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ABSTRACT
PersistentMemory (PM) and RemoteDirectMemoryAccess (RDMA)
technologies have significantly improved the storage and network
performance in data centers and spawned a slew of distributed file
system (DFS) designs. Existing DFSs often consider remote storage
a performance constraint, assuming it delivers lower bandwidth
and higher latency than local storage devices. However, the ad-
vances in RDMA technology provide an opportunity to bridge the
performance gap between local and remote access, enabling DFSs
to leverage both local and remote PM bandwidth and achieve higher
overall throughput.

We propose Conflux, a new DFS architecture that leverages the
aggregated bandwidth of PM and RDMA networks. Conflux dy-
namically steers I/O requests to local and remote PM to fully utilize
PM and RDMA bandwidth under heavy workloads. To adaptively
decide the I/O run-time path, we propose SEED, a learning-based
policy engine predicting Conflux I/O latency and making decisions
in a real-time system. Furthermore, Conflux adopts a fine-grained
concurrency control approach to improve its scalability. Experi-
mental results show that Conflux achieves up to 4.7× throughput
compared to existing DFSs on multi-threaded workloads.

CCS CONCEPTS
• Information systems→ Distributed storage; Storage class
memory; • Social and professional topics → File systems
management; • Computing methodologies → Neural networks.
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1 INTRODUCTION
Emerging byte-addressable persistent memory (PM) provides or-
ders of magnitude higher performance than conventional storage
devices. Meanwhile, data centers nowadays are actively adopting
remote direct memory access (RDMA) technology, which provides
lower latency and higher bandwidth than traditional network pro-
tocols. The combination of these two hardware technologies dra-
matically improves the performance of remote persistent data ac-
cess. As a result, massive research works have been proposed to
re-organize and optimize the software stack of distributed storage
systems. Specifically, several distributed file system (DFS) designs
benefit from the high performance of PM and RDMA technologies.
However, existing DFS designs fall short in fully exploiting the
performance of both hardware simultaneously.

In conventional DFSs, file I/O performance is hampered by net-
work bandwidth constraints and the poor performance of disk
devices [16, 40]. There are two kinds of optimization in the existing
literature: The first is to adopt new network hardware and redesign
the software to exploit the network performance. Systems designed
within this paradigm always reduce the communication latency
and increase the remote data access throughput [22, 32, 33]. The
second is to adopt new storage technology and redesign the storage
system software. Systems designed within this paradigm follow the
conventional wisdom: local access is better than remote and build
DFS with client local cache architecture to improve data access
performance [2, 26, 46].

Nevertheless, the conventional pearls of wisdom are not entirely
applicable to current hardware. Specifically, the local access is better
than remote principle is no longer valid for the latest PM and RDMA
devices. In the traditional distributed storage architecture, the band-
width of accessing the local DRAM cache is orders of magnitude
higher than that of accessing remote disks, resulting in an imbal-
ance between local and remote I/O performance. However, current
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PM and RDMA devices provide extremely low latency and tens of
GB per second of bandwidth. The combination of PM and RDMA
restores the balance between local and remote I/O performance.
Intensive usage of either device will tip the performance balance,
leaving the other under-utilized.

The key to maintaining the performance balance is to simulta-
neously utilize both local and remote devices, taking advantage of
the aggregated bandwidth of local PM and the RDMA networks.
Nevertheless, such a system comes with three main challenges that
a designer must properly address: First, it is challenging for a file
system to steer I/O tasks to local and remote modes dynamically,
instead of the conventional deterministic I/O path. Second, it is
challenging to assign proper I/O (remote/local) modes at run-time.
Different applications tend to have different file access patterns,
and improper I/O mode scheduling will deteriorate the overall per-
formance. Third, it is challenging to fully take advantage of the
high bandwidth hardware with conventional concurrency control
approaches, which generally enforce file-level read-write locks.

We propose Conflux, a new DFS architecture that fully exploits
PM and RDMA bandwidth. It tackles the above-mentioned chal-
lenges and provides aggregated bandwidth to I/O-intensive appli-
cations. Conflux comes up with a dynamic I/O management mech-
anism, which can serve user I/O requests with different internal
data transmission modes. As a result, local and remote PM devices
can be utilized simultaneously at runtime. To generate adaptive I/O
mode selection choices for various applications, we propose SEED,
a learning-based I/O mode selection policy. It adopts a lightweight
neural network model which makes I/O mode decisions according
to estimation on current I/O pressure. Meanwhile, the design of
SEED enables online training paradigm which reduces computa-
tional overhead and facilitates model evolution. To eliminate the
concurrency control bottleneck and take advantage of Conflux in
scalable working set, we design a fine-grained concurrency control
mechanism facilitating highly concurrent I/O requests.

In summary, we make the following contributions:

• We present the design of Conflux, a DFS architecture that
exploits both local and remote PM bandwidth by dynamically
managing the two I/O modes at run-time. We further design
a lightweight fine-grained concurrency control mechanism
that provides higher scalability.

• We present SEED, the first learning-based I/O mode selection
policy in DFS. SEED learns from the history of I/O informa-
tion and helps Conflux to make adaptive runtime choices
between local and remote I/O path.

• We implement Conflux and quantify its performance on var-
ious benchmarks. Experimental results show that Conflux
fully exploits the local and remote PM performance, signifi-
cantly outperforming existing DFS designs.

2 BACKGROUND AND MOTIVATION
2.1 Progress in PM and RDMA technologies
The development of computer hardware technologies is rapid in
recent years. Intel has introduced the Optane PM series of non-
volatile memory, which offers high bandwidth for load/store op-
erations [21]. Meanwhile, Mellanox has launched the ConnectX-7
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Figure 1: Space for hardware utilization improvement.

device for RDMA technology, which doubles the network band-
width compared to its previous generation.

A large body of research has focused on leveraging high perfor-
mance PM and RDMA hardware and redesigning the file system.
The straight-forward design paradigm of utilizing PM and RDMA
is to store file data in PM and accelerate the data transmission via
RDMA. Octopus [33] is a recent research work that follows this de-
sign paradigm. It creates a shared PM pool for file data storage and
introduces RDMA-aware remote procedure call (RPC) mechanisms.
The PM pool offers byte-addressable, persistent, and large-scale
storage service compared to traditional disk devices. However, Oc-
topus deploys PM on the server side, and its clients can access PM
devices only through the RDMA network. Another design paradigm
is to include PM not only on the server side but also on the client
side as a local cache. Orion [46] and Assise [2] are two systems that
follow this paradigm. They have demonstrated the benefits of using
local PM, with lower latency and higher throughput.

2.2 Exploiting both local and remote PM
A common problem among existing RDMA-aware PM-friendly
DFS designs is the low utilization of hardware performance. Some
DFSs, such as Octopus, use PM only on the server side and do
not exploit the local storage performance. Their performance is
limited by the RDMA network bottleneck. Other DFSs, such as
Assise and Orion, use local PM cache extensively on the client
side and do not fully exploit the RDMA bandwidth. They evaluate
the system performance in a testbed with 40 Gbps RDMA NICs,
which hide the low network bandwidth utilization. We reveal the
low utilization problems using servers (see details in Section 5.1)
that are armed with Mellanox ConnectX-6 adapter, which provides
200 Gbps network bandwidth.

We conduct two experiments to show the space for performance
improvement. The first experiment shows the device bandwidth
utilization in different DFS designs. We generate multi-process
workloads with concurrent bulk read/write requests using Fio [3]
benchmark. We run the workloads on Octopus and Assise to col-
lect their run-time bandwidth utilization statistics. The results are
shown in Figure 1a. We discover that they do not utilize hardware
bandwidth sufficiently (as high as 84% of bandwidth wasted). Our
proposed system, named Conflux, takes more advantages from the
high bandwidth devices. It is because Conflux utilizes both local
and remote PM to serve the I/O requests.
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The second experiment shows examples of the bandwidth aggre-
gation phenomenon. We generate 40 threads to access file blocks,
in which a fixed percentage of threads perform local PM access, and
the rest perform remote PM access through RDMA. We conduct
experiments with 4 KB and 2 MB I/O size, and show the bandwidth
results in Figure 1b. We draw two conclusions from the results:
(i) Simultaneous usage of local and remote PM can provide much
higher aggregated bandwidth for applications. If a system relies
on local PM or remote PM access, it can only achieve 70% or 40%
of the highest possible bandwidth. (ii) It is not a trivial problem
to fine-tune the I/O system where we seek to utilize aggregated
bandwidth. With different I/O sizes and concurrency levels, fixed
ratio cannot exploit the highest bandwidth. To make it more com-
plicated, the real working environment may contain mixed sizes
of I/O and change its concurrency by time. We need to devise an
adaptive policy to deal with the complicated scenarios.

2.3 Concepts from machine learning
The success of machine learning (ML) has motivated OS design re-
searchers to automate the system tuning process. ML research field
encompasses three main paradigms: supervised learning, unsuper-
vised learning, and reinforcement learning. These learning-based
techniques have been widely applied to OS design researches with
promising results [6, 18, 38].

Previous works have demonstrated the predictability of oper-
ating system I/O performance using supervised learning [18, 29].
However, these works rely on intensive pre-training of neural net-
work models and extensive dataset collection procedures, which
are time-consuming and lack adaptiveness. Reinforcement learn-
ing (RL) is a paradigm that can train a model to adapt to a dy-
namic environment and apply an optimal policy. Several research
works have shown that RL can achieve excellent outcomes in OS
designs [37, 49, 50]. Here we highlight two essential conceptions in
RL: exploitation and exploration. The balance of exploitation and
exploration [23] is always an active theme in policy-learning re-
search. Exploitation represents choosing what is known and getting
a reward close to the model’s expectation. The exploitation ability
helps a policy to make the known optimal choice. On the other
hand, exploration represents choosing what is unsure and getting
more knowledge about the environment. The exploration ability is
vital for a learning model to evolve in a dynamic environment.

3 CONFLUX DESIGN
In this section, we present a new DFS architecture named Conflux.
As an overview, Conflux adopts the client-server architecture for
cluster organization. It focuses on improving data I/O scalability
and achieves the following design goals:

• Exploiting both PM and RDMA bandwidth. One of the
main goals of Conflux is to simultaneously expose client local
PM bandwidth and RDMA NIC bandwidth to applications in
a transparent manner. Conflux introduces a novel dynamic
I/Omanagementmechanism, which enables local and remote
modes at the run-time. It manages PM space and RDMA
connections to activate different I/O modes for requests.
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Figure 2: Conflux architecture overview.

• Adaptive I/O mode selection. To make proper run-time
I/O mode decisions, Conflux introduces a novel learning-
based I/O mode selection policy named SElf Evolutionary
Demultiplexer (SEED). SEED learns from the performance
statistics of Conflux and makes the proper I/O mode decision.
It is adaptive concerning the dynamic local storage pressure
and network device pressure.

• Fine-grained I/O concurrency control. The centralized
coarse-grained concurrency control mechanism is a bottle-
neck for concurrent data I/O. Conflux comes up with a fine-
grained tree-structured data lock at the server side and a
lease mechanism at the client side. They work together to
provide higher parallelism under concurrent I/O requests.

The software components of Conflux are shown in Figure 2.
Applications are running at the client side. Conflux serves all the
application issued I/O requests and pushes them through three
main software components at client. The fine-grained concurrency
controller is first activated to grant access admission. Then the I/O
request passes through SEED, which generates an I/O mode choice
according to the request and run-time I/O environment estimation.
Finally the request is sent to Conflux I/O manager where local
and remote I/O tasks are performed simultaneously. Meanwhile, a
distributed FS-service is designed at the server-side to establish a
PM pool and support concurrent file operations.

3.1 Conflux I/O management mechanism
On the client-side, Conflux employs a unique I/O management
mechanism that exploits both PM and RDMA bandwidth for user
applications. Conflux I/O manager receives I/O requests from the
application at run-time and dynamically selects either local or re-
mote mode to serve them. On the server-side, Conflux builds and
maintains the file system through FS-service, which stores both
metadata and data segments in PM regions. Each file’s metadata
resides in a primary server node, determined by a consistent hash
algorithm. FS-service also collects all nodes’ data segments into a
PM pool and exposes it to clients.

The dynamic I/O management mechanism is illustrated in Fig-
ure 3. As explained earlier, when our system receives application
requests with mode advice from the control plane, it forwards them
to the Conflux I/O manager. The Conflux I/O manager maintains
a client local PM cache space and organizes RDMA connections
to the server-side PM pool. Thus it is able to provide both local
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Figure 3: Conflux dynamic I/O management.

and remote I/O mode to serve the incoming I/O tasks. Moreover,
it manages the cache update and write back tasks to maintain the
cache consistency. Conflux I/O manager initiates I/O thread pool
for each of the three I/O types. As a result, the local and remote I/O
are executed simultaneously under parallel requests.

The Conflux client cache includes both data and metadata. Meta-
data cache maintains file status (e.g., file mode, size, access time)
information and the address translation table. They reduce the
cross-node communication overhead and facilitates local I/O tasks.
As for metadata consistency, server-side CPUs are involved in meta-
data updating, where in-DRAM per-inode atomic locks ensure a
strong consistency. For data segment, it uses a block-aligned cache
with MESI protocol ensuring cache coherence. When I/O request
refers to data blocks that are currently not in local PM, new space
will be allocated in the data segment. When the local PM space is
full-filled, Conflux issues batched eviction, where the victims are
selected by an LRU algorithm. Therefore, the data cache has its
own metadata, which includes block status and a table mapping
the local cache address to the shared PM pool. It also facilitates the
address translation for remote I/O tasks.

3.2 SEED: adaptive I/O mode selection
We devise a novel I/O mode selection policy named SElf Evolution-
ary Demultiplexer (SEED). As an overview, SEED uses a machine
learning model to predict the latency of local and remote I/O, and
generates I/O mode decision according to latency values. Lower la-
tency indicates better exploitation of the hardware bandwidth, thus
SEED helps fully take advantage of the dynamic I/O mechanism in
Conflux. As its name shows, SEED adopts online learning paradigm
which saves the system from complicated training data processing
procedure and facilitates the adaptive I/O mode selection.

The reasonwe choose I/O latency as the prediction target, instead
of straight-forward local/remote mode choice, is two-fold: (i) While
Conflux seeks to exploit more hardware bandwidth, it is non-trivial
to measure the correlation between I/O mode decisions and the
bandwidth benefits. Latency is a proper measurement indicating
bandwidth utilization for each I/O task with known I/O size. (ii)
For a machine learning model, the training data should be ground-
truth. It is almost impossible to retrieve ground-truth better I/O
mode at run-time, which can only be generated by heavy offline
pre-processing. Latency recording incurs low CPU overhead, even
performed for each I/O task. Meanwhile, its ground-truth value is
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Figure 4: The working flow of SEED I/O latency prediction.

confirmed right after data transmission, thus facilitates the online
model evolution process.

We divide SEED into four subsystems as follow.

3.2.1 I/O request monitor. SEED tracks the I/O request execu-
tion information within Conflux. The tracked information has two
main uses: (1) for working threads to estimate the dynamic run-
time I/O pressure, and (2) for the machine learning model to collect
the training data on I/O metadata. SEED maintains a per-thread
in-DRAM log area for every Conflux user to record I/O request
metadata, which consists of I/O size, I/O type, and ground-truth
latency. The I/O request log is a circular buffer with a producer and
a consumer. Conflux working thread is the I/O record producer,
and the SEED learning model is the consumer. The I/O request log
of each Conflux thread is shared among all the other threads, such
that SEED policy can generate comprehensive estimation of the
I/O pressure on local and remote devices in the whole system.

3.2.2 Latency prediction model. SEED uses a neural network
model to finish the latency prediction task. We devise vector gener-
ation and post-calculation functions to compose feasible inputs and
outputs data structures for the neural network. Figure 4 shows the
input generation process, neural network prediction, and output
manner of the model.

In detail, the inputs of the neural network include two parts: an
environment and a query. The environment represents the collec-
tion of recent I/O information. We design an I/O info gathering
procedure to generate its contents. It reads the four most recent I/O
requests from each Conflux thread, and groups all the I/O log items
according to their I/O size and I/O type. Different I/O types have
different influences over the local and remote devices. Different I/O
sizes are separated to emphasize their different contributions to I/O
pressure. SEED maintains a counter for each group and combine all
the counter values as a result of environment. By I/O info gathering
procedure, we represent the I/O information from various working
threads as a fixed-size real-value vector, leading to efficient neural
network model processing.

Given an environment vector, SEED pushes it through the neural
network. The last layer of the model outputs a set of real num-
bers falling in the [0, 1] interval, interpreted as the predicted I/O
strength. The strength represents the ratio between the devices’ I/O
latency lower-bound and the predicted runtime I/O latency. The
lower-bound depends on PM and RDMA NIC hardware, which
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can be generated by a stand-alone single-threaded latency test and
manually configured in our model. Finally the second part of inputs
named query, including the incoming request’s mode and size, is
pushed into the model. The model selects a predicted I/O strength
by the query I/O type and I/O size. It calculates the required latency
value, dividing the latency lower-bound by the I/O strength.

The neural network in SEED is a lightweight model with two
fully connected hidden layers. It only contains less than 3K param-
eters such that the whole model can be stored in a file (or loaded
into memory) of about 13 KB size. It incurs low CPU and mem-
ory overhead while meets the accuracy requirement for real-time
prediction. Targeting at runtime latency prediction, we view the
environment to latency relationship as a functional mapping. Since
it is impractical to maintain a lookup table for the high-dimensional
inputs generated by multi-thread workload, SEED approximates
this high-dimensional function using the neural network. It has
been proved that a multi-layer neural network is a universal ap-
proximator [20] that can model functional relationships effectively.
Moreover, we present the model training loss (see Section 5.4) to
support this claim in our case.

3.2.3 Semi-online learning scheme. Due to the fewer arith-
metic operations included, the neural network inference time costs
are much lower than the model training costs. SEED uses a semi-
online learning strategy that can train the neural network efficiently.
By separating the inference tasks and the training procedure, it
achieves a balance between low overhead and high precision.

SEED keeps a background process to collect the inputs-outputs
data pairs generated by client threads. It gathers them into a training
data pool and trains a new model continuously. The train after
collection manner allows batched data feeding in model training,
which is more efficient than a single data pass in a neural network
model. Meanwhile, all the client processes have a read-only copy
of the prediction model and execute the inference procedure at
run-time. The background process maintains a history of training
error values as a neural network model quality measurement. When
it finds a significant error decrease at the end of a training epoch,
it views the new model as better than the old model. Under that
condition, it persists the new model in a new file and informs all
Conflux client processes to update their model.

We further control the overhead for extremely small I/O requests
by adding a short circuit path and allowing immediate I/O latency
prediction. SEED maintains a threshold for admission to the neural
network. For I/O size under that threshold, we store the previous
latency value as the prediction result. SEED adjusts the threshold
dynamically according to the neural network elapsed CPU time
ratio, thereby constraining the costs.

3.2.4 Latency-based decision policy. Having the I/O latency
predictor in hand, SEED makes a latency-based I/O mode decision
for each request in Conflux. It examines the relationship between
the predicted local and remote I/O latency and advises on the mode
choice. We define a value Latency Ratio as:

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜 =
𝐿𝑎𝑡𝑃𝑀

𝐿𝑎𝑡𝑃𝑀 + 𝐿𝑎𝑡𝑅𝐷𝑀𝐴
, (1)

where 𝐿𝑎𝑡𝑃𝑀 and 𝐿𝑎𝑡𝑅𝐷𝑀𝐴 represent the predicted I/O latency for
an incoming I/O request. Denote the Latency Ratio as variable 𝑟
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Figure 5: Decision curves with various certainty levels.

(where 𝑟 ∈ [0, 1]), and the I/O mode choice 𝑣 as a function of 𝑟 that
takes binary value, i.e., 𝑣 (𝑟 ) ∈ {0, 1}. Specifically, 𝑣 = 0 indicates a
local I/O mode and 𝑣 = 1 indicates a remote (local bypass) I/O.

In SEED we design a probabilistic function for 𝑣 . Let 𝑢 (𝑥) be a
shifted sine function mapping [0, 1] to [0, 1], i.e.,

𝑢 (𝑥) = 1
2
𝑠𝑖𝑛(𝜋𝑥 − 𝜋

2
) + 1

2
, (2)

and the value of 𝑣 is decided by:

𝑃𝑟 (𝑣 (𝑟 ) = 1) = 𝑢𝑛 (𝑟 ). (3)

Here 𝑢𝑛 () denotes an 𝑛 times composition of 𝑢 () itself. Different
𝑛 values will generate different 𝑣-decision curves. To show the
influence of 𝑛 values on decision curves, we change the 𝑛 value
from 1 to 16 and draw Figure 5 including different curves. As a
bigger 𝑛 value generates a more definitive decision curve, we call 𝑛
the certainty level. Heuristically, SEED configures 3 as the default
certainty level. The advantage of such configuration will be shown
by experimental results in Section 5.4.

There are three advantages of deciding the I/O mode according
to the probabilistic policy defined by Equation 3. The first advantage
is its unbiased behavior. As we explained in Section 2, both network
devices and local storage devices should be utilized. Therefore, a
good policy should make correct decision no matter higher I/O
pressure incurs in local or remote devices. The second advantage is
the balance between exploitation and exploration. On one hand, we
need exploitation ability as runtime I/O mode decisions are based
on SEED’s advice. The decision according to Equation 3 shows the
exploitation ability. With 𝑛 → ∞, 𝑣 (𝑟 ) → 𝑉 (𝑟 ), where 𝑉 (𝑟 ) is a
policy defined as:

𝑉 (𝑟 ) =
{

0 , if 𝑟 ≤ 0.5
1 , if 𝑟 > 0.5 (4)

that always chooses the predicted faster I/O mode. On the other
hand, the exploration ability enhances the diversity of I/O mode
selection and facilitates the neural network model evolution. Our
decision-making policy exhibits this ability because it allows for
the possibility of choosing the slower I/O mode predicted. The
third benefit of this policy is its computational efficiency. The 𝑠𝑖𝑛()
function is highly optimized in standard math libraries. Therefore,
the decision-making process consumes a few CPU cycles, which is
insignificant compared to other software overheads.

3.3 Fine-grained concurrency control
We now introduce the lightweight fine-grained concurrency control
mechanism in Conflux. At the server-side, Conflux introduces a
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fine-grained sub-file level data lock which improves shared file
I/O scalability. At the client-side, Conflux designs a lease control
mechanism which reduces network communication.

As shown in Figure 6, the lock and lease mechanisms cooperate
in providing a fast concurrent data locking service to applications.
The fine-grained data lock is applied in Conflux servers. Every in-
ode is related to a lock structure. For every file, Conflux maintains
an in-DRAM tree-structured lock group. The tree-structured lock
group uses block size as its granularity. It allows concurrent write
operations within the same file, as long as they do not overlap on
blocks. It organizes all requested lock entries as a binary search tree
to provide higher efficiency. Here we denote 𝑁 as the maximum be-
tween the number of concurrent I/O requests and the block number
occupied by the file. Conflux finishes every lock/unlock operation
within an 𝑂 (𝑙𝑜𝑔𝑁 ) time-complexity algorithm, which is a small
overhead for either large files or highly concurrent I/O demands.
For many real-world I/O intensive applications, the concurrent
data I/O can occur within shared files [15, 30, 36, 48]. That indi-
cates the fine-grained lock will improve scalability under I/O-heavy
workloads with severe contention.

Furthermore, a lease controller resides in each Conflux client
thread to maintain thread-local lease entries. The lease controller
creates a lease entry list for every opened file descriptor. When
a 𝑟𝑒𝑎𝑑/𝑤𝑟𝑖𝑡𝑒 request successfully acquires a lock on an address
range in a file, a new lease entry is added to the corresponding list.
Subsequent I/O operations with an address range that is contained
in the lease list will be admitted without querying servers. The
existing lease entries are indexed by a hash table. Thus, repeated
I/O requests can get admission with several local memory access
latency, which significantly improves over the remote lock acqui-
sition. On file 𝑐𝑙𝑜𝑠𝑒 operation, all acquired leases will be marked
as invalid. Moreover, the lease reclaiming operations are asynchro-
nous and batched, which helps shorten the lease reclaiming critical
path and preserve more RDMA bandwidth for data I/O in Conflux.

4 IMPLEMENTATION
We implement Conflux as user-level libraries written in C. LibServer
(6.5K LOC) is for server utilities. It includes the implementation of
FS-service and server-side lock control functions. LibClient (6.6K
LOC) is for client utilities. It includes the implementation of the
lease control module, Conflux I/O manager, and SEED.

LibServer is the software component running at the Conflux
server side. We implement it as a user-level module that follows

the design of FS-service and the lock control mechanism. In our
implementation, LibServer is initialized with a thread pool such that
it can scale to serve massive concurrent applications. LibServer uses
sharedmemory for lock structures and IPC to coordinate concurrent
server-side processes, as some existing works suggest [35]. RDMA
connectionmanagement, message send/receive, and data read/write
are implemented using verbs API provided by the RNIC driver.

LibClient is also implemented as a user-level module. It inter-
cepts all POSIX system calls related to file system operation and
invokes Conflux internal functions. We view the return of RDMA
𝑤𝑟𝑖𝑡𝑒 as the finish point of remote data updates, though current
RNIC hardware cannot guarantee𝑤𝑟𝑖𝑡𝑒 persistency. Some existing
literature has shown the feasibility of ensuring data persistency
in one network round trip [12]. We also notice that data direct
I/O (DDIO) technology, an optimization option in current x86 CPU
architecture, can be harmful to PM-involved remote data persis-
tence [24]. However, Conflux makes some of the DRAM buffer
hot regions for cross-node messaging. Thus we keep the DDIO
option on in our implementation. We implement a Python module,
with the help of Tensorflow [17] package, for the neural network
construction and training.

5 EVALUATION
In this section, we evaluate Conflux and compare it with existing
DFS designs. We describe the experimental setup and evaluate
Conflux with microbenchmarks and macrobenchmarks. Moreover,
we show the effectiveness of SEED I/O mode selection policy and
performance breakdown for different Conflux components.

5.1 Experimental setup
In our testbed, nodes are armed with dual-socket Intel Xeon Gold
6348 CPU, where a single socket has 28 physical cores. For memory,
each node has eight 16GiB DDR4 DRAM and eight 128 GB Optane
persistent memory. For the network, each node has a Mellanox
ConnectX-6 dual-port 200 Gbps HCA.

We compare Conflux with two DFSs designed for PM and RDMA,
named Octopus [33, 53], and Assise [2], on microbenchmarks. As
we use filebench [39] for macrobenchmark and Octopus does not
fit in this benchmark, we replace it with NFS over RDMA. Note
that the MLNX OFED driver supports NFS over RDMA, and we
build EXT4-DAX [41] file system for NFS server-side exporting.
For cluster organization, we use four nodes for server and client in
Conflux by default. All benchmarks are running in clients, and the
results are collected at steady-state and averaged between different
client nodes. For Assise, we configure the hot replica number as
two. In evaluation, we limit CPU usage, PM allocation, and RDMA
NIC port within a single NUMA node for stable performance.

5.2 Microbenchmark results and analysis
First, we conduct multi-threaded bandwidth tests using Fio. Fig-
ure 7a shows the results of concurrent read workload, where each
thread allocates a private file and reads in 256 KB I/O size. Octo-
pus cannot scale as thread number exceed four, and its bandwidth
is lower than Assise and Conflux. Assise reaches the maximum
bandwidth of local PM but cannot scale up beyond ten threads.
Conflux outperforms Assise by a large margin (up to 1.6×). Because
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(a) Read-only workload.
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(b) Read/write mixed workload.
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(c) Sequential access.
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(d) Random access.

Figure 7: Bandwidth test results.
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(b) Write latency.

Figure 8: Single-thread I/O latency with various I/O sizes,
vertical axis in log-scale.

Conflux can scale up when local PM bandwidth is saturated, where
it uses the bandwidth of RDMA reading from remote servers. Fig-
ure 7b shows the results of various mixed read/write workloads. A
read/write mixed workload always leads to performance degrada-
tion in a PM-aware system due to read-write contention. Conflux
finds the latency increasing situation and relief it by steering them
into different I/O modes. We also evaluate different systems us-
ing various I/O sizes and random I/O patterns and show results in
figure 7c, 7d. Conflux outperforms the other two systems under
various workloads.

Second, we conduct single-threaded I/O latency tests with var-
ious I/O sizes. We use Fio [3] to create a 1 GB file and perform
sequential r/w on it. Figure 8 shows the results. Octopus encoun-
ters a higher latency than Assise and Conflux in general. For 8 KB
I/O, Conflux has a similar latency as Assise. For larger I/O size, Con-
flux has a slightly larger latency than Assise. There are two reasons
behind the single-threaded latency overhead: (1) Conflux has a neu-
ral network inference overhead for each I/O, except for those with
I/O size under admission threshold. In our implementation, this
inference process incurs 1.2 us CPU time overhead to the I/O task.
(2) SEED adopts a probabilistic I/O mode selection, which leads to
a small portion of choosing-the-slower decision. The combinative
effect of the two factors is visible in the latency results of 32 KB I/O
size. While in 2 MB I/O, the first factor is negligible, and the second
factor dominates in the latency-increasing phenomenon.

5.3 Macrobenchmark results and analysis
We take varmail, fileserver and webserver from Filebench [39] as
macrobenchmarks. We make varmail and fileserver to operate on a
working set with 10 K files, where the average initial file sizes are

16 KB and 128 KB, respectively. The overall read-to-write ratios are
1:1 and 1:2 in varmail and fileserver. As Assise’s current implemen-
tation does not support the multi-thread execution of filebench,
we use multiple processes instead. Figure 9 shows the throughput
on these two benchmarks. Data I/O operations are expensive for
NFS over RDMA, as it needs intensive data transmission between
server-side PM storage and the client-side buffer cache. Assise stops
scaling at eight threads for varmail and four threads for fileserver.
The main reason is the centralized kernel module for log digestion
in Assise. Conflux outperforms the other two DFSs by 9× and 1.7×
on varmail, and by 2.8× and 3.2× on fileserver. Because we adopt
the fine-grained concurrency control mechanisms at user-space,
and utilize both local and remote PM for I/O tasks.

To evaluate the system with larger working set, we use Web-
server with 40 K files and 1 MB average file size. We also specify a
flag so that the generated file sizes follow a Gamma distribution.
Consequently, this benchmark includes I/O tasks with various I/O
sizes. Figure 9c shows the results. Because there is no read-write
contention, NFS over RDMA can also scale within 12 threads. Assise
can exploit about 80 percent of the local PM bandwidth for this
workload. Conflux can exploit both local and remote PM bandwidth,
such that it outperforms the other two DFSs by 5× and 2×.

5.4 Effectiveness of SEED policy
5.4.1 Adaptiveness of SEED. We conduct a series of experiments
to show that SEED can optimize the overall I/O performance adap-
tively, under various I/O size and different concurrency levels.

For comparison, we configure a group of I/O policies in Conflux,
i.e., using fixed local to remote I/O ratios ranging from 0:100 to 100:0.
We use webserver benchmark, with 1 MB average file size following
Gamma distribution, to generate I/O tasks with various I/O sizes.
The throughput results under different concurrency levels (thread
numbers) are shown in figure 10. Generally, Conflux outperforms
all the fixed-ratio I/O mode selection policies. For the 10-thread
benchmark, we find that overall throughput increases with the
local I/O ratio. It is because the concurrency level is not enough to
saturate the local I/O bandwidth. Conflux successfully finds this
situation and assigns almost all the I/O to local PM, and achieves
similar performance as the 100% local I/O policy. For 20-thread
and 40-thread benchmarks, we find that some of the fixed-ratio
remote I/O policies perform better than the all-local policy. Conflux,
however, performs better than all the fixed-ratio policies. Because
through modeling the I/O latency, Conflux applies different policies
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(a) Varmail results.
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(b) Fileserver results.

0 4 8 12 16 20 24 28 32 36 40
# Working threads

0

5

10

15

20

25

30

35

40

Th
ro

ug
hp

ut
 (G

B/
s)

NFS-RDMA
Assise
Conflux

(c) Webserver with increased filesize.

Figure 9: Performance on filebench workloads.
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Figure 10: Comparison with fixed-ratio I/O policies.

to different I/O sizes, which is more advanced than any of the
fixed-ratio policies and leads to better bandwidth utilization.

5.4.2 Advantages of our certainty level. We have present our cer-
tainty level design in section 3.2.4. In practice, it has two advantages:
(1) exploiting high aggregated bandwidth. (2) reducing the model
training period. We construct a multi-threaded workload reading a
shared file at 256 KB I/O size and find the oracle policy exploiting
the highest bandwidth. It is equivalent to finding the I/O mode
selection strategy that leads to a Latency Ratio = 0.5 (defined in
Equation 1). We depict the relationship between Latency Ratio and
remote I/O ratio in figure 11a. It indicates that the optimal remote
I/O ratio is 0.34. Denoting the PM bandwidth as 𝐵𝑊𝑃𝑀 , we calculate
the best aggregated bandwidth as (1+ 0.34

1−0.34 )×𝐵𝑊𝑃𝑀 ≈ 1.5·𝐵𝑊𝑃𝑀 .
Under the same workload, Figure 11b shows Conflux’s performance
with different configurations. The PM bandwidth is reached by set-
ting I/O mode to local-only. Conflux with SEED helps to exploit
more bandwidth, while the moderate certainty level choice 𝑛 = 3
acts better than the larger (𝑛 = 6) and smaller (𝑛 = 1) certainty level.
It reaches the peak performance (1.5× local access bandwidth) at
its steady status and has a shorter fluctuating period.

The unstable performance of SEED at the beginning of bench-
mark execution is typical. The reason is that the latency prediction
model needs to collect enough run-time samples to learn a stable
model. Moreover, the neural network evolution velocity is subject
to hardware performance, and our testbed has only CPUs to run the
training task. Figure 11c visualize the model training loss history
during the benchmark execution. We find that lower loss value is
related to higher throughput performance. However, the training
loss is not always decreasing. The reason is that temporary skewed
I/O mode selection in Conflux leads to temporary skewed training

dataset. Similarly, the training loss history show the advantages
of a moderate certainty level choice 𝑛 = 3. Under that condition, it
converges to a lower value with a shorter fluctuating period.

5.5 Performance breakdown and analysis
To figure out how the different design components affect the per-
formance of Conflux, we conduct experiments to break down the
performance results. We use Assise as the baseline, and activate
the implementation of different design parts of Conflux to compare
them. The ’[+] Fine-grained Lock’ system adopts the lock and lease
mechanisms described in Section 3.3, but does not include local-
bypass I/O policy. The ’[+] Adaptive I/O mode’ system is identical
with our description of Conflux, which can dynamically choose the
I/O mode for each request.

Figure 12 shows the performance of different system fragments
under bandwidth tests and webserver workload. The workloads’
configurations are identical to those in Section 5.2 and Section 5.3.
We select four different working thread numbers to observe the
performance breakdown with various concurrency. We find that
both the fine-grained lock design and the adaptive I/O mode selec-
tion policy benefit a lot to Conflux. For workloads above 10-thread,
the adaptive I/O mode selection, which is enabled by our SEED
policy, improves the throughput by a large margin. Because the
high concurrency level makes space for I/O bandwidth aggregation,
and SEED helps to utilize both local and remote PM devices. In
some case, e.g., the 4-thread webserver workload, Conflux achieves
similar throughput as the baseline system. The low concurrency
workload can not benefit a lot from our design inherently. To con-
clude, Conflux improves the I/O performance for high concurrency
workloads while sacrifices little for low concurrency workloads,
because the SEED I/O mode selection scheme is adaptive.

5.6 Real-world application performance
RocksDB [15] is a well-known persistent database based on LSM-
tree. It is designed as a library component embedded in higher-level
applications and optimized for large-scale distributed utilities [11].
We use the DBbench [14] benchmark, which can assign the database
working directory, to compare the RocksDB performance built on
different file systems. We run a workload that executes sequential
write and 32-threads random read, with 10 M key-value pairs, key
size set as 128 B, and value size set as 4 KB. NFS over RDMA achieves
a throughput of 8406 MBps, while Conflux outperforms it by 1.32×.
It is worth noting that the throughput has not reached the local PM
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Figure 11: Advantages of the certainty level configuration.
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Figure 12: Performance breakdown results.

bandwidth nor the RDMA bandwidth. The improvement here in
Conflux mainly relies on the local PM cache usage and concurrency
control mechanism.

6 RELATEDWORKS
The emergence of PM technology has aroused many research works
on redesigning the storage system software stack. There are many
kernel-level file systems that take advantage of byte-addressable
PM [5, 13, 41, 45]. Notably, Ziggurat [51], Orthus [44], and SPFS [42]
are considering new design pattern on heterogeneous memory and
storage tiers. On the other hand, the user-level PM file system is
rising. Strata [28], CrossFS [36], KucoFS [4] and MadFS [52] are
taking user-level operations for file system acceleration. Moreover,
researchers have also explored providing safe metadata operations
to the user-level [9, 35].

When it comes to co-designing PM storage systems with RDMA,
there exist lots of outstanding research works. AsymNVM [34] is
shared PM system design under the guidance of resource disaggre-
gation. FileMR [47] redesigns the RDMA metadata organization
for DFS convenience. Octopus [33], Orion [46] and Assise [2] are
well-known RDMA-aware DFS designs. There are also researches
concentrating on analyzing general technology choice and integra-
tion strategy of RDMA [1, 25].

Some researchers in operating system design get inspired by
the success of artificial intelligence (AI) and come up with new
design paradigms. For example, some researchers focus on the data
center scheduling problem and apply classification-based methods
to heterogeneous data center servers [6], [7], [43]. Network opti-
mization may also get benefit from artificial intelligence or machine

learning [10], [31]. Specifically, some existing works utilize AI tech-
nologies in the storage system and reveal the predictability of the
key-value store system [8, 27]. There is also some existing work on
learning the time series model in the operating system [19].

7 CONCLUSION
We have designed Conflux, a novel DFS architecture that exploits
both local and remote PM bandwidth. The advances of Conflux
come from three distinctive designs: the Conflux dynamic I/O man-
agement mechanism, the SEED learning-based I/O mode selection
policy, and the fine-grained lock and lease mechanisms. We have
implemented and evaluated Conflux on a cluster with real PM and
RDMA devices. Experimental results show that Conflux outper-
forms existing DFSs significantly.
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