
Heart: a Scalable, High-performance ART for
Persistent Memory

Liangxu Nie1, Shengan Zheng2*, Bowen Zhang1, Jinyan Xu1, Linpeng Huang1*

1Shanghai Jiao Tong University, Shanghai, China
2MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China

*Corresponding author: Linpeng Huang, Shengan Zheng

Email: {nieliangxu, shengan, bowenzhang, xujinyan2022, lphuang}@sjtu.edu.cn

Abstract—Concurrent indexes for persistent memory (PM)
have been extensively investigated due to the appealing features
of PM, such as data persistence and DRAM-comparable perfor-
mance. Among them, Adaptive Radix Tree (ART) is a widely used
index that performs well on variable-sized keys. Nevertheless,
existing persistent ARTs still suffer from high PM overhead as
well as inefficient concurrency control.

In this paper, we present Heart, a persistent ART with low
latency and high scalability. Heart proposes a unified node
structure for different capacities with Hashed Node and Node
Decoupling to reduce the PM access overhead. To achieve high
scalability, especially in write-intensive scenarios, we propose
an efficient concurrency control protocol with lock-free basic
operations and lock-free node split. Furthermore, Heart em-
ploys Perceivable Transformation to avoid anomalies during node
expansion and shrinkage. Compared to other state-of-the-art
persistent ARTs, Heart achieves up to 21.6× higher performance
under YCSB workloads with high memory utilization. We also
deploy Heart in DRAM and obtain up to 33.4× speedup than
the original in-memory ART.

I. INTRODUCTION

Persistent memory [2] has gained wide attention due to its

persistence guarantee and DRAM-comparable performance.

The latest generation of Optane DCPMM further strength-

ens cache persistence by introducing enhanced asynchronous

DRAM refresh (eADR) [4] technique, which opens up new

possibilities for the design and application of PM systems.

In recent years, numerous persistent indexes [1], [3], [11]

have been proposed. In particular, the Adaptive Radix Tree [7],

[8], which is advantageous in the variable-length KV storage

by efficiently organizing strings with similar prefixes, has also

been redesigned to better adapt to PM [5], [6], [9]. However,

these persistent ARTs share two notable drawbacks.

First, existing persistent ARTs have significant PM access

overhead. They mainly focused on reducing the costly cache-

line flush instructions, which were used to ensure data persis-

tence in previous PM systems, and are no longer necessary

with the emerging cache persistence technique. Moreover,

they neglected the excessive PM accesses caused by ART’s

structural design. As an in-memory index, ART is initially

This work is supported by National Key Research and Development
Program of China (Grant No. 2022YFB4500303), National Natural Sci-
ence Foundation of China (NSFC) (Grant No. 62227809), the Fundamental
Research Funds for the Central Universities, Shanghai Municipal Science
and Technology Major Project (Grant No. 2021SHZDZX0102), and Natural
Science Foundation of Shanghai (Grant No. 22ZR1435400).

designed with a series of complicated nodes to accelerate

basic operations and improve space utilization [7]. However,

these nodes tend to store metadata, child node keys and child

node pointers in separate areas. Such spatial dispersion of

node contents can lead to a larger memory access area during

node access. When ARTs are used in PM, the memory access

overhead issue leads to significant performance degradation

due to the relatively lower performance of PM compared with

DRAM. For example, in ROART [9], searching or inserting

an 8-byte child pointer in an internal node may result in the

reading or writing of up to 3 XPLines (256-byte, the access

granularity of physical media in Optane PM [10]), leading to

higher latency and increased bandwidth consumption.

Second, ART suffers from inefficient concurrency control,

which has been ignored in existing ART-based research.

ROWEX [8], the mainstream synchronization protocol of ART,

uses node-level write locks, leading to poor scalability in

write-intensive scenarios. Furthermore, since reads are not

locked, persistent ARTs that use ROWEX as a synchroniza-

tion mechanism typically use non-temporal store instructions

(write directly to PM, bypassing the cache hierarchy) to

prevent unpersisted data from being globally visible, but

this approach fails to leverage the benefits of CPU caching.

Another concurrency control scheme, Optimistic Lock Cou-
pling (OLC) [8], can cause massive restarts when there are

intensive conflicts, further degrading performance. To fully

realize ART’s potential, it is crucial to improve its concurrency

control protocol to achieve higher scalability.

To address the above two issues, we propose Heart, a

persistent ART with low latency and high scalability. To

lower PM overhead, we propose a unified and PM-friendly

structure for internal nodes of different capacities with Hashed
Node structure and Node Decoupling mechanism, reducing

operation latency and saving PM bandwidth. Hashed Node
evenly divides internal nodes into multiple consecutive logical

buckets of XPLine size. By hashing the current key byte, a

single node operation is contained within the same bucket,

so that the PM access of this process does not exceed one

XPLine, regardless of the node size. We further propose Node
Decoupling to decouple the metadata from internal nodes. It

enables most updates to be completed with a single write

to an 8-byte field called node context, which reduces

the metadata access overhead and facilitates Heart’s efficient

487

2023 IEEE 41st International Conference on Computer Design (ICCD)

2576-6996/23/$31.00 ©2023 IEEE
DOI 10.1109/ICCD58817.2023.00080

20
23

 IE
EE

 4
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 C

om
pu

te
r D

es
ig

n
(I

C
C

D
) |

 9
79

-8
-3

50
3-

42
91

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

C
D

58
81

7.
20

23
.0

00
80

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 15,2024 at 03:16:25 UTC from IEEE Xplore. Restrictions apply.

��

���������	�
�
������

�������	
���
�	���

������	
���
�	���

������� �������

�� ����
�	��
���
�	�� �����	
��� ����
�	����
������ �!��������	"�

������	"

�����	��� ��� �����

� ���
������� ������� ������#������$

���"�����
������	

�����	
��

�������������	��
���

Fig. 1: The node structures in Heart.
synchronization scheme.

To achieve high scalability, especially in write-intensive

scenarios, we propose efficient concurrency control methods

for Heart. We employ a lock-free approach for all basic

operations and node splits by serializing node updates using

Compare-And-Swap (CAS) on the 8-byte context. Mean-

while, we take advantage of the cache persistence on the

latest PM platform to prevent concurrent threads from reading

unpersisted data during lock-free access [11]. To address the

concurrency anomalies such as lost update and inconsistent
read caused by node transformation, we propose Perceivable
Transformation, enabling concurrent operations to perceive the

occurrence of node transformation and take proactive measures

to prevent anomalies.

We implement Heart and our evaluation results show that

Heart outperforms other state-of-the-art persistent ARTs and

B+-Tree by up to 21.6× under YCSB workloads with high

memory utilization. Furthermore, due to the similarity between

DRAM and PM indexing brought by eADR, Heart can also

be deployed in DRAM and improve the performance in write-

intensive scenarios by up to 33.4× in our experiments.

II. HEART DESIGN

A. Unified and PM-friendly Structure

In general, Heart is a persistent variant of the original

ART [7] that inherits ART’s path compression, node splitting

and prefix-based indexing approach. In the following, we

first propose a unified node structure with Hashed Node. It

enables internal nodes, regardless of size, to trigger only a

petite range of PM access at a time. Then we propose Node
Decoupling, decoupling metadata from nodes, which avoids

extra PM access for metadata and enables most of the writes

to be completed by updating an 8-byte node context. Thus,

during access of each layer, PM read is contained within one

XPLine and PM write is limited to one 8-byte atomic update.

Hashed Node. The core idea of Hashed Node is to restrict

the access area of a node basic operation (insert, update,

delete or search a child pointer) to a small bucket through

hash mapping in nodes of different sizes, thus reducing PM

access overhead while traversing internal nodes. As shown

in Figure 1, an internal node is initially partitioned into

several contiguous logical buckets. The bucket size can be

set differently depending on the physical media. For example,

each bucket is one XPLine (256-byte) size when applied in

Optane PM, or one cacheline (64-byte) size when applied in

DRAM. Figure 1 also illustrates how Hashed Node works

between a pair of parent-child nodes. Before accessing the

child node content from its parent node, the operation thread

first hashes the current key byte and determines which bucket

it belongs to. All subsequent lookups and updates will always

occur in the selected bucket regardless of the node size,

without access requests exceeding one XPLine in PM.

Node Decoupling. Even with hashing mapping of the child

data in internal nodes, reading and writing the metadata can

still result in additional XPLine accesses. Therefore, Node
Decoupling is further proposed to optimize the way node

content is read and updated by decoupling all the metadata

of a node into its parent node in the upper layer. As shown

in Figure 1, we encapsulate the necessary metadata together

with the address information into an 8-byte field, called

the context of an internal node. The context includes:
1© node type (3 bits), 2© node version (5 bits), used for

concurrency control, 3© key byte (8 bits), the 1-byte key prefix

for child indexing, 4© child pointer (42 bits, which is sufficient

since all nodes are 64-byte aligned), the address of child node,
5© prefix length (6 bits), the compressed path length of the

child node. Then, we fill the contexts of internal nodes

into their parent nodes. In other words, every internal node

in Heart is completely composed of its children’s contexts
without any other content or metadata. When inserting a child

node into an internal node, we first construct the context
using the information of the child node and then fill it into an

empty slot of the internal node. When looking up a child node

pointer in an internal node, we can obtain both the address

and metadata of the target child node simultaneously through

its context, and then enter the corresponding bucket of the

child node to continue the search process in the next layer. In

this way, access to the next layer is completely restricted to

the child node contexts without additional reading to the

node metadata.

Node Decoupling combines multiple writes during a node

update process into an 8-byte update. All the encapsulated

metadata is always updated collaboratively with the pointer
in the node context when the node is transformed/split

or the slot is redirected. Multiple data updates triggered by

these processes can be completed instantly by performing an

atomic 8-byte write to the context. This also eliminates

the possibility of inconsistent states during the write request

processing, facilitating our lock-free basic operations/split of

internal nodes. This will be further elaborated in Section II-B.

B. Concurrency Control

We propose an efficient synchronization protocol with lock-

free basic operations and Perceivable Transformation, achiev-

ing high scalability especially in write-intensive scenarios.

488

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 15,2024 at 03:16:25 UTC from IEEE Xplore. Restrictions apply.

���������������� ���������� ��������������������������������

� ��	�����
�!����

������
�������

�"���������
�!����

��������� � ���� �����������

�������� 	����������

	���#������

��������� � ����

	
��
�����
� �����	���"������

�������� 	����	���#������	���#������ 	���"������

��������������

������ ���������	
���

�$���������
�!����

�%��	�����
�!���

�#�������

Fig. 2: The anomalies and solutions during node trans-
formation. (PT: Perceivable Transformation, X: A child
context in the node)
Lock-free Basic Operations. In Heart, all basic operations

(insert, update, delete or search a child pointer in a target

internal node) are performed lock-free. In general, we serialize

concurrent writes by updating the target node context via

the atomic primitive CAS. Take an insert as an example,

after preparing the new leaf node, and constructing the corre-

sponding leaf node context, the worker thread traverses the

context list in the target bucket with SIMD instructions to

find an empty slot and then uses CAS to insert the constructed

context of the new leaf into the empty slot. The insert is

committed once the CAS operation succeeds. Otherwise, if the

CAS operation fails, the worker thread tries to find another

empty slot and repeats the above process. Updates and deletes

are executed in a similar manner. Meanwhile, lookups within

internal nodes can be executed by traversing the context list

without blocking or retries since write threads will not make

any changes to the target nodes until the updates are atomically

committed (i.e., CAS succeeds). The atomic updates in cache-

persistent systems guarantee that each visible context is

consistent and durable at any given moment.

Lock-free Split. Node splitting process in Heart can be exe-

cuted lock-free. Node splitting is triggered when the inserted

key does not match the compressed prefix of the current

internal node. It will successively add a new parent node to

the current node and then modify its prefix correspondingly.

Since we decouple the metadata (including prefix information)

from nodes themselves to their parent nodes through Node
Decoupling, all intermediate results of a split are invisible

to other threads until the split is completely finished by

atomically updating the target node context.

Perceivable Transformation. Heart employs Perceivable
Transformation to deal with the potential anomalies includ-

ing lost update and inconsistent read during node expan-

sion/shrinkage (transformation).

The core idea behind Perceivable Transformation is that

Heart enables lock-free reads and writes to perceive the occur-

rence of concurrent node transformations through version
mechanism and take proactive measures to prevent anoma-

lies. Heart utilizes the node context as the medium for

transformation threads to share state information with other

threads. Specifically, the transformation thread employs CAS
to atomically increase the node version (described in Sec-

tion II-A) in the corresponding context by 1 both before and

Fig. 3: The latency of base operations under uniform access
distribution. (Single thread)

Fig. 4: The throughput of base operations under uniform
access distribution. (56 threads)
after executing the transformation. In this way, other threads

can determine whether a transformation has occurred or is

happening according to the change and parity of the node

version. When a worker thread plans to access an internal

node and obtains its address by accessing the context stored

in the parent node, it records the current version in the

meantime. Then it enters the target internal node to perform

its operation as described in Lock-free Basic Operations. Once

the thread has finished its operation on the internal node,

it returns to the context to read the latest version.

If a concurrent transformation is perceived (the version
has changed), the operation thread will wait for the ongoing

transformation to complete. Afterwards, the worker thread re-

reads the context, enters the new internal node and restarts

the entire process. T4 and T5 in Figure 2 illustrate how

Heart deals with the concurrency anomalies with the proposed

Perceivable Transformation.

III. EVALUATION

A. Experiment Setup

All evaluations use a dual-socket Dell R750 server with

two Intel Xeon Gold 6348 processors (28 cores) supporting

eADR and 4TB Barlow Pass (BPS) DIMM. We choose

two state-of-the-art concurrent persistent ARTs (P-ART [6]

and ROART [9]) and one state-of-the-art persistent B+-Tree

(FAST&FAIR [3]) to compare the performance with Heart. We

warm up each persistent ART with 100 million key-value pairs.

Then each test runs for 20 seconds for different workloads and

reports the average results. By default, random/skewed keys

are generated with sizes between 4 to 32 bytes. Values are

fixed at 8 bytes, which can represent indirect pointers.

B. Micro-benchmarks

We begin with the micro-benchmarks to evaluate the latency

and throughput performance as well as the space utilization

of Heart. We test individual operations using a random key

access distribution under single thread and 56 threads before

determining the average latency and throughput.

489

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 15,2024 at 03:16:25 UTC from IEEE Xplore. Restrictions apply.

(a) Write-Intensive (b) Balanced (c) Read-Intensive

Fig. 5: YCSB throughput with different numbers of
threads. (Zipfian access distribution)

(a) Write-Intensive (b) Balanced (c) Read-Intensive

Fig. 6: YCSB throughput in DRAM with different numbers
of threads. (Zipfian access distribution)

As shown in Figure 3 and Figure 4, Heart achieves the

lowest latency and highest throughput in every base operation.

The main reason is that the proposed Hashed Node lowers

XPLine reads and accelerates traversals, which are the essen-

tial steps in all operations. Heart only produces one XPLine

read in each layer of internal nodes regardless of node sizes.

For write operations, another improvement comes from Node
Decoupling, which combines multiple PM writes distributed

across different XPLines into one 8-byte atomic update. For

scan operations, Heart’s lead is not significant because the

main overhead of scanning is on dereferencing the pointers

of leaf nodes rather than the traversal process. In ROART,

although Leaf Array reduces pointer chasing in internal nodes,

it aggregates the leaf nodes with fewer common prefixes and

thus increases the number of leaf nodes to dereference, leading

to poor scan performance.

For space utilization, after the initialization with 800M

variable-sized key-value pairs, Heart consumes 9.561GB of

memory space while P-ART consumes 12.924GB and ROART

consumes 14.326GB. Heart’s lead in space utilization is at-

tributed to the finer-grained series of node sizes (N8, N32,

N64, N128, N256) in Heart than the original ART (N4, N16,

N48, N256). In addition, the randomness of the hash functions

roughly keeps the load balance among different node buckets,

which also benefits the space utilization of Heart.

C. Macro-benchmarks

We further evaluate the performance of persistent ARTs with

YCSB benchmarks. We generate three workloads in Zipfian

distribution with default 0.99 skewness, including (a) write-

intensive (10%lookup-90%update), (b) balanced (50%lookup-

50%update), (c) read-intensive (90%lookup-10%update).

The results of the four workloads are shown in Figure 5.

We observe that Heart achieves near-linear scalability with the

increase of threads until exhausting the PM write bandwidth,

while other persistent ARTs and FAST&FAIR suffer severe

performance degradation. In the write-intensive scenario, other

persistent ARTs only scale up to 14 threads due to the

node-level write locks. We attribute the high performance of

Heart on skewed workload to its efficient concurrency control

mechanism, which elides the use of locks for both reading and

writing with the proposed lock-free basic operations, lock-free

node split and Perceivable Transformation. Moreover, the low

PM access brought by Heart’s PM-friendly structure also saves

PM bandwidth and enhances its scalability.

Due to the similarity between DRAM and PM indexing

brought by eADR, Heart can also be deployed in DRAM.

We implement Heart-D, the DRAM version of Heart with

the bucket size set to the cacheline size. We compare Heart-

D against the original ART [7] with ROWEX [8] under the

YCSB workloads. The results are shown in Figure 6. We ob-

serve that the lock-free base operations in Heart-D scale well

under high contentions. In contrast, the original in-memory

ART still suffers from its inherent inefficient concurrency

control. Its write performance drops dramatically with the

increase of threads because of the node-level write conflicts

under skewed workloads. Due to DRAM’s lower latency and

higher bandwidth compared to PM, Heart-D’s lead in DRAM

is even greater than Heart’s lead in PM, achieving 33.4×
higher throughput in write-intensive scenarios.

IV. CONCLUSION

This paper presents a high-performance persistent ART

called Heart, to overcome the high PM overhead and low

scalability of existing persistent ARTs. Heart employs a unified

and PM-friendly node structure with an efficient concurrency

control mechanism. Compared to other state-of-the-art persis-

tent ARTs, Heart achieves significantly higher performance in

both PM and DRAM.

REFERENCES

[1] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu.
utree: a persistent b+-tree with low tail latency. In VLDB, 2020.

[2] Frank T Hady, Annie Foong, Bryan Veal, and Dan Williams. Platform
storage performance with 3d xpoint technology. Proceedings of the
IEEE, 2017.

[3] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam.
Endurable transient inconsistency in byte-addressable persistent b+-tree.
In FAST, 2018.

[4] Intel. eadr: New opportunities for persistent memory applications.
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-
opportunities-for-persistent-memory-applications.html, 2021.

[5] Se Kwon Lee, K Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H
Noh. Wort: Write optimal radix tree for persistent memory storage
systems. In FAST, 2017.

[6] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and
Vijay Chidambaram. Recipe: Converting concurrent dram indexes to
persistent-memory indexes. In SOSP, 2019.

[7] Viktor Leis, Alfons Kemper, and Thomas Neumann. The adaptive radix
tree: Artful indexing for main-memory databases. In ICDE, 2013.

[8] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann.
The art of practical synchronization. In Proceedings of the 12th
International Workshop on Data Management on New Hardware, 2016.

[9] Shaonan Ma, Kang Chen, Shimin Chen, Mengxing Liu, Jianglang
Zhu, Hongbo Kang, and Yongwei Wu. Roart: Range-query optimized
persistent art. In FAST, 2021.

[10] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steve Swanson. An empirical guide to the behavior and use of scalable
persistent memory. In FAST, 2020.

[11] Bowen Zhang, Shengan Zheng, Zhenlin Qi, and Linpeng Huang. Nbtree:
a lock-free pm-friendly persistent b+-tree for eadr-enabled pm systems.
In VLDB, 2022.

490

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 15,2024 at 03:16:25 UTC from IEEE Xplore. Restrictions apply.

