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Abstract—Byte-addressable persistent memory (PM) has been
widely studied in the past few years. Recently, the emerging
eADR technology further incorporates CPU cache into the
persistence domain. The persistent CPU cache is promising to
optimize the write performance of PM-based storage systems
and facilitate the design of concurrent crash-consistent data
structures. In this paper, we propose Spash, a highly scalable
persistent hash index for PM systems with persistent CPU cache.
Spash fully exploits the benefits of persistent CPU cache to
implement a durable linearizable index with low PM access
overhead and high concurrency. Spash employs a fine-grained
extendible hash architecture and a metadata-free segment design
to minimize the number of PM accesses. Moreover, Spash adopts
adaptive in-place updates and compacted-flush insertions, which
dramatically conserve scarce PM write bandwidth by absorbing
a large amount of PM write in the persistent CPU cache.
Furthermore, Spash proposes a two-phase concurrency protocol
and a collaborative staged doubling mechanism, which leverage
the persistent CPU cache and hardware transactional memory to
achieve lock-free concurrency and durable linearizability. Spash
outperforms the other state-of-the-art persistent hash indexes in
YCSB workloads by up to 19.6×.

Index Terms—Persistent Memory, Persistent CPU Cache, Hash
Index

I. INTRODUCTION

Byte-addressable persistent memory (PM) promises data
durability with DRAM-comparable performance. The release
of Intel’s first generation Optane DC Persistent Memory
Module (DCPMM) [1] in 2019 has spawned a slew of re-
search proposals and prototype systems [2]–[9]. These studies
mostly assumed that CPU cache is volatile since the ADR
(Asynchronous DRAM Refresh) [10] mechanism of Optane
DCPMM only guarantees the persistence of the memory and
write pending queues (WPQ). Two years later, Intel unveiled
the second generation Optane DCPMM [11], along with a
new platform feature called eADR (extended ADR) [12].
eADR further pushes the boundaries of the persistence domain
to incorporate CPU cache. During a power outage, eADR
guarantees the persistence of the CPU cache by flushing the
data of the CPU cache to PM with the reserved energy.

Persistent CPU cache offers new opportunities to fully
unleash the write and concurrent performance of PM-based
systems. First, PM-based systems are anticipated to squeeze
the most write performance out of PM by effectively leverag-
ing the persistent CPU cache. PM has a relatively low write
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bandwidth, which is around 3× lower than its read bandwidth
and 5× lower than DRAM write bandwidth. Moreover, when
the CPU cache is volatile, PM-based systems must flush each
modified cacheline to PM synchronously to ensure data dura-
bility, which increases the write latency and exacerbates the
scarce PM write bandwidth [13]. With persistent CPU cache,
synchronous flush instructions are no longer necessary, thereby
reducing PM write latency on the critical path. Moreover, PM
write bandwidth is also conserved substantially by eliminating
the repetitive flushes to hot PM regions.

Second, persistent CPU cache facilitates the design of con-
current crash-consistent data structures with high scalability.
The key challenge for concurrent PM-based data structures is
the guarantee of durable linearizability [14], which preserves
the linearizability of data structures even in the case of power
failure. Previously, the volatile CPU cache created a gap
between an update being globally visible in CPU cache and
durable in PM. This can lead to inconsistency when concurrent
threads access data that is not yet durable [15]–[17]. Persistent
CPU cache eliminates this gap, thereby presenting an excel-
lent opportunity to optimize the concurrency control in PM
programming. In particular, we can leverage HTM (Hardware
Transactional Memory) [18]–[21] to design lock-free data
structures with the guarantee of durable linearizability. HTM
provides a simple and efficient interface to atomically make the
effect of multiple-word updates visible in a lock-free manner.
With the persistent CPU cache, HTM can further ensure the
persistence of those updates, which makes HTM well-suited
for building data structures with durable linearizability.

In the past few years, PM-based persistent indexes [22]–
[30] have received increasingly high interest. However, most
of them are designed for platforms with volatile CPU cache.
With persistent CPU cache, we found that simply removing
flush instructions from those indexes does not yield a signif-
icant performance improvement for two reasons: (1) Existing
designs do not fully leverage the persistent CPU cache to
reduce PM writes. Without a cache-friendly design to increase
write locality, PM writes are not reduced by removing flush
instructions since dirty cachelines will eventually be evicted
to PM media. Worse even, random cacheline evictions might
cause write amplification due to the mismatch between the
access granularity of PM media and cacheline-size, further de-
grading the write performance. (2) Previous PM-based indexes
employ inefficient protocols to ensure durable linearizability.



The majority of them adopt locks to coordinate concurrent
accesses, preventing them from achieving high concurrency.
Moreover, they produce excessive PM accesses to maintain
various metadata (e.g., bitmap, lock, and version) to guarantee
durable linearizability, resulting in performance degradation.

In this paper, we propose a highly scalable persistent hash
index named Spash to address the above challenges. Spash
fully exploits the benefits of persistent CPU cache to reduce
the consumption of PM write bandwidth and the overhead
associated with ensuring durable linearizability.

First, Spash integrates persistent CPU cache and HTM to
achieve durable linearizability with low PM access overhead
and high concurrency. Specifically, Spash employs a fine-
grained extendible hash structure, which utilizes a volatile
directory to divide hash space into multiple metadata-free
segments. This architecture not only reduces PM accesses
but also achieves strong compatibility with HTM transactions.
To ensure durable linearizability and lock-free concurrent
accesses, Spash employs a two-phase concurrency protocol
and a collaborative staged doubling mechanism based on
HTM. The two-phase concurrency protocol decouples hash
operations into the preparation phase and transaction phase,
minimizing data conflicts in the HTM transactions. Collabo-
rative staged doubling divides the directory doubling of Spash
into numerous minor stages that can be accomplished by
either a doubling thread or concurrent threads. This mechanism
obviates the capacity abort of HTM transactions and the
blocking of concurrent threads during the directory doubling.

Furthermore, we propose an adaptive in-place update and a
compacted-flush insertion mechanism for Spash to enhance the
utilization of PM write bandwidth with persistent CPU cache.
The adaptive in-place update absorbs the frequent updates to
hot key-value entries in the CPU cache, thereby minimizing
PM writes. Additionally, it adaptively flushes the updates of
cold key-value entries to reduce write amplification resulting
from the random cacheline eviction. Moreover, the compacted-
flush mechanism compacts the consecutive small insertions in
the persistent CPU cache and asynchronously flushes them
back to PM in XPLine-sized (the access granularity in PM
media) chunks, thereby reducing write amplification.

In summary, the contributions of this paper include:
• We thoroughly investigate the characteristics of PM and

the impact of persistent CPU cache on PM systems. Based
on this, we conclude several valuable design principles for
PM systems on platforms with persistent CPU cache.

• We propose Spash, the first persistent hash index that
fully exploits the benefits of persistent CPU cache. Spash
integrates the persistent CPU cache and HTM to minimize
the PM access overhead and enable lock-free concurrency.

• For Spash, we further propose adaptive in-place update
and compacted-flush insertion, which fully leverage the
persistent CPU cache to improve write performance.

• We conduct comprehensive evaluations on the perfor-
mance of Spash and compare it with the state-of-the-
art persistent hash tables. In YCSB evaluation, Spash
outperforms other counterparts by up to 19.6×.

II. BACKGROUND AND MOTIVATION

In this section, we begin by introducing the background
of persistent memory in Section II-A. Then, we conduct an
in-depth analysis of how persistent CPU cache influences
the flush strategies for PM writes in Section II-B. Finally,
in Section II-C, we explore the opportunities for designing
highly scalable concurrent crash-consistent data structures
with persistent CPU cache.

A. Persistent Memory

Persistent memory (PM) (e.g., MRAM [31], Re-RAM [32],
PCM [33]) provides many attractive features, such as byte ad-
dressability, and DRAM-comparable performance. In the past
decade, numerous use cases of PM, such as databases [34]–
[36], key-value store [37]–[39], and file systems [40], [41],
have been studied in both academia and industry.

Intel Optane DCPMM is the first commercially available
PM product, which has two generations so far, AEP (Apache
Pass, 2019) and BPS (Barlow Pass, 2021). The key distinction
between AEP and BPS is their persistence domain. AEP-
equipped platforms support the ADR mechanism [10], which
ensures that data residing in the write pending queues (WPQ)
can be flushed into the PM after a power failure. However,
the CPU cache is still excluded from the persistence domain.
Programmers need to issue explicit cacheline flush instructions
(e.g., clwb, clflush, and clflushopt) and memory
barriers (e.g., mfence, and sfence) to ensure data persis-
tence. BPS-equipped platforms introduce a new mechanism
called eADR [12], which further incorporates CPU cache
into the persistence domain with enhanced backup energy.
With the persistence guarantee of CPU cache, cacheline flush
instructions are no longer necessary for data persistence.

Through a comprehensive evaluation of Optane DCPMM,
we conclude the unique PM characteristics as follows:
Observation 1: PM has lower write bandwidth and higher
read latency than DRAM. Previous works [42] found that the
access granularity of physical media (3D-XPoint) in Optane
PM is 256-byte (XPLine). Therefore, accessing PM with
blocks that are a multiple of XPLine-aligned can maximize the
utilization of memory bandwidth. In our testbed (detailed con-
figuration is described in Section VI), PM writes with 256-byte
access granularity can achieve peak bandwidth (∼15GB/s),
which is 5× lower than DRAM (∼75GB/s). Although PM
read has a much higher bandwidth (∼50GB/s), the latency of
PM read (∼350ns) is 3.5× higher than DRAM (∼100ns).

Hence, for PM-based systems, we have DP (Design Prin-
ciple) 1: Avoid excessive PM accesses and take the XPLine-
access granularity into consideration.

B. The Flush Strategies for PM Writes

As mentioned in Section II-A, the persistent CPU cache
obviates the need for cacheline flush instructions to ensure
the durability of PM writes. Therefore, programmers have the
flexibility to decide whether and when to use cacheline flush
instructions for optimizing performance. In this section, we
conduct a thorough analysis of the impact of persistent CPU
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Fig. 1. The PM write performance under different flush strategies. (56 threads)

cache by evaluating the performance of write-f (store
that is followed by a flush instruction) and write-nf
(store that is not followed by a flush instruction) under
various access granularities and access patterns. Our evaluation
leads to three observations:
Observation 2: Using write-nf for cold memory regions
with more than 1 cacheline causes write amplification.
Figure 1(a) shows the performance of PM write under uni-
form access distribution. In the uniform access pattern, the
majority of writes access the cold memory regions and cannot
hit CPU cache. In such a situation, we observe that the
write-nf has lower throughput than write-f when the
access size is larger than 1 cacheline (64-byte). This is due to
the write amplification caused by the asynchronous cacheline
eviction [42], [43] and the XPLine access granularity of PM.
When we modify the cold memory chunks larger than 1
cacheline, multiple cachelines are likely to be evicted to PM
in random order if we do not explicitly use flush instructions.
Therefore, the large sequential writes will be divided into
multiple cacheline-sized random writes, which mismatches the
internal access granularity of PM (XPLine), leading to the
write amplification. In contrast, the flush instructions after
the write operations allows PM to aggregate those sequential
writes in a small XPBuffer [42], maximizing the utilization of
PM write bandwidth.
Observation 3: Using write-nf for hot memory regions
saves PM write bandwidth. Figure 1(b) shows the performance
of PM write under the zipfian access distribution (skew-
ness=0.99), in which most memory accesses are concentrated
in small hot regions. We discover that using write-nf has
a significantly higher throughput than using write-f. The
reason is that the writes on the hot memory region are likely
to hit CPU cache, without consuming PM write bandwidth.
The flush instructions for the hot memory region produce
unnecessary data movement between CPU cache and PM
media. Meanwhile, we found that for access sizes larger than
64-byte, using write-nf exclusively for the top 1% hot
memory region outperforms using 100% write-nf. This is
because using write-f on the cold memory regions that
are larger than 1 cacheline can avoid the write amplification,
which is already mentioned in Observation 2.
Observation 4: Using write-nf is the best choice when the
access size is less than a cacheline (64-byte). As shown in
Figure 1(a) and 1(b), using write-nf achieves the highest

throughput when the access size is less than a cacheline.
The reason is that write-nf can not only exploit the CPU
cache to conserve PM bandwidth but eliminate the latency of
the flush instructions. Meanwhile, write-f can not alleviate
write amplification when the access size is within a cacheline.

Therefore, for the usage of flush instructions in PM-capable
platforms with the persistent CPU cache, we have DP2: Use
write-f for the writes on cold memory regions that are
larger than 1 cacheline. Use write-nf for the writes on
hot memory regions or the small writes within 1 cacheline.

C. Concurrent Crash-consistent Data Structures

In this section, we first present the influence of persistent
CPU cache on the design of concurrent data structures fea-
turing durable linearizability. Following this, we explore the
potential of integrating persistent CPU cache and Hardware
Transactional Memory (HTM) to enhance the scalability of
concurrent crash-consistent data structures.

1) Durable linearizability: The correctness standard for
PM-based concurrent crash-consistent data structures is
durable linearizability [14], [15], which consists of the fol-
lowing two aspects:
• Concurrent consistency. In the absence of a crash, concur-

rent operations in PM-based data structures should ensure
linearizability just as the DRAM-based data structures.
Linearizability requires that each concurrent operation take
effect atomically at some point during its execution [44].

• Crash consistency. After a crash, all previously completed
operations should remain completed and their effects should
remain visible after a crash. The operations not completed
upon a crash should provide all-or-nothing semantics.
For PM-capable platforms with volatile CPU cache, it is

challenging to preserve durable linearizability since there is
a gap between data being visible in CPU cache and being
durable in PM. The durable linearizability might be violated if
a crash happens when the effect of the operations is visible but
not durable. In such a situation, the effect of those operations
can be observed before the crash but not after it, which violates
the crash consistency.

Fortunately, the gap between visibility and durability is
eliminated with the persistent CPU cache, which facilitates
the design of concurrent crash-consistent data structures. The
persistent CPU cache makes it possible to adopt hardware
transactional memory (HTM) to effectively implement lock-
free and durable linearizable data structures in PM.

2) Hardware Transactional Memory: HTM is a hardware
approach to making a batch of writes within a transaction
atomically visible in CPU cache. Taking Intel’s Restricted
Transactional Memory (RTM) [45] as an example, program-
mers can execute a transaction by wrapping the critical section
with the _xbegin() and _xend(). If the transaction com-
mits without any conflicts with concurrent memory operations,
the writes in the transaction will atomically become visible in
CPU cache. Otherwise, any conflicts detected by the hardware
will result in a transaction abort, which rolls back all opera-
tions and restarts the transaction. Compared with the lock-free
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data structures relying on the atomic memory operations (e.g.,
CAS) that only ensure the atomicity of 8-byte writes, HTM
offers the assurance of the atomicity for a batch of writes
(within the L1 Cache capacity), greatly simplifying the lock-
free design.

Previously, HTM was incompatible with PM in the plat-
forms with volatile CPU cache. To achieve durable lineariz-
ability, programmers need to issue flush instructions in the
HTM transaction, ensuring the durability of the writes. How-
ever, the flush instructions will trigger the abortion of the HTM
transaction [46], leading to an incompatibility between HTM
and PM programming. If the flush instructions are executed af-
ter the completion of HTM transaction, the non-durable effect
of transaction operations can be seen by concurrent threads,
which violates the requirement of durable linearizability.

With the persistent CPU cache, HTM can ensure both
visibility and durability of the writes without using flush
instructions since the data in the CPU cache is guaranteed to be
persisted. Therefore, we can use the simple interface provided
by HTM to implement durable linearizable data structures,
which dramatically reduces the complexity of design and
programming. Meanwhile, the lock-free nature of HTM also
improves the scalability of the data structures.

Nevertheless, there are still some challenges that prevent
us from directly using HTM for all memory operations [19].
The first one is the capacity limitation. As HTM uses the
CPU’s private cache to track its read/write set, the transaction
with large memory footprints will suffer the capacity abort.
The second one is data conflicts. HTM transactions may
experience frequent conflict aborts due to long code paths
or high contentions. Hence, additional designs are needed to
address the above two problems.

III. SPASH

In this section, we present Spash, a scalable persistent hash
index that fully exploits the benefits of persistent CPU cache.

split

hash prefix

Directory Entries
hash prefix = 110
hash prefix = 111110 111

×

Segments

Fig. 3. The segment split of Spash.

We begin by describing the hash structure in Section III-A,
which minimizes the PM accesses in hash operations and
facilitates the HTM concurrency control (Section IV). To
further leverage the persistent CPU cache to save scarce
PM write bandwidth for Spash, we introduce adaptive in-
place update in Section III-B and compacted-flush insertion
in Section III-C. Then, we summarize the execution flow of
Spash and propose a pipeline optimization in Section III-D.

A. Hash Structure

For Spash, we propose a fine-grained extendible hash
structure, metadata-free segment design, and compound slots,
which mainly aim to achieve the following three design goals.
First, we minimize the number of PM accesses based on DP1
rather than reducing the flush instructions in the previous
works since Spash targets platforms with persistent CPU
cache. Second, the hash structure design has to consider both
the limitations and the benefits of HTM as we mentioned
in Section II-C2 since we employ HTM to ensure durable
linearizability. Third, the hash structure should have a high
memory utilization and alleviate the performance degradation
caused by resizing.
Fine-grained Extendible Structure. As shown in Figure 2,
Spash is a variant of extendible hash [7], [22], which employs
a DRAM-based directory to divide the hash space into multiple
fine-grained (XPLine-sized) segments in PM. Through the
directory, each hash operation uses the highest few bits of the
key hash (hash prefix) to locate the address of the segment,
which stores the target key-value entries. Spash achieves
dynamical expansion and shrinkage by splitting or merging
the fine-grained segments. As depicted in Figure 3, the key-
value entries with the hash prefix “11” are initially stored in the
left segment, which is shared by directory entries “110” and
“111”. Once this segment reaches capacity, it initiates a split
operation to rehash the key-value entries with the hash prefix
“111” into a newly allocated segment and redirects the pointer
in the directory entry “111” to the new segment. The directory
doubling is triggered when the directory cannot accommodate
the new segment, which will be discussed in Section IV-B.
Conversely, segment merging is the reverse process of segment
splitting.

The fine-grained extendible hash structure accomplishes the
design goals of Spash in the following ways. First, the fine-
grained resizing (split/merge) has better compatibility with
HTM-based concurrency control (see details in Section IV)
and low PM access overhead. Large-grained segment re-
sizing [7], [22] and level-based resizing [23], [47] in the



previous PM-based hash indexes are not suitable for HTM-
based concurrency control due to their large memory footprint,
which increases the possibility of data conflicts or even triggers
the capacity abort. Therefore, fine-grained segment facilitates
HTM-based concurrency control during the resizing. Mean-
while, the resizing-incurred performance degradations in the
previous works [7], [22], [23], [47] will also be addressed in
Spash due to the lightweight resizing. Moreover, the XPLine-
sized segment in Spash matches the internal access granularity
of PM media, which improves the bandwidth utilization of
resizing.

Second, the PM access overhead during the base hash oper-
ation (Insert/Update/Delete/Search) is also reduced. During a
base operation, the directory access is absorbed in DRAM and
the segment access only incurs an XPLine-sized PM access in
the worst case.
Metadata-free Segments. To further reduce the number of
PM accesses during the hash operations without sacrificing
memory utilization, we propose a metadata-free segment struc-
ture with the support of HTM and persistent CPU cache.

As shown in Figure 2, Spash directly divides a segment into
four cacheline-sized buckets without maintaining any metadata
in the header of the segment. To process a query, Spash locates
the main bucket of a requested key in the target segment ac-
cording to the lowest 2 bits of the key hash (e.g., bucket 01 for
K1). Then, Spash inserts/updates/deletes/searches a key-value
entry in the main bucket, which only incurs one cacheline-
sized PM access. The additional PM accesses on the metadata
are eliminated in Spash. Specifically, the various metadata
(e.g., lock, version, and bitmap) used in the previous works [7],
[22], [23] for crash consistency and concurrent consistency
is unnecessary for Spash, since the durable linearizability
of Spash is guaranteed by HTM and persistent CPU cache
(see details in Section IV). Meanwhile, for other metadata to
accelerate searching (e.g., fingerprints), Spash offloads them
to compound key-value slots, which will be discussed later.

To avoid segment splitting immediately when one of its
buckets is full, we propose circular probing to improve the
memory utilization of segments with few additional PM ac-
cesses. For insertions in Spash, if the main bucket of the
requested key is full, the key-value entry can be inserted into
the other three buckets, named overflow buckets. Specifically,
to find a free slot for an insertion, Spash starts the probing
procedure from its main bucket and proceeds in a circular
order to check the overflow buckets. For example, (K2, V 2)
in Figure 2 is inserted into the first free slot of the overflow
bucket 10 if its main bucket 01 is full. This design ensures that
the segments in Spash do not split until all of its buckets are
full. The additional probing overhead is tolerable in the fine-
grained segments since it happens infrequently and the probing
buckets reside in the same XPLine as the main bucket.
Compound Slots. Spash applies compound key-value slots
to support variable-sized key-value entries and reduce unnec-
essary PM reads during the search operations. As shown in
Figure 2, each bucket contains four 16-byte key-value slots,
which store inline keys and values for small-sized key-value

entries (e.g., K2, V1) while storing pointers to the actual key
and value for large-sized key-value entries (e.g., K1, V2).
Since 48-bit is sufficient for a pointer to indicate the memory
address, Spash reserves the highest 16-bit of both key and
value fields to reduce PM reads during the search operations.

To accelerate the search for key-value entries in the overflow
buckets, Spash stores their hints in the value fields of the
main bucket. As shown in Figure 2, the main bucket of K2
stores the lowest 3-14 bits of K2’s hash value (overflow
fingerprint) and the position of K2 in the segment
(overflow index). The overflow fingerprint can
be used to filter the unmatched key without probing the
overflow buckets, and the overflow index can directly
identify the position of the target key-value entry. Moreover,
Spash stores the key fingerprint (the lowest 3-16 bits
of the hash value) in the key field to reduce PM reads
for searching the large-sized key-value entries. In this way,
hash operations can filter the unmatched keys through key
fingerprint, reducing PM reads caused by the pointer
dereference.
PM Overhead Analysis. For inlined key-value entries, search
operations in Spash produce a cacheline-sized PM read to
access a main bucket in most cases. In rare cases (∼9%),
search operations need to access an extra cacheline-sized
overflow bucket that is stored in the same XPLine as the
main bucket. Compared with the search operation, the write
operations (Insert/Update/Delete) in Spash produce one more
cacheline-sized PM write to modify a key-value slot. For
large-sized key-value entries, all hash operations should further
access the key or value via the pointers in the key-value slot.

B. Adaptive In-place Update

The real-world applications often have obvious hotspots, as
well as variable-sized key-value entries [29], [48]–[51]. In
this section, we propose an adaptive in-place update strat-
egy, which leverages persistent CPU cache to maximize the
utilization of PM write bandwidth in such a situation. We
first describe our update strategies for the key-value entries
with various hotnesses and sizes. Then, we introduce our
lightweight hotspot detector, which identifies the hotness of
the key-value entries with low overhead.
Update Policy. Spash employs in-place update for variable-
sized key-value updates. Compared with the out-of-place up-
date that was employed in most previous works [16], [28],
[47], in-place updates for frequently accessed key-value entries
are likely to be completed in CPU cache, conserving scarce
PM write bandwidth. Meanwhile, in-place update produces
fewer PM writes than out-of-place update since it does not
need to install a new pointer in the hash structure.

Driven by the DP2 mentioned in Section II-B for the usage
of flush instructions, Spash employs different flush strategies
to accommodate the key-value entries with different hotnesses
and sizes. As shown in Table I, for hot key-value entries, Spash
employs in-place update without using flush instructions. It
is because that in-place updates to hot data are likely to hit
CPU cache, which reduces writes to PM media. The flush



TABLE I
ADAPTIVE FLUSH STRATEGY FOR THE UPDATES OF KEY-VALUE ENTRIES

WITH DIFFERENT HOTNESSES AND SIZES.

Hotness Hot Cold
Size All ≤ 64-byte > 64-byte
Flush strategy w/o flush w/ flush

instructions should be removed since they cause repeated data
movements between CPU cache and PM, wasting PM write
bandwidth. For cold key-value entries, if their sizes are larger
than 64 bytes, Spash issues an asynchronous flush instruction
after each update. The reason is that those cold key-value
entries will hardly be accessed again in a short time. The
flush instruction can force multiple modified cachelines to
sequentially write back to PM, making the best use of PM
write bandwidth. Otherwise, dirty cachelines will randomly
write back to PM according to the cache replacement policy,
leading to the write amplification. If the sizes of the cold key-
value entries are smaller than 64 bytes, Spash omits flush
instructions. The reason is that actively flushing a single
cacheline won’t alleviate write amplification.

We fully leverage the persistent CPU cache to overcome
two obstacles that prevent the use of in-place update in the
previous PM-based indexes. First, in-place update is incapable
of atomically modifying and persisting the key-value entries
that are larger than 8-byte, resulting in anomalies, such as
partial write [52]–[54], and dirty read [16], [55], which violate
the requirement of durable linearizability. Spash guarantees
the atomic persistence of in-place updates by integrating HTM
transactions and persistent CPU cache, which will be discussed
in Section IV in detail. To avoid transaction aborts, cacheline
flush instructions (e.g., clwb) can asynchronously be exe-
cuted after the completion of the HTM transaction. Note that
ntstore should not be used for cold key-value updates since
it is incompatible with HTM transactions [46]. Second, for
platforms with volatile CPU cache, the hot key-value entries
are not benefit from in-place update. The reason is that each
update must be synchronously flushed to PM for persistence,
which consumes significant PM write bandwidth even when
the writes hit CPU cache. With persistent CPU cache, Spash
adaptively decides whether to issue flush instructions based on
the hotnesses and sizes of the updated key-value entries for
the best utilization of PM write bandwidth.
Hotspot Detector. To support the adaptive update strategy, we
propose a lightweight hotspot detector to identify the hotness
of the key-value entries. The basic idea of our hotspot detector
is to maintain a hot-key list in DRAM, which contains the
frequently accessed keys. Spash decides which update strategy
to use by checking if the requested key is in the hot-key list.

Spash proposes the hash partitioning approach to reduce the
overhead of scanning the hot-key list. Spash divides the hash
structure into multiple partitions according to the highest p
bits of the hash prefix. For each partition, the hot-key list
maintains q local hot keys, which is updated according to
the LRU replacement policy (The detailed choice of p and q
will be discussed in Section VI). In this way, the overhead of
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identifying the hotness of the key can be reduced dramatically
since Spash only needs to scan the local hot-keys of the
partition where the requested key resides. The size of the hot-
key list is small enough in our implementation to fit in the
CPU cache, which also reduces the overhead of our hotspot
detector. Moreover, our hotspot detector can accurately find
out hot keys through the hash partition. Due to the randomness
of the hash function, the union of the local hot-keys of each
partition can effectively represent the global hot-keys.

C. Compacted-flush Insertion

To support the insertion of variable-sized key-value entries
in persistent indexes, a widely used approach is out-of-place
insert, which installs a pointer in the index structure to indicate
the actual key-value entries. However, this approach suffers
from severe write amplification when inserting small-sized
key-value entries (≤128-byte) since the access granularity of
PM physical media is 256-byte. To deal with this problem, we
propose a compacted-flush mechanism for inserting variable-
sized key-value entries, which leverages the persistent CPU
cache to fully utilize PM write bandwidth.

The main idea of compacted-flush insertion is to compact
multiple small insertions in the persistent CPU cache and then
asynchronously flush them to PM in an XPLine-sized granu-
larity. As shown in Figure 4, to serve small insertions (≤128-
byte), Spash allocates a thread-local XPLine-sized memory
chunk and populates it in an append-only manner. Hence,
the consecutive small random insertions tend to compact in
the persistent CPU cache. Meanwhile, the persistent CPU
cache allows each insertion to commit without initiating a
synchronous flush instruction, which avoids high latency and
bandwidth-wasting induced by the repetitive flushes to the
same cacheline [9], [39]. Instead, Spash asynchronously issues
a flush instruction when an XPLine-sized memory chunk is
exhausted, preventing the random cacheline eviction from
causing write amplification (DP 2). With the compacted-flush
mechanism, Spash achieves the best utilization of PM write
bandwidth for inserting small-sized key-value entries.

To manage XPLine-sized memory chunks with different size
classes, Spash employs a state-of-the-art persistent allocator,
DCMM [29], which maintains multiple free block lists with
various size classes for each thread. In particular, the block
classes with small sizes (≤128-byte) are managed in XPLine-
sized chunks to better support our compacted-flush insertion.
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D. Execution Flow

In this section, we first summarize the execution flow of
hash operations in Spash. Then, we introduce a pipeline
optimization for Spash to hide long PM read latency and
thoroughly squeeze the high read bandwidth out of PM.

As shown in Figure 5(a), Spash divides the execution of
hash operations into five steps. The first four steps are shared
by all hash operations (Insert/Update/Delete/Search). First,
Spash obtains the address of the target segment from the
volatile directory according to the hash prefix of the requested
key (step 1). Second, Spash loads the main bucket of the target
segment from PM to CPU cache according to the hash suffix
of the requested key (step 2). Third, Spash locates the key-
value slot corresponding to the requested key following the
procedure described in Section III-A (step 3). Fourth, for large-
sized key-value entries, Spash loads the corresponding key-
value pairs from PM into CPU cache according to the pointer
stored in the key-value slot (step 4). For inlined key-value
entries, Spash directly retrieves the key-value information from
the target key-value slot.

After locating the requested key in the hash table, Spash
processes the target key-value entry according to the operation
type (step 5). Search operations directly return the value of the
requested key. Update operations perform adaptive in-place
update to the corresponding values while delete operations set
the corresponding keys (pointers) to null. For insert operations,
Spash inserts a key-value entry into a free slot and adopts the
compacted-flush approach to best utilize PM write bandwidth.

To fully utilize high PM read bandwidth and hide high
PM read latency, Spash employs a pipeline optimization on
the execution of hash operations. As shown in Figure 5(a),
Spash allows each CPU core to concurrently execute multiple
requests in a pipelined manner. Specifically, the PM read
operations in step 2 and 4 can be executed asynchronously by
using memory prefetch instruction. During the asynchronous
PM reads, CPU core is free to execute the critical tasks (step
1 and 3) of the subsequent few requests if the request queue
is not empty. Consequently, multiple PM read operations can
be executed in parallel to exploit high PM read bandwidth.

Moreover, it is necessary to choose a proper pipeline depth
(the number of parallelly executed requests in a single core) to
avoid increasing operation latency. Our evaluation shows that
4 parallelly executed requests are sufficient to hide PM read
latency and utilize most of PM read bandwidth.

IV. CONCURRENCY CONTROL

In this section, we introduce our HTM-based concurrency
control strategy, including a two-phase concurrency protocol
(Section IV-A) for base operations and a collaborative staged
doubling mechanism (Section IV-B) for the directory doubling.

A. Two-phase Concurrency Protocol

To achieve lock-free concurrency control and guarantee
durable linearizability of Spash, we propose a two-phase
concurrency protocol based on HTM. As shown in Figure 5(b),
Spash decouples the pipelined hash operations into two phases:
preparation phase and transaction phase. The preparation phase
includes step 1-4 of pipelined hash operations, which locates
the target key-value entry. The transactions phase only includes
step 5, which processes the key-value entry.

The transaction phase employs HTM to ensure the atom-
icity of memory operations during the key-value processing.
Although multiple words need to be modified during the key-
value processing (e.g., in-place update of large-sized key-value
entries, segment split initiated by inserting to a full segment),
HTM transactions can atomically make the effect of those
operations visible and durable as mentioned in Section II-C2,
thereby ensuring the durable linearizability of concurrent hash
operations. Moreover, the lock-free nature of HTM transac-
tions also improves the multi-core scalability of Spash.

Meanwhile, we leave the preparation phase outside of the
HTM transaction, which brings the following two benefits: (1)
It reduces the conflict abort in HTM transactions. Excluding
the computations and the memory load operations from HTM
shortens the critical path of the transaction, thereby reduc-
ing the possibility of conflicts with concurrent operations.
(2) It avoids the overlapping of HTM transactions during
the pipeline executions. HTM does not support the creation
of multiple overlapping transactions in a pipelined manner.
Hence, we only wrap step 5 into the HTM transaction, so
that multiple requests in the same pipeline batch can serially
execute their HTM transactions as shown in Figure 5(a).

Moreover, the transaction phase includes an additional vali-
dation step to ensure the correctness of the preparation phase.
Since the preparation phase is not protected by HTM, the
concurrent operations might move the target key-value entry
to a different segment or slot from the one obtained in Step
1 and Step 3. Hence, in the transaction phase, Spash checks
whether the segment address and the target key-value slot have
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been changed. If so, Spash should actively abort the HTM
transaction and retry the preparation phase.

We also provide a fallback path for the transaction phase
when the time of HTM aborts in a single hash operation
reaches a preset threshold. In such a rare case, the segment
lock stored in the first bit of its corresponding directory entry
will be taken. The concurrent operations on the locked segment
do not start the HTM transaction until the lock is released.

B. Collaborative Staged Doubling

Directory doubling happens when the directory lacks suf-
ficient space for the insertion of newly allocated segments.
Directly using an HTM transaction to wrap the execution
of directory doubling often lead to capacity abort since it
involves a large memory footprint. To deal with this prob-
lem, we propose collaborative staged doubling to ensure the
concurrent consistency of directory doubling. Collaborative
staged doubling avoids the capacity aborts by accomplishing
the doubling procedure in numerous small stages and improves
the scalability of Spash by enabling the concurrent operations
collaboratively completing the directory doubling (note that
directory halving is handled similarly).

As shown in Figure 6, unlike the traditional design, col-
laborative staged doubling contains multiple small stages.
During the directory doubling, Spash first allocates a double-
sized directory, then logically divides the old directory into
multiple cacheline-sized directory partitions. Each stage in the
collaborative staged doubling is responsible for doubling a
small directory partition. Specifically, for each stage, Spash
invokes an HTM transaction to copy the segment pointers of a
directory partition from the old directory to the new directory.
In this way, the capacity aborts can be avoided since each
directory partition has a small memory footprint.

Moreover, collaborative staged doubling does not block
concurrent base operations. For the concurrent modifications
(e.g., split) on the directory during the doubling procedure,
Spash allows them to operate on the new directory to avoid
the lost update anomaly [16]. As shown in Figure 6, if a split
operation (e.g., split1 and split2 in thread2) needs to modify
a directory partition that has not yet been copied to the new

directory, it will initiate an HTM transaction to collaboratively
assist the doubling thread in completing the corresponding
pending stage. Then, the split operation can safely modify the
new directory despite the directory doubling not having been
completed. For concurrent reads, if the corresponding directory
partition has not finished its doubling procedure, they obtain
the segment pointers in the old directory. Otherwise, they will
be redirected to the new directory to get the latest segment
pointers. Collaborative staged doubling can significantly im-
prove the overall throughput and reduce the tail latency by
enabling lock-free concurrent accesses.

V. DISCUSSION

Generality of the Spash’s design to other persistent in-
dexes. Most of the design of Spash can be applied to other
PM-based indexes (e.g., B+-Tree, and radix tree). Specifically,
the adaptive in-place update and compacted-flush insertion
techniques can be directly employed on any persistent indexes
to improve write performance. The HTM-based concurrency
control is also applicable for ensuring both durable lineariz-
ability and high scalability of other persistent data structures.
The pipeline optimization can be used in other index structures
to fully utilize memory bandwidth.
Generality of the Spash’s design to other PM prod-
ucts. In addition to Intel Optane PM, many manufacturers
(e.g., Fujitsu [56], Samsung [31], Xi’an UniIC [57], and
SK Hynix [58]) are developing their PM products due to
its huge application value and mature ecosystem. Although
Spash is implemented atop the Optane DCPMM, our design
is likely to take effect on other PM products for the following
reasons. First, most of the non-volatile media exhibit similar
characteristics, such as asymmetric read/write performance,
higher latency and lower bandwidth than DRAM. Second,
CPU cache persistence techniques (e.g., eADR [12], battery-
backed cache [59], non-volatile cache [60]–[62]) is promising
to be adopted in the future PM-equipped platform since it has
been widely studied in the last few years.
Generality of the Spash’s design to the future CXL devices.
Compute express link (CXL) [63] is a recently published
industry open standard for high-speed communication. CXL
has attracted great attention from industry and academia since
it can be used to expand both memory capacity and memory
bandwidth. The design of indexes for CXL devices can also
employ the techniques proposed in Spash since CXL-based
memory devices have higher latency than DDR-based DRAM,
which is similar to PM.

VI. EVALUATION

In this section, we evaluate the performance of Spash and
compare it with the state-of-the-art persistent hash tables.
We first describe our experiment setup (Section VI-A). Then,
we introduce the evaluation of both micro-benchmarks (Sec-
tion VI-B) and macro-benchmarks (Section VI-C). Finally, we
conduct a comprehensive analysis of the impact of each design
component in Spash (Section VI-D).
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A. Experiment Setup

Testbed. Our testbed machine is a dual-socket server with
two Intel Xeon Gold 6348 CPUs, the third-generation Xeon
Scalable processors that support eADR and TSX. Each CPU
has 28 cores (56 hyper-threads) and a shared 42MB L3 cache,
while each CPU core has a 48KB L1D cache, 32KB L1I cache,
1280KB L2 cache. Each socket is equipped with 8×32GB
DDR4 DRAM and 8×256GB Barlow Pass (BPS) DIMM.
Compared Systems. We compare Spash against six state-of-
the-art persistent hash, including CCEH [22], Dash [7], Level
hashing [23], CLevel [47], Plush [64], and Halo [65]. Among
them, CCEH, Dash, and Level can not support both variable-
sized keys and values. Therefore, for micro-benchmarks (Sec-
tion VI-B) with small-sized key-value entries that can be
accommodated within 8B-8B key-value slots, we employ the
original implementations of these baseline systems. Mean-
while, we implement extended versions for CCEH, Dash, and
Level hashing to handle the macro-benchmarks (Section VI-C)
containing large-sized key-value entries (ranging from 16B
to 1024B). These extended implementations manage variable-
sized key-value entries by storing a pointer to the actual key or
value and adopting out-of-place update/insert, which is widely
used in previous works [16], [28], [47]. For fairness and sim-
plicity, we remove cacheline flush instructions and the memory
barriers for persistence (we retain the memory barriers for
thread synchronization) from the compared systems, enabling
them to leverage the persistent CPU cache.

B. Micro-benchmarks

In this section, we evaluate the performance of each hash
operation (Search, Insert, Update, and Delete) and the load
factors for different persistent hash indexes. We initialize each
persistent hash with 20M inlined key-value entries. Then,
we run individual base operations with uniform distribution.
Specifically, we execute 8 billion insert, 8 billion search,
8 billion update, and 8 billion delete in order. Meanwhile,

we employ ipmctl [66] to calculate the average number
of XPLine and cacheline accesses to PM during each base
operation. Furthermore, we record the load factor (the num-
ber of inserted key-value entries divided by the capacity of
hash tables) of each index during the execution to evaluate
their memory utilization. Halo is excluded from the micro-
benchmark since it crashes during the executions. The primary
reason is that Halo needs to maintain a complete hash table
in DRAM for performance improvement, resulting in the
exhaustion of DRAM space in a large dataset.
Read(Search). As shown in Figure 7(a), for search operations,
Spash achieves 3.1∼7.1× higher throughput than other persis-
tent hash tables under 56 threads. This is primarily because
Spash produces minimal PM read in search operations by
using a fine-grained extendible hash structure and metadata-
free segments. As shown in Figure 8(a), Spash only reads 1.1
cacheline and 1.0 XPLine of PM in each search operation
on average, which is 3.7∼10.9× lower than other counter-
parts. Moreover, the pipeline optimization further improves the
search performance of Spash by 2.0× due to the full utilization
of PM read bandwidth.

In contrast, Level hashing and CLevel need to read at most
four buckets for each search operation, which is costly because
these buckets do not reside in a contiguous memory region.
Meanwhile, Level hashing and CCEH produce PM writes to
maintain read locks, which slows down the search operations.
Dash incurs multiple XPLine-sized bucket-reads for each
search operation, which has a significantly higher overhead
than Spash. Plush employs an LSM-Tree-based structure,
requiring an average traveral of O(logN) (N represents the
number of key-values) levels to retrieve a key-value entry.
Write(Insert/Update/Delete). As shown in Figure 7(b)-7(d),
Spash outperforms other hash tables by 1.4∼19.0× for insert,
2.0∼4.4× for update and 1.8∼3.9× for delete. We also
attribute this to our fine-grained extendible architecture and
metadata-free segment design, which reduces PM writes. As
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shown in Figure 8, for each update or delete operation,
Spash generates 1.0 cacheline write and 1.0 XPLine write
on average, which is much lower than other persistent hash
indexes. Moreover, Spash has minimal PM write overhead
during the insert operation. Although each insert operation
of Spash produces 2.0 cacheline write on average, it only
writes 1.1 XPLine. This is because around 35% of cacheline
write of insert operation comes from the split operations. A
split operation must modify two XPLine-sized segments, each
containing 4 cachelines from the same XPLine. Fortunately,
the split operations are bandwidth-efficient due to the XPLine
granularity of PM.

Other persistent hash tables produce more PM writes to
maintain metadata for durable linearizability. Those metadata
modifications are avoided in Spash by using HTM-based con-
currency protocol, which ensures both concurrent consistency
and crash consistency. Moreover, Level hashing and CLevel
perform poorly in insertions owing to the large overhead of
the full-table rehashing. In Spash, the full-table rehashing is
obviated by using extendible hashing architecture. Although
Plush adopts a DRAM buffer with write-ahead logs to reduce
PM writes, it still generates more PM writes than Spash. The
primary reason for this lies in its LSM-Tree-based structure,
which leads to a large volume of PM writes when flushing
DRAM buffer to PM and merging PM-based hash tables across
different levels.

We also find that the pipeline design does not have a
significant influence on the peak throughput for write-intensive
workloads since PM write bandwidth is the performance
bottleneck in this case.
Load Factor. We evaluate the memory utilization of hash
tables by calculating their load factors with increasing key-
value entries. As shown in Figure 9, Spash has a much higher
load factor than CCEH due to the design of fine-grained
extendible architecture and circular probing in the segments.
Meanwhile, Spash achieves a similar average load factor with
Dash and Level hashing. Although Dash and Level hashing
have a higher maximum load factor than Spash, their load
factors fluctuate greatly with the number of inserted key-
value entries. The reason is that Spash dynamically allocates
the fine-grained segments on demand while other hash tables
perform level-based resizing or large-grained segment split-
ting. The load factor of Plush is relatively low and exhibits
significant fluctuations as Plush allocates a 16× larger level
when the current levels cannot accommodate new insertions.
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Fig. 10. YCSB throughput under inlined key-value entries. (Zipfian access
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C. Macro-benchmarks

In this section, we conduct the evaluation on the YCSB
workload, a real-world workload with skewed access patterns.
The experiment with YCSB workloads consists of the load
phase and run phase, both of which run under 56 threads. In
the load phase, each persistent hash is initialized with 100M
key-value entries. In the run phase, each hash table handles
100M queries, which are a mixture of read (Search) and write
(Update). The key access pattern follows the zipfian distri-
bution with the default zipfian parameter (0.99). We evaluate
the YCSB performance under both inlined and variable-sized
(16-1024 bytes) key-value entries.
Inlined Key-value. Figure 10 shows the performance of each
persistent hash under load phase and three YCSB work-
loads: read-intensive (search:update = 90:10), write-intensive
(search:update = 10:90), balanced (search:update = 50:50).
Spash outperforms other hash tables by 1.1∼31.2× in the load
phase and 2.0∼19.6× in three YCSB workloads. Our proposed
HTM-based concurrency controls significantly improve the
performance of Spash under skewed workloads by eliding
locks for both read and write operations. Moreover, Spash
performs the in-place update for inlined key-value entries. The
updates for frequently accessed key-value entries are likely to
be served in CPU cache, which saves PM write bandwidth.

Other persistent hash tables can not perform as well as
Spash due to their lock-based design or the under-utilization
of CPU cache. Level hashing performs poorly across all three
YCSB workloads because it uses locks for both read and
write operations. Although CLevel is a lock-free hash table, it
employs out-of-place update for any key-value entries, which
can not utilize the CPU cache to absorb the updates of hot
keys. As for Dash and Halo, their performance on the write-
intensive workload is inferior to the read-intensive workload
since they implement lock-free reads and lock-based writes.
Halo performs worse than Dash, especially for write-intensive
workloads, since its log-structured architecture produces more
PM writes during the invalidation and reclamation of log
entries. CCEH performs poorly in read-intensive and balanced
workloads as it employs the read-write locks. The YCSB
performance of Plush is also restrained by both lock-based
out-of-place write and shared write-ahead logs. Additionally,
Plush achieves comparable performance with Spash in the load
phase since the merging overhead is relatively low when the
number of key-values is small.
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Variable-sized Key-value. Figure 11 shows the YCSB perfor-
mance under 16-byte key and various value sizes. In the load
phase, Spash delivers up to 28.0× higher throughput than the
state-of-the-art hash tables. Besides the few PM writes men-
tioned previously, the compacted-flush insertion contributes
the most to the high performance of Spash. The compacted-
flush approach is capable of fully utilizing PM write bandwidth
by compacting multiple small insertions (≤ 128-byte) into
an XPLine-sized memory chunk. In the meantime, Spash
asynchronously flushes those insertions to PM in the XPLine-
granularity, which further avoids write amplification induced
by the random cacheline evictions.

In the run phase, Spash achieves up to 13.4× higher
throughput than other counterparts in the write-intensive work-
loads. We attribute this to our proposed adaptive in-place
update technique. Spash effectively identifies the hotspots
of the workloads and removes the flush instructions for the
updates of frequently accessed keys. In this way, the updates of
the hot key-value entries are likely to hit the CPU cache, which
drastically reduces the consumption of PM write bandwidth.
Meanwhile, Spash actively flushes the update of cold key-
value entries with large sizes (> 64-byte), which effectively
alleviates write amplification, saving scarce PM write band-
width. As for other persistent hash tables, they use the out-of-
place update for all circumstances, which prevents them from
utilizing CPU cache to improve scalability. Moreover, Spash
performs the best in the read-intensive workload and balanced
workload due to both adaptive update strategies and pipeline
framework as we mentioned above.

D. In-depth Analysis

We conduct four optimizations for Spash, including adaptive
in-place update, compacted-flush insertion, HTM-based con-

currency control, and pipeline executions, which efficiently
support Spash to obtain high scalability. We evaluate the
effects of those optimizations in this section.
Adaptive In-place Update. Our proposed adaptive in-place
update mechanism significantly conserves PM write bandwidth
in platforms with the persistent CPU cache by adopting dif-
ferent update strategies for the key-value entries with various
hotnesses and sizes. To show the impact of the adaptive in-
place update, we evaluate the YCSB throughput of Spash using
the adaptive update strategy and other update strategies. As
shown in Figure 12(a), the adaptive update strategy delivers
1.2∼2.2× higher throughput than in-place update (w/ flush)
under various key-value sizes. The reason is that using flush
instructions for the updates of hot key-value entries produces
unnecessary PM writes. Meanwhile, adaptive update outper-
forms in-place update (w/o flush) by up to 2.1× when the
value size is larger than 64-byte. This is because removing the
flush instructions for the cold key-value entries with large sizes
causes write amplification. In a nutshell, using adaptive update
strategies for the key-value entries with various hotnesses and
sizes can make the best use of PM write bandwidth.

To support the adaptive updates, we heuristically maintain a
small hot-key list with 8K entries (each partition has two hot-
keys), which works well for the workloads with different key-
value sizes as shown in Figure 12(a). A small hotspot detector
is enough to achieve significant performance improvement
since most of the accesses are often concentrated on a few
hotspots in real-world workloads [67]. To further evaluate the
overhead of our hotspot detector, we compare its performance
with an oracle hotspot detector under YCSB workloads. The
oracle hotspot detector identifies the hotness of the key-value
entry with near-zero overhead by getting its access probability
from our workload generator. As shown in Figure 12(a),



our hotspot detector achieves comparable performance to the
oracle hotspot detector under YCSB workloads. The results
demonstrate that our proposed hotspot detector is sufficient to
support the adaptive update with low overhead.
Compacted-flush Insertion. Figure 12(b) shows that the
compacted-flush approach accelerates the performance of
Spash by up to 2.5× due to the full utilization of PM write
bandwidth. Moreover, we actively flush the memory chunks
in an XPLine-sized granularity, which achieves up to 2.2×
performance improvement since it avoids write amplification
induced by random cacheline eviction.
HTM-based Concurrency Protocol. Through two-phase con-
currency protocol and collaborative staged doubling, Spash
implements a lock-free concurrency control mechanism based
on HTM, which significantly improves the scalability in
multi-core systems. To evaluate the effect of HTM-based
concurrency control, we implement two variants of Spash that
employ the concurrency protocols of Dash and Level Hashing,
respectively. Spash (w/ write lock) serializes concurrent write
operations by a per-segment lock and retains the lock-free
read design, which is similar to the concurrency protocol used
in Dash. Spash (w/ write & read lock) adopts a per-segment
lock to serialize both read and write operations, which is the
concurrency protocol used in Level Hashing. As shown in
Figure 12(c), Spash achieves up to 3.5× higher throughput
than Spash (w/ write lock) and Spash (w/ write & read lock)
in write-intensive workloads due to our lock-free write design.
Moreover, Spash outperforms Spash (w/ write & read lock) by
up to 4.4× in read-intensive workloads because of the lock-
free read offered by HTM.
Pipeline Optimization. The pipeline executions improve the
performance of Spash by fully utilizing high PM read band-
width. As depicted in Figure 7, 10, and 11, pipeline op-
timization substantially improves the performance of Spash,
particularly for read-intensive workloads. Meanwhile, we must
choose a proper pipeline depth (PD) to avoid increasing
operation latency. As shown in Figure 12(d), PD=4 is sufficient
to utilize most PM read bandwidth and almost do not increase
the operation latency.

VII. RELATED WORK

Persistent Hash. In the past few years, many works have
studied PM-based hash indexes. Level hashing [23] proposes a
write-optimized persistent hash with a low overhead crash con-
sistency guarantee. Level hashing suffers low scalability since
it requires full-table rehashing and employs locks for both
read and write operations. CLevel [47] further proposes lock-
free concurrency control based on Level hashing. However, the
performance of CLevel is still impeded by excessive PM reads
and writes. CCEH [22] is a variant of extendible persistent
hash, which introduces an intermediate segment level to reduce
the directory size. CCEH exhibits low memory utilization due
to the low association in the segment. Dash [7] proposes
several load balancing techniques for CCEH, including bal-
anced insert, displacement, and stashing, which improves the
load factor of the hash table but sacrifices the performance.

Plush [64], a write-optimized persistent hash, employs the
LSM-Tree-based structure to enable sequential write, albeit at
the cost of search performance. Nevertheless, it still produces a
substantial volume of PM writes when merging different levels
of persistent hash tables. Halo [65] stores the entire hash table
in DRAM and employs a log-structured approach to manage
key-value entries in PM, enhancing efficiency when traversing
index structure. However, it produces notable PM writes for
snapshot creations, as well as the creation, invalidation, and
reclamation of log entries. The concurrent performance of
Halo is also constrained by its lock-based protocol for both
resizing and regular write operations. Although these works
are designed for platforms with volatile CPU cache, they
provide valuable inspiration for us.
The Exploration of Persistent CPU cache. With the emer-
gence of eADR, researchers are looking into ways to opti-
mize the existing PM systems with persistent CPU cache.
Gugnani [43] proposes lock-free algorithms for the linked list
and ring buffer based on atomic CPU hardware primitives.
NBTree [16] is a lock-free persistent B+-Tree designed for
eADR-enabled platforms. HTMFS [19] employs HTM to
simplify the concurrency control in persistent memory file
systems. CacheKV [68] redesigns the memtable of LSM-Tree
to optimize its write performance with the persistent CPU
cache. Different from them, Spash fully exploits persistent
CPU cache to optimize both write and concurrent performance
of persistent hash indexes.

VIII. CONCLUSION

Persistent CPU cache technologies such as eADR offer new
opportunities to optimize the write performance and concur-
rency control of PM-based storage systems. In this paper, we
propose Spash, a highly scalable persistent hash index that
fully leverages the benefits of persistent CPU cache. Spash
employs a fine-grained extendible hash architecture, metadata-
free segment, adaptive in-place update, and compacted-flush
insertion to reduce PM access overhead. Moreover, Spash
applies a two-phase concurrency protocol and collaborative
staged doubling mechanism, which leverage HTM and per-
sistent CPU cache to achieve high concurrency and durable
linearizability. For YCSB workloads, Spash outperforms other
indexes by up to 19.6×.
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