated on a few

hotspots in real-world workloads [67]. To further evaluate the

overhead of our hotspot detector, we compare its performance

with an oracle hotspot detector under YCSB workloads. The

oracle hotspot detector identifies the hotness of the key-value

entry with near-zero overhead by getting its access probability

from our workload generator. As shown in Figure 12(a),

3861

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:57:24 UTC from IEEE Xplore. Restrictions apply.

our hotspot detector achieves comparable performance to the

oracle hotspot detector under YCSB workloads. The results

demonstrate that our proposed hotspot detector is sufficient to

support the adaptive update with low overhead.

Compacted-flush Insertion. Figure 12(b) shows that the

compacted-flush approach accelerates the performance of

Spash by up to 2.5× due to the full utilization of PM write

bandwidth. Moreover, we actively flush the memory chunks

in an XPLine-sized granularity, which achieves up to 2.2×
performance improvement since it avoids write amplification

induced by random cacheline eviction.

HTM-based Concurrency Protocol. Through two-phase con-

currency protocol and collaborative staged doubling, Spash

implements a lock-free concurrency control mechanism based

on HTM, which significantly improves the scalability in

multi-core systems. To evaluate the effect of HTM-based

concurrency control, we implement two variants of Spash that

employ the concurrency protocols of Dash and Level Hashing,

respectively. Spash (w/ write lock) serializes concurrent write

operations by a per-segment lock and retains the lock-free

read design, which is similar to the concurrency protocol used

in Dash. Spash (w/ write & read lock) adopts a per-segment

lock to serialize both read and write operations, which is the

concurrency protocol used in Level Hashing. As shown in

Figure 12(c), Spash achieves up to 3.5× higher throughput

than Spash (w/ write lock) and Spash (w/ write & read lock)

in write-intensive workloads due to our lock-free write design.

Moreover, Spash outperforms Spash (w/ write & read lock) by

up to 4.4× in read-intensive workloads because of the lock-

free read offered by HTM.

Pipeline Optimization. The pipeline executions improve the

performance of Spash by fully utilizing high PM read band-

width. As depicted in Figure 7, 10, and 11, pipeline op-

timization substantially improves the performance of Spash,

particularly for read-intensive workloads. Meanwhile, we must

choose a proper pipeline depth (PD) to avoid increasing

operation latency. As shown in Figure 12(d), PD=4 is sufficient

to utilize most PM read bandwidth and almost do not increase

the operation latency.

VII. RELATED WORK

Persistent Hash. In the past few years, many works have

studied PM-based hash indexes. Level hashing [23] proposes a

write-optimized persistent hash with a low overhead crash con-

sistency guarantee. Level hashing suffers low scalability since

it requires full-table rehashing and employs locks for both

read and write operations. CLevel [47] further proposes lock-

free concurrency control based on Level hashing. However, the

performance of CLevel is still impeded by excessive PM reads

and writes. CCEH [22] is a variant of extendible persistent

hash, which introduces an intermediate segment level to reduce

the directory size. CCEH exhibits low memory utilization due

to the low association in the segment. Dash [7] proposes

several load balancing techniques for CCEH, including bal-

anced insert, displacement, and stashing, which improves the

load factor of the hash table but sacrifices the performance.

Plush [64], a write-optimized persistent hash, employs the

LSM-Tree-based structure to enable sequential write, albeit at

the cost of search performance. Nevertheless, it still produces a

substantial volume of PM writes when merging different levels

of persistent hash tables. Halo [65] stores the entire hash table

in DRAM and employs a log-structured approach to manage

key-value entries in PM, enhancing efficiency when traversing

index structure. However, it produces notable PM writes for

snapshot creations, as well as the creation, invalidation, and

reclamation of log entries. The concurrent performance of

Halo is also constrained by its lock-based protocol for both

resizing and regular write operations. Although these works

are designed for platforms with volatile CPU cache, they

provide valuable inspiration for us.

The Exploration of Persistent CPU cache. With the emer-

gence of eADR, researchers are looking into ways to opti-

mize the existing PM systems with persistent CPU cache.

Gugnani [43] proposes lock-free algorithms for the linked list

and ring buffer based on atomic CPU hardware primitives.

NBTree [16] is a lock-free persistent B+-Tree designed for

eADR-enabled platforms. HTMFS [19] employs HTM to

simplify the concurrency control in persistent memory file

systems. CacheKV [68] redesigns the memtable of LSM-Tree

to optimize its write performance with the persistent CPU

cache. Different from them, Spash fully exploits persistent

CPU cache to optimize both write and concurrent performance

of persistent hash indexes.

VIII. CONCLUSION

Persistent CPU cache technologies such as eADR offer new

opportunities to optimize the write performance and concur-

rency control of PM-based storage systems. In this paper, we

propose Spash, a highly scalable persistent hash index that

fully leverages the benefits of persistent CPU cache. Spash

employs a fine-grained extendible hash architecture, metadata-

free segment, adaptive in-place update, and compacted-flush

insertion to reduce PM access overhead. Moreover, Spash

applies a two-phase concurrency protocol and collaborative

staged doubling mechanism, which leverage HTM and per-

sistent CPU cache to achieve high concurrency and durable

linearizability. For YCSB workloads, Spash outperforms other

indexes by up to 19.6×.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable

feedback and insightful suggestions. This work is supported

by National Key Research and Development Program of

China (Grant No. 2022YFB4500303), National Natural Sci-

ence Foundation of China (NSFC) (Grant No. 62227809),

the Fundamental Research Funds for the Central Universities,

Shanghai Municipal Science and Technology Major Project

(Grant No. 2021SHZDZX0102), Natural Science Foundation

of Shanghai (Grant No. 22ZR1435400), and Huawei Innova-

tion Research Plan.

3862

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:57:24 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Handy, “Understanding the intel/micron 3d xpoint memory,” Proc.
SDC, 2015.

[2] R. M. Krishnan, W.-H. Kim, X. Fu, S. K. Monga, H. W. Lee, M. Jang,
A. Mathew, and C. Min, “{TIPS}: Making volatile index structures
persistent with {DRAM-NVMM} tiering,” in 2021 USENIX Annual
Technical Conference (USENIX ATC 21), 2021, pp. 773–787.

[3] Y. Chen, Y. Lu, B. Zhu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
and J. Shu, “Scalable persistent memory file system with {Kernel-
Userspace} collaboration,” in 19th USENIX Conference on File and
Storage Technologies (FAST 21), 2021, pp. 81–95.

[4] T. Ma, M. Zhang, K. Chen, Z. Song, Y. Wu, and X. Qian, “Asymnvm:
An efficient framework for implementing persistent data structures
on asymmetric nvm architecture,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 757–773.

[5] T. Yao, Y. Zhang, J. Wan, Q. Cui, L. Tang, H. Jiang, C. Xie, and X. He,
“{MatrixKV}: Reducing write stalls and write amplification in {LSM-
tree} based {KV} stores with matrix container in {NVM},” in 2020
USENIX Annual Technical Conference (USENIX ATC 20), 2020, pp.
17–31.

[6] R. Kadekodi, S. K. Lee, S. Kashyap, T. Kim, A. Kolli, and V. Chi-
dambaram, “Splitfs: Reducing software overhead in file systems for
persistent memory,” in Proceedings of the 27th ACM Symposium on
Operating Systems Principles, 2019, pp. 494–508.

[7] B. Lu, X. Hao, T. Wang, and E. Lo, “Dash: Scalable hashing on
persistent memory,” Proceedings of the VLDB Endowment, vol. 13, no. 8.

[8] J. Liu, S. Chen, and L. Wang, “Lb+ trees: Optimizing persistent
index performance on 3dxpoint memory,” Proceedings of the VLDB
Endowment, vol. 13, no. 7, pp. 1078–1090, 2020.

[9] Z. Dang, S. He, P. Hong, Z. Li, X. Zhang, X.-H. Sun, and G. Chen,
“Nvalloc: rethinking heap metadata management in persistent memory
allocators,” in Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2022, pp. 115–127.

[10] Intel, “Deprecating the pcommit instruction,” https://software.intel.com/
content/www/us/en/develop/blogs/deprecate-pcommit-instruction.html,
2016.

[11] ——, “Intel® optane™ persistent memory 200 series brief,” https://
www.intel.la/content/www/xl/es/products/docs/memory-storage/optane-
persistent-memory/optane-persistent-memory-200-series-brief.html”,
2021.

[12] ——, “eadr: New opportunities for persistent memory applications,”
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-
opportunities-for-persistent-memory-applications.html, 2021.

[13] A. Rudoff, “Persistent memory programming,” Login: The Usenix Mag-
azine, vol. 42, no. 2, pp. 34–40, 2017.

[14] J. Izraelevitz, H. Mendes, and M. L. Scott, “Linearizability of persistent
memory objects under a full-system-crash failure model,” in Interna-
tional Symposium on Distributed Computing. Springer, 2016, pp. 313–
327.

[15] X. Fu, D. Lee, and C. Min, “{DURINN}: Adversarial memory and
thread interleaving for detecting durable linearizability bugs,” in 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22), 2022, pp. 195–211.

[16] B. Zhang, S. Zheng, Z. Qi, and L. Huang, “Nbtree: a lock-free pm-
friendly persistent b-tree for eadr-enabled pm systems,” Proceedings of
the VLDB Endowment, vol. 15, no. 6, pp. 1187–1200, 2022.

[17] Z. Chen, Y. Hua, Y. Zhang, and L. Ding, “Efficiently detecting con-
currency bugs in persistent memory programs,” in Proceedings of
the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2022, pp. 873–887.

[18] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in Proceedings of the 20th annual
international symposium on Computer architecture, 1993, pp. 289–300.

[19] J. Yi, M. Dong, F. Wu, and H. Chen, “{HTMFS}: Strong consistency
comes for free with hardware transactional memory in persistent mem-
ory file systems,” in 20th USENIX Conference on File and Storage
Technologies (FAST 22), 2022, pp. 17–34.

[20] Z. Wang, H. Qian, J. Li, and H. Chen, “Using restricted transactional
memory to build a scalable in-memory database,” in Proceedings of the
Ninth European Conference on Computer Systems, 2014, pp. 1–15.

[21] T. Karnagel, R. Dementiev, R. Rajwar, K. Lai, T. Legler, B. Schlegel,
and W. Lehner, “Improving in-memory database index performance with
intel® transactional synchronization extensions,” in 2014 IEEE 20th
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2014, pp. 476–487.

[22] M. Nam, H. Cha, Y.-r. Choi, S. H. Noh, and B. Nam, “{Write-
Optimized} dynamic hashing for persistent memory,” in 17th USENIX
Conference on File and Storage Technologies (FAST 19), 2019, pp. 31–
44.

[23] P. Zuo, Y. Hua, and J. Wu, “Write-optimized and high-performance
hashing index scheme for persistent memory,” in 13th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI}
18), 2018, pp. 461–476.

[24] D. Hwang, W.-H. Kim, Y. Won, and B. Nam, “Endurable transient
inconsistency in byte-addressable persistent b+-tree,” in 16th {USENIX}
Conference on File and Storage Technologies ({FAST} 18), 2018, pp.
187–200.

[25] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, “Nv-tree:
Reducing consistency cost for nvm-based single level systems,” in 13th
{USENIX} Conference on File and Storage Technologies ({FAST} 15),
2015, pp. 167–181.

[26] Y. Chen, Y. Lu, K. Fang, Q. Wang, and J. Shu, “utree: a persistent
b+-tree with low tail latency,” Proceedings of the VLDB Endowment,
vol. 13, no. 12, pp. 2634–2648, 2020.

[27] S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main memory,”
Proceedings of the VLDB Endowment, vol. 8, no. 7, pp. 786–797, 2015.

[28] J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A. Larson, “Bztree:
A high-performance latch-free range index for non-volatile memory,”
Proceedings of the VLDB Endowment, vol. 11, no. 5, pp. 553–565, 2018.

[29] S. Ma, K. Chen, S. Chen, M. Liu, J. Zhu, H. Kang, and Y. Wu,
“{ROART}: Range-query optimized persistent {ART},” in 19th
USENIX Conference on File and Storage Technologies (FAST 21), 2021,
pp. 1–16.

[30] W.-H. Kim, R. M. Krishnan, X. Fu, S. Kashyap, and C. Min, “Pactree:
A high performance persistent range index using pac guidelines,” in
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles CD-ROM, 2021, pp. 424–439.

[31] S. Jung, H. Lee, S. Myung, H. Kim, S. K. Yoon, S.-W. Kwon, Y. Ju,
M. Kim, W. Yi, S. Han et al., “A crossbar array of magnetoresistive
memory devices for in-memory computing,” Nature, vol. 601, no. 7892,
pp. 211–216, 2022.

[32] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee,
F. T. Chen, and M.-J. Tsai, “Metal–oxide rram,” Proceedings of the
IEEE, vol. 100, no. 6, pp. 1951–1970, 2012.

[33] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M.
Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung et al., “Phase-
change random access memory: A scalable technology,” IBM Journal
of Research and Development, vol. 52, no. 4.5, pp. 465–479, 2008.

[34] G. Liu, L. Chen, and S. Chen, “Zen: a high-throughput log-free
oltp engine for non-volatile main memory,” Proceedings of the VLDB
Endowment, vol. 14, no. 5, pp. 835–848, 2021.

[35] C. Chen, J. Yang, M. Lu, T. Wang, Z. Zheng, Y. Chen, W. Dai, B. He,
W.-F. Wong, G. Wu et al., “Optimizing in-memory database engine
for ai-powered on-line decision augmentation using persistent memory,”
Proceedings of the VLDB Endowment, vol. 14, no. 5, pp. 799–812, 2021.

[36] B. Yan, X. Cheng, B. Jiang, S. Chen, C. Shang, J. Wang, G. Huang,
X. Yang, W. Cao, and F. Li, “Revisiting the design of lsm-tree based
oltp storage engine with persistent memory,” Proceedings of the VLDB
Endowment, vol. 14, no. 10, pp. 1872–1885, 2021.

[37] L. Benson, H. Makait, and T. Rabl, “Viper: an efficient hybrid pmem-
dram key-value store,” Proceedings of the VLDB Endowment, vol. 14,
no. 9, pp. 1544–1556, 2021.

[38] J. Wang, Y. Lu, Q. Wang, M. Xie, K. Huang, and J. Shu, “Pacman: An
efficient compaction approach for {Log-Structured}{Key-Value} store
on persistent memory,” in 2022 USENIX Annual Technical Conference
(USENIX ATC 22), 2022, pp. 773–788.

[39] Y. Chen, Y. Lu, F. Yang, Q. Wang, Y. Wang, and J. Shu, “Flatstore: An
efficient log-structured key-value storage engine for persistent memory,”
in Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2020, pp. 1077–1091.

[40] S. Zheng, M. Hoseinzadeh, and S. Swanson, “Ziggurat: A tiered file
system for {Non-Volatile} main memories and disks,” in 17th USENIX

3863

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:57:24 UTC from IEEE Xplore. Restrictions apply.

Conference on File and Storage Technologies (FAST 19), 2019, pp. 207–
219.

[41] M. Dong, H. Bu, J. Yi, B. Dong, and H. Chen, “Performance and
protection in the zofs user-space nvm file system,” in Proceedings of
the 27th ACM Symposium on Operating Systems Principles, 2019, pp.
478–493.

[42] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An
empirical guide to the behavior and use of scalable persistent memory,”
in 18th USENIX Conference on File and Storage Technologies (FAST
20), 2020, pp. 169–182.

[43] S. Gugnani, A. Kashyap, and X. Lu, “Understanding the idiosyncrasies
of real persistent memory,” Proceedings of the VLDB Endowment,
vol. 14, no. 4, pp. 626–639, 2020.

[44] M. Friedman, N. Ben-David, Y. Wei, G. E. Blelloch, and E. Petrank,
“Nvtraverse: In nvram data structures, the destination is more important
than the journey,” in Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2020, pp. 377–
392.

[45] Intel, “Restricted transactional memory overview,” https://www.
intel.com/content/www/us/en/develop/documentation/cpp-
compiler-developer-guide-and-reference/top/compiler-
reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-
for-restrict-transactional-mem-ops/restricted-transactional-memory-
overview.html, 2021.

[46] ——, “Intel® transactional synchronization extensions (intel® tsx)
programming considerations,” https://www.intel.com/content/www/
us/en/develop/documentation/cpp-compiler-developer-guide-and-
reference/top/compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-
for-tsx/tsx-programming-considerations.html, 2021.

[47] Z. Chen, Y. Huang, B. Ding, and P. Zuo, “Lock-free concurrent level
hashing for persistent memory,” in 2020 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 20), 2020, pp. 799–812.

[48] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143–154.

[49] H. Lim, M. Kaminsky, and D. G. Andersen, “Cicada: Dependably fast
multi-core in-memory transactions,” in Proceedings of the 2017 ACM
International Conference on Management of Data, 2017, pp. 21–35.

[50] X. Yu, A. Pavlo, D. Sanchez, and S. Devadas, “Tictoc: Time traveling
optimistic concurrency control,” in Proceedings of the 2016 Interna-
tional Conference on Management of Data, 2016, pp. 1629–1642.

[51] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in Proceedings
of the 12th ACM SIGMETRICS/PERFORMANCE joint international
conference on Measurement and Modeling of Computer Systems, 2012,
pp. 53–64.

[52] S. K. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram, “Recipe:
Converting concurrent dram indexes to persistent-memory indexes,”
in Proceedings of the 27th ACM Symposium on Operating Systems
Principles, 2019, pp. 462–477.

[53] J. Xu and S. Swanson, “{NOVA}: A log-structured file system for hybrid
volatile/non-volatile main memories,” in 14th {USENIX} Conference on
File and Storage Technologies ({FAST} 16), 2016, pp. 323–338.

[54] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better i/o through byte-addressable, persistent memory,” in
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, 2009, pp. 133–146.

[55] T. Wang, J. Levandoski, and P.-A. Larson, “Easy lock-free indexing in
non-volatile memory,” in 2018 IEEE 34th International Conference on
Data Engineering (ICDE). IEEE, 2018, pp. 461–472.

[56] Z. Liu, “Fujitsu targets 2019 for nram mass production.”
https://www.tomshardware.com/news/fujitsu-nram-nantero-carbon-
nanotube,37437.html, 2018.

[57] X. U. Semiconductors, “Nvdimm products.” http://www.unisemicon.
com, 2022.

[58] M. Technology and H. SK, “Non volatile dual in line memory module
nvdimm market research report.” https://dataintelo.com/report/global-
non-volatile-dual-in-line-memory-module-nvdimm-market/, 2021.

[59] M. Alshboul, P. Ramrakhyani, W. Wang, J. Tuck, and Y. Solihin, “Bbb:
Simplifying persistent programming using battery-backed buffers,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2021, pp. 111–124.

[60] J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-atomic persistent memory
updates via justdo logging,” ACM SIGARCH Computer Architecture
News, vol. 44, no. 2, pp. 427–442, 2016.

[61] Y. Lu, J. Shu, L. Sun, and O. Mutlu, “Loose-ordering consistency for
persistent memory,” in 2014 IEEE 32nd International Conference on
Computer Design (ICCD). IEEE, 2014, pp. 216–223.

[62] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing the
performance gap between systems with and without persistence support,”
in Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, 2013, pp. 421–432.

[63] C. Consortium, “Compute express link™: The breakthrough cpu-to-
device interconnect.” https://www.computeexpresslink.org, 2022.

[64] L. Vogel, A. Van Renen, S. Imamura, J. Giceva, T. Neumann, and
A. Kemper, “Plush: A write-optimized persistent log-structured hash-
table,” Proceedings of the VLDB Endowment, vol. 15, no. 11, pp. 2895–
2907, 2022.

[65] D. Hu, Z. Chen, W. Che, J. Sun, and H. Chen, “Halo: A hybrid pmem-
dram persistent hash index with fast recovery,” in Proceedings of the
2022 International Conference on Management of Data, 2022, pp. 1049–
1063.

[66] Intel, “Ipmctl user guide,” https://docs.pmem.io/ipmctl-user-guide/,
2022.

[67] J. Chen, L. Chen, S. Wang, G. Zhu, Y. Sun, H. Liu, and F. Li,
“{HotRing}: A {Hotspot-Aware}{In-Memory}{Key-Value} store,” in
18th USENIX Conference on File and Storage Technologies (FAST 20),
2020, pp. 239–252.

[68] Y. Zhong, Z. Shen, Z. Yu, and J. Shu, “Redesigning high-performance
lsm-based key-value stores with persistent cpu caches,” in 2023 IEEE
39th International Conference on Data Engineering (ICDE), 2023, pp.
1098–1111.

3864

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 28,2024 at 05:57:24 UTC from IEEE Xplore. Restrictions apply.

