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Abstract—Garbage collection in SSDs causes write amplification. The
key to mitigating this problem is separating data by lifetime. Prior works
proposed using machine learning to accurately predict data lifetime but
prediction is performed at the host side, burdening the host storage
stack. We present PHFTL, a practical, holistic FTL design with device-
side learning-based data separation. The machine learning model in
PHFTL accurately and adaptively predicts the lifetime of every written
page. A suite of enabling techniques are introduced to keep computation
and storage overhead low. Extensive evaluation of PHFTL demonstrates
superiority over state-of-the-art and feasibility on real hardware.

Index Terms—solid state drive, flash translation layer, write amplifi-
cation, data separation, machine learning

I. INTRODUCTION

NAND flash-based solid state drives (SSDs) are widely deployed in
data centers to back secondary storage. To squeeze more capacity out
of compact form factors, current NAND flash technology is heading
towards higher density with lower endurance: From SLC flash to
QLC flash, storage density increased by 4 times, but the number of
program/erase cycles (P/E cycles) the media can sustain dropped from
tens of thousands to only a few thousands [1]. On the other hand,
write amplification (WA) is inevitable in SSDs due to the nature of
flash storage, which consumes extra P/E cycles and accelerates device
wear out. With a recent study reporting that WA at the field can soar
up to over 100 (i.e., flash write size is over 100x the actual user
write size) [2], controlling WA remains an urgent research topic.

Garbage collection (GC) is among the major sources that contribute
to WA in SSDs. Due to the “erase before write” restriction, a flash
translation layer (FTL) is placed between the host and bare flash to
turn all writes into appends. When the FTL runs out of free pages
(the smaller read/write units) to accommodate new writes, GC is
triggered and one or more blocks (the larger erase units) are selected
as victims. The victim blocks are erased to release free pages after
all pages with valid data have been migrated, leading to WA.

The key to reducing WA from GC is separating data by lifetime,
i.e., data separation [3], [4]. When pages with similar lifetimes are
grouped into dedicated blocks, it is more likely that pages in the same
block are invalidated within temporal proximity. The FTL thus has
a greater chance of securing a victim block with a low valid page
count during GC, thereby lowering WA.

To perform data separation, we need to predict when in the future
a page written by the host will be overwritten. Most prior works in
this respect are rule-based approaches built on simple heuristics [4]—
[7] and fall short of adaptability and accuracy. Recent successes of
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the application of machine learning (ML) in system software [8]-[10]
promise more adaptive and accurate data separation using ML models
[11], [12]. However, existing solutions put both model training and
prediction at the host. Whereas training can be performed offline,
prediction is tightly coupled with application I/Os and is thus latency-
critical. Consequently, integrating computation-intensive ML models
into the host I/O path for prediction may lead to interference with
other storage stack tasks [13]. It also adds to the already burdensome
“storage tax”, where up to 20% CPU cycles are spent on the storage
stack in data centers [14].

A device-side approach that performs prediction inside the SSD
confines overhead to the device itself and avoids burdening the host
storage stack. However, this poses significant challenges. The effec-
tiveness of data separation is maximized when the lifetime of every
page can be accurately predicted. But such fine-grained prediction
puts rigorous demand on the responsiveness of the model, especially
considering that the write latency of modern SSDs can be as low
as a few microseconds [15]. Although SSD controllers have evolved
to adopt multi-core architectures [16], they still cannot compete with
host-side CPUs or GPUs. Furthermore, metadata bookkeeping for ML
should not incur overly high consumption of the on-device RAM, a
scarce resource due to its high cost compared to flash.

We present Prediction-based High-performance FTL (PHFTL), a
practical, holistic FTL design that employs ML for real-time, fine-
grained data separation inside the SSD. The ML model in PHFTL
is a lightweight sequence model. It extracts information from long
historical access patterns of a page using a time series of lifetime
and request-related features. For every written page, the model is
able to accurately predict whether it is short-living or long-living.
The classification criterion is dynamically adjusted at runtime via an
adaptive labeling scheme. To address computation overhead, PHFTL
masks ML computation by taking prediction off the critical path.
This is achieved by interleaving prediction with other internal tasks
and decoupling command completion from prediction. Additionally,
PHFTL caches intermediate computation results (the hidden state)
for each page to take full advantage of a sequence model without
costly recursive computation. For storage overhead, the RAM con-
sumption that arises from ML metadata, including feature extraction
information and the cached hidden state, is resolved with an efficient
flash data layout. The layout design allows PHFTL to keep all ML
metadata in flash and easily fetch them to RAM in batches to build an
on-demand cache for fast retrieval. Together, the proposed techniques
enable real-time prediction inside the SSD while keeping computation
and storage overhead low. To the best of our knowledge, PHFTL
is the first FTL design that successfully incorporates complex ML
algorithm for data separation at the device side.

We compare PHFTL with state-of-the-art data separation schemes
using real-world traces to demonstrate PHFTL’s superiority in re-
ducing WA. To showcase its feasibility, we prototype PHFTL on
Cosmos+ OpenSSD [17], an SSD evaluation platform based on real
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Fig. 1. PHFTL architecture

hardware. Microbenchmark shows that ML incurs almost no runtime
overhead. Furthermore, trace evaluation confirms that lower WA
transforms into substantial gains in steady-state I/O performance.

In summary, this paper makes the following contributions:

(1) We present a holistic FTL design that incorporates device-side
learning-based data separation using an ML model that can accurately
and adaptively identify short-living and long-living pages in real time.

(2) We address ML computation overhead by removing prediction
from the critical path and caching intermediate computation results.

(3) We address ML storage overhead with an efficient flash data
layout that allows all ML metadata to be kept in flash and easily
retrieved to RAM in batches for caching to exploit locality.

(4) We prototype the proposed design and evaluate it against state-
of-the-art schemes to demonstrate its effectiveness in reducing WA
and its feasibility on real hardware.

II. BACKGROUND AND RELATED WORK
A. SSD Preliminaries

Flash-based SSDs are built on arrays of NAND flash dies con-
nected to an embedded controller via multiple channels. Each die
can be accessed independently and is composed of a series of blocks,
which again contain multiple pages. Reads and writes are performed
at page granularity. Pages within a block must be written sequentially,
while written pages can be read in any order. When all pages in
a block have been written, the block must be erased as a whole
before the pages in it can be written again. To hide this idiosyncrasy
from the host and preserve the standard block device interface, the
controller runs a flash translation layer (FTL) to turn all writes into
appends. The FTL tracks the mapping from logical page numbers
(LPNs) to physical page numbers (PPNs) using the L2P table, usually
maintained at page granularity in the on-device RAM for maximum
performance. In modern SSDs, another common technique is to use
superblocks (formed by all blocks with the same die offset) as the
basic management unit [18]. The FTL allocates new pages from
an open superblock in a round-robin fashion across dies to exploit
inter-die parallelism. Full open superblocks are closed and read-only,
awaiting GC.

B. Tackling GC Write Amplification

When the FTL runs out of free pages, GC is triggered to recycle
obsolete pages. During GC, pages in the victim (super)blocks that
contain valid data must be copied elsewhere, which incurs WA.
Higher WA from GC leads to faster device wear out and inter-
ference with host I/Os. Tackling this problem has attracted much
attention from researchers. The key to reducing WA from GC is data
separation, i.e., separating user-written data with different lifetimes
[3]. Assuming the lifetime of a page written by the host is known,
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Fig. 2. Skewed distribution of page lifetime and threshold adjustment process

there exists an optimal data placement scheme that can ensure 0
WA by organizing pages in their invalidation order [4]. However,
this is impractical due to lack of future knowledge. Researchers thus
proposed methods to estimate the lifetime of user-written data for
data separation [4]-[7], [11], [12]. Most prior works are rule-based
approaches based on simple heuristics [4]-[7], such as grouping user-
written pages according to their update frequency or write syscall
context. They have negligible runtime overhead, but can only offer
limited adaptiveness and accuracy. Learning-based data separation
uses ML models to extract patterns from a wide variety of features
for higher lifetime prediction accuracy [11], [12]. However, existing
solutions perform both training and prediction at the host, and the
latter burdens the host storage stack due to its latency-critical nature.
In this work, our goal is to confine ML overhead to the device itself
by enabling real-time lifetime prediction inside the SSD.

III. DESIGN
A. PHFTL overview

Figure 1 shows the overall design of PHFTL. PHFTL uses su-
pervised machine learning to accurately and adaptively predict the
lifetime of pages written by the user to perform data separation. As
depicted in Figure 1, the main components of PHFTL include:

1) The Page Classifier model. When processing a write command
from the host, PHFTL uses the Page Classifier to make a binary
prediction for each logical page touched by the write command to
determine whether it is short-living (overwritten in the near future).
At the input side, the Page Classifier takes a time series of the page’s
historical access statistics as features.

2) The Model Trainer. Since there is no strict real-time requirement
for model training, PHFTL trains the model at the host to take advan-
tage of host computation resources. Specifically, the Model Trainer
profiles user I/Os from the device driver to collect training data used
to train the Page Classifier. The Model Trainer deploys the trained
Page Classifier by transferring model parameters to the SSD. As the
system runs, the Model Trainer continues training data collection
and periodically trains and deploys new model parameters to adapt
to changing workload patterns.

3) NAND flash management. PHFTL manages NAND flash in the
unit of superblocks. Data separation is performed by separating pages
into dedicated superblocks. User-written pages are directed to differ-
ent superblocks based on the prediction result of the Page Classifier
(i.e., whether they are short-living or long-living). GC-written pages
are separated based on the number of times they have been selected
as GC victims. For example, pages that have been GC’ed once and
pages that have been GC’ed twice go to different superblocks, etc.
(Pages GC’ed five times or more go to the same superblock.) This
has the benefit that read-only pages will eventually be grouped into
dedicated superblocks. Within a superblock, user data are stored in
data pages, while meta pages at the tail hold ML metadata.

4) Metadata cache and DMA buffer in RAM. In RAM, PHFTL
maintains a small on-demand cache of ML metadata for fast metadata
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Algorithm 1 The classification threshold adjustment algorithm

/* globals: initialized once */
step <5 /* threshold adjustment step length */
function PICKTHRESHOLD(li fetimes, features, prevT hres)
if prevThres = —1 then
/* for the first window, just use the inflection point */
return GetIn flectionPoint(lifetimes)

p < PercentileO fValue(lifetimes, prevThres)
maxAccu, maxThres < 0
for dir in [—1,0,1] do

t < ValueAtPercentile(lifetimes,p + dir X step)

/* label and resample to a small, balanced training set */

trainFeat, trainLabel < Label AndResample(

features, lifetimes, t)

/* train a lightweight model and evaluate accuracy */

accu < TrainEval Light Model (trainFeat, trainLabel)

if accu > maxAccu then

maxAccu < accu, maxThres <t

/* adjust step */
if no adjustment in previous and current window then

step + + /* avoid getting trapped in local optimal */
else if adjusted in previous, no adjustment in current then

step — — /* try a finer adjustment step */
else if different adjustment direction in previous and current then

step — — /* fluctuation, decrease step */
else if same adjustment direction in previous and current then

step + + /* try to reach optimal faster */
step <— min(abs(step), 10)
return mazThres

retrieval. The RAM also serves as a temporary buffer for user data
transferred from the host via DMA.

In the remainder of this section, we will describe in detail how
the Page Classifier learns and predicts page lifetime (Section 1II-B),
techniques proposed to enable real-time prediction at the device side
(Section III-C), and the GC policy (Section III-D).

B. Learning-based Data Separation

Since PHFTL uses supervised machine learning to predict page
lifetime, the first question that arises is how to label pages according
to their lifetime. In this section, we describe how PHFTL adaptively
labels pages as short-living and long-living, followed by the features
and the structure of the model used to learn the labeled training data.

Adaptive data labeling. On the output side, the Page Classifier is
designed to make a binary prediction for each logical page touched
by a write command. The prediction result indicates whether the
page’s lifetime is lower than a threshold value, which is adaptively
set at runtime (described below). In PHFTL, the lifetime of a logical
page is defined as the number of logical pages written between two
writes to this particular page. This is equivalent to using the global
page write counter as a virtual clock. The effectiveness of this binary
classification approach stems from the observation that page lifetimes
in real-world workloads usually follow a skewed distribution [19],
[20], as in Figure 2(a). This allows us to set aside a group of “short-
living” pages whose lifetimes are significantly shorter than the rest
to take advantage of data separation. Further, compared with multi-
class classification and regression approaches, a binary classification
model requires a smaller model capacity to achieve high accuracy
and is thus more friendly to the resource-constrained SSD.

PHFTL dynamically adjusts the classification threshold for training
data labeling at runtime by sampling page lifetime. The adjustment
process is triggered after each write window, during which the host
writes 5% of the total size of the SSD. In each window, any write
request targeting a page that has been written before in the same
window contributes a lifetime sample. At the end of a window,
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Fig. 3. Structure of the Page Classifier model

PHFTL will have a set of sampled page lifetimes. PHFTL then adjusts
the classification threshold according to Algorithm 1.

The goal of the classification threshold adjustment algorithm is
to dynamically adjust the threshold value toward the direction that
can improve prediction accuracy. For the first window after system
initialization, PHFTL picks a threshold directly by first sorting the
lifetime samples to acquire a set of (L;,4) coordinates, where L;
is the ith sample in the sorted sample array (/N samples in total).
The corresponding sample of the coordinate that has the maximum
distance from the line that connects (L1,1) and (Ly, N) is selected
as the initial threshold. Visually, this is the inflection point of the
lifetime CDF curve (Figure 2(a)). The intuition behind this method
is that the straight line represents a uniform distribution, and the
point at which the distance between it and the real CDF starts to
shrink can represent entrance to a “long tail”. For other windows, as
in Figure 2(b), PHFTL starts by locating the percentile position of
the previous window’s threshold value (prevThres) in the current
window, say p. PHFTL then attempts to adjust the classification
threshold toward the direction that can improve prediction accuracy.
This is done by testing three candidate thresholds at the (p — step)th,
pth and (p + step)th percentile, where step is the adjustment step.
PHFTL labels the training data collected in the current window using
the three candidate values to train three lightweight logistic regression
models. All training sets are resampled to have a balanced class
distribution. The candidate value that delivers the highest accuracy,
mazThres, is picked as the new classification threshold. Finally,
PHFTL refines the adjustment process by lengthening or shortening
the adjustment step.

Feature extraction and model structure. After exploring a wide
variety of machine learning models and input features, we finalized
the Page Classifier to a lightweight sequence model using a time
series of historical access statistics of the predicted page as features
(Figure 3). During our design iterations, the most recently observed
lifetime of a page (prev_lifetime) was found to be the most
useful feature, capable of achieving ~70% accuracy. The accuracy
can be improved by adding information about the current write
request, including request size (io_len) and whether the request is
sequential (is_seq). Locality and workload profile-related features
are also helpful, and such features are captured by recording the
number of recent read/write requests targeting the larger chunk
to which the currently written page belongs (chunk_write and
chunk_read) and the global read/write ratio (rw_rat). Finally,
over 90% accuracy can be obtained by including all historical
information using a time series of the aforementioned features.

As depicted in Figure 3, Page Classifier uses a gated recurrent unit
(GRU), a sequence model capable of processing time series data, to
learn the labeled input features. The GRU model has a single-layer
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Fig. 4. Flash data layout and RAM metadata cache management

hidden state with 32 neurons. The hidden state of the last GRU cell is
pushed through a fully connected layer to produce 2 output neurons.
Finally, argmaz is applied to get the prediction result. For efficient
processing, PHFTL breaks numerical inputs into hexadecimal digits
and each digit represents a neuron. The number of digits used for each
feature is chosen so that most cases can be handled without overflow.
The model is trained for one epoch at the end of each window with
the cross entropy loss function and the Adam optimizer using the
training data collected in the window.

C. Enabling Prediction inside the SSD

To integrate the Page Classifier into the resource-constrained SSD,
we propose a suite of enabling techniques. For computation overhead,
PHFTL removes prediction from the critical path and caches inter-
mediate computation results (the hidden state) to reduce prediction
complexity. For storage overhead, PHFTL maintains ML metadata
(the cached hidden state and feature extraction information) in flash
and only keeps a small on-demand metadata cache in RAM.

Reducing computation cost. In NVMe, the de-facto standard
for high-performance SSDs, the write command (64B) and data
payload (usually in 4KB blocks) are transferred separately, and the
latter is more time-consuming due to larger size. This allows two
optimizations that can mask prediction overhead from the host’s per-
ception: (1) Interleaved prediction. PHFTL leverages the multi-core
architecture of modern SSD controllers and offloads Page Classifier
to a dedicated core. Since all input features are available as soon as
a write command is received, prediction, command processing and
payload transfer can proceed in parallel. This ensures that prediction
does not block other internal tasks. More importantly, prediction
overhead for the current request is hidden by the payload transfer
latency. (2) Decoupled command completion. The prediction result is
only needed when a page is to be written to flash. We thus decouple
command completion and model prediction by allowing a write
command to return successfully once the payload has reached the
DMA buffer in RAM, regardless of whether prediction has finished.
When the page is to be flushed to flash, the prediction result is
collected asynchronously. In Section V, we show that off-critical path
prediction techniques can mask nearly all the prediction overhead.

Further optimization opportunity lies in the computation complex-
ity of the sequence model itself. As shown in Figure 3, the model
recursively performs computation for the (very long) feature sequence
of a page to draw a single prediction. Such computation overhead is
unacceptable for real-time prediction. However, the feature sequences
of a given page at two consecutive writes only differ in the last
time step. Based on this observation, for every page, PHFTL caches
the hidden state of the last GRU cell (H:) after each prediction.
Upon prediction for a page, PHFTL retrieves the cached hidden state.
Together with the new input features as described in Section III-B,
the model can yield the final result in a single step. The computation

complexity of prediction is thus reduced from O(NN) to O(1), where
N is the length of the feature sequence.

Reducing storage cost. In addition to the cached hidden state (32B
for 8-bit quantized model) for each page, PHFTL also needs to record
per-page write timestamp (4B) for lifetime calculation. This leads to
36B of ML metadata for each page. To reduce RAM consumption,
PHFTL stores these metadata in flash and maintains an on-demand
metadata cache in RAM.

As shown in Figure 4, pages at the tail of a superblock are meta
pages and store the ML metadata for each data page in the superblock.
A meta page contains metadata entries for consecutive data pages in
the superblock. Each time the model performs prediction for a logical
page (LPN), its metadata are retrieved by first looking up the PPN
of its corresponding data page in the L2P table. The address of the
desired meta page (MPPN) can be calculated using the offset of the
data page in the superblock. The MPPN is then used to search the
metadata cache in RAM, which is indexed by a red-black tree. If the
MPPN is found in the metadata cache, the requested metadata can be
fetched directly from RAM. In the event of a cache miss, the meta
page is read from flash and then inserted to the metadata cache. Since
consecutive pages in the superblock are also allocated consecutively,
the retrieved metadata entries have intrinsic locality. If the metadata
cache is full, a slot is emptied first following the LRU policy. The
size of the metadata cache is set to 1% of the number of meta pages
in the SSD. This cuts metadata RAM consumption to 0.36 bytes per
page. Besides the meta pages, each data page also keeps a copy of
its metadata in the per-page OOB area so that during GC there is no
need to read the meta pages for metadata migration.

D. Garbage Collection

In PHFTL, GC is performed in the unit of superblocks. After each
write request, if the proportion of free superblocks is lower than 5%, a
victim superblock will be selected for GC. During GC, the superblock
with the highest score computed using the Adjusted Greedy policy is
selected as the victim:

I . ..
——= for superblocks with short-living pages

score = { VT (€))]
I for all other superblocks

where I and V' are the proportion of invalid and valid pages in the
superblock, 7" is the classification threshold, and C' is the elapsed
time (number of pages written) since the superblock was closed.

The rationale of the Adjusted Greedy policy is similar to the Cost-
Benefit policy [21] in that it gives lower priority to hot pages during
GC. The more important purpose of it is to remedy wrong predictions.
Specifically, the denominator in Equation 1 applies a discount to the
final score of short-living (hot) pages. When there are more valid
pages, the discount factor should be higher since the hidden cost of
migrated pages soon turning invalid is greater, hence the term V. The
term % (T at the numerator for normalization) is added so that for
two superblocks with the same number of invalid pages, the one that
was closed earlier has a lower discount factor. This is because the
model may make mistakes, and pages that are left valid for longer are
more likely to have been mistakenly predicted as short-living. Such
“false” short-living pages should be favored over “true” short-living
pages during GC to remedy wrong predictions.

IV. IMPLEMENTATION

We prototype PHFTL with two implementations on different
evaluation platforms: PHFTL-emu and PHFTL-hw. PHFTL-emu is
implemented on FEMU [22], a QEMU-based SSD emulator. The
flexibility of FEMU allows us to align SSD configurations (page size,
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TABLE I
PAGE CLASSIFIER PERFORMANCE ON ALIBABA CLOUD TRACES

Trace ID #52 #58 #107  #141  #144  #178  #225 #1717  #202  #316  #721  #748 #38 #126  #132  #223  #228  #277 #3260  #679  Average
Accuracy 0.894 0.826 0.852 0.898 0.844 0.879 0814 0972 0969 0957 0937 0.832 0.874 0863 0.907 0951 0979 0971 0987 0.968 0.909
Precision 0933 0.837 0869 0937 0.872 0909 0.823 0.824 0980 0984 0.772 0.897 0213 0.792 0931 0967 0.892 0969 0.672 0.606 0.834
Recall 0938 0932 0944 0940 0925 0.942 0934 0944 0988 0972 0897 0907 0.664 0.675 0.969 0979 0972 0987 0.965 0.947 0.921
F1 0935 0.882 0905 0.938 0898 0.925 0875 0.880 0984 0978 0.830 0902 0323 0.729 0950 0973 0930 0978 0.792 0.739 0.867

number of channels, etc.) to different traces with ease. However, since
FEMU emulates the FTL with a dedicated thread on the host CPU,
PHFTL-emu cannot capture the ML computation overhead on a weak
SSD controller. We therefore only use PHFTL-emu to evaluate the
capability of PHFTL in reducing WA.

PHFTL-hw is implemented on Cosmos+ OpenSSD (the OpenSSD)
[17], an SSD evaluation platform based on real hardware. The
OpenSSD features a Xilinx Zynq 7000 SoC, 1GB DRAM and
~500GB NAND flash. It communicates with the host using standard
NVMe. The SoC consists of a hard-wired dual-core ARM Cortex-
A9 processor and a programmable FPGA. The ARM processor
serves as the controller and runs the FTL, where we add PHFTL
components. We use one core to run the Page Classifier and the
other to handle all other tasks. We accelerate ML computation using
SIMD instructions [23], which are also available in the newest high-
end storage controllers [24]. All model parameters are quantized to
8-bit integers at a loss of accuracy in less than 1%. After careful
tuning and optimization, the overhead of a single prediction is brought
down to around 9us, which is enough to enable real-time prediction.
Nevertheless, even faster prediction can be achieved by using a more
powerful embedded processor or a specialized hardware accelerator.

The development of PHFTL-emu and PHFTL-hw took ~1500 LoC
and ~6000 LoC, respectively.

V. EVALUATION

This section presents evaluation results of PHFTL and baseline
systems. When conducting the evaluation, we seek to answer the
following research questions:

« RQ1. How does PHFTL perform in terms of write amplification
reduction compared with state-of-the-art schemes?

+ RQ2. Can the Page Classifier accurately predict page lifetime
in real-world workloads?

o RQ3. Is the overhead of performing machine learning compu-
tation at runtime acceptable?

« RQ4. How well does the reduction in GC write amplification
translate into tangible gains in latency and bandwidth?

A. Evaluation Setup

Dataset. We use the block trace dataset from Alibaba Cloud [19] to
perform the experiments. The dataset contains 1-month block traces
of 1000 drives randomly sampled from a production cluster. Because
testing WA from GC requires the write size to be sufficiently large,
we select all drives that sustained more than 20 drive writes (i.e.,
20x the drive size) during the trace period and use the first 20 drive
writes in the traces for evaluation. 20 drives out of 1000 meet this
requirement, and their sizes range from 40GB to 500GB.

Methodology. We evaluate the two prototype implementations
of PHFTL (Section IV) for different purposes. To answer RQI,
we implement SepBIT [4] and 2R [5], two state-of-the-art device-
side data separation schemes, on FEMU and evaluate PHFTL-emu
against them. We also evaluate FEMU’s original FTL (Base), which
performs no data separation. For baselines that did not specify a
victim selection policy, Cost-Benefit [21] is used. We run the traces on
FEMU and report the resulting WA. To answer RQ2, we preprocess
the traces to annotate the real lifetime of each page. This allows us
to evaluate the accuracy of the Page Classifier at runtime. To answer
RQ3 and RQ4, we run microbenchmark as well as the Alibaba Cloud
traces on the OpenSSD running PHFTL-hw and the stock FTL. I/O
latency and bandwidth during the process are reported.

Configurations. We use a server with two Intel Xeon Gold
6240M CPUs and 1.5TB memory (Intel Optane Persistent Memory
in memory mode; DRAM size is 192GB) as the host system. The
page size of all emulated SSDs and the OpenSSD is 16KB. Over-
provision rate is set to 7%. 32 worker threads are launched for trace
replay, which is enough to saturate device bandwidth.

B. Write Amplification

Figure 5 shows the WA of the tested traces under different data
separation schemes. WA is calculated as (F' — U)/U, where F and
U are flash write size and user write size, respectively. On average,
PHFTL reduces the overall WA by 65.1% compared with Base and
22.8%-54.6% compared with rule-based schemes. In Base, pages with
different lifetimes are mixed in the same block. During GC, long-
living pages remain valid and must be copied elsewhere, leading
to high WA. 2R only separates GC writes from user writes based
on the heuristic that valid pages during GC are long-living. SepBIT
classifies user-written pages according to their inferred lifetime, but
simply assumes that the lifetime of a newly written page is equal
to its previous lifetime. Such simple heuristics fail to deliver high
separation accuracy and only have limited effectiveness in reducing
WA. By contrast, PHFTL improves accuracy and adaptiveness using
ML, allowing it to achieve the lowest overall WA. When running
the traces, we also notice that the small metadata cache in RAM
can serve 98.2%-99.9% ML metadata retrievals. This is because ML
metadata are fetched from flash in batches with intrinsic temporal
and spatial locality, allowing one meta page read to serve many
subsequent metadata retrievals.

We therefore have the answer to RQ1: On real-world traces,
PHFTL can achieve significantly lower WA compared with conven-
tional FTLs and state-of-the-art data separation schemes.

C. Page Classifier Performance

Table I presents the performance metrics of Page Classifier on the
tested traces. As shown in Table I, the model can deliver 81.4%-
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98.7% accuracy (90.9% on average). F1 score (the harmonic average
of precision and recall) ranged from 21.3% to 98.3% (86.7% on
average), with trace #38 being the only one below 70%, which does
not exhibit high WA in the first place. We find that the model’s
ability to learn page lifetime from prolonged historical patterns is of
great help: When we truncate the length of the feature sequence to
1, prediction accuracy drops by up to 9.2% (4.0% on average). The
ability of the Page Classifier to accurately predict page lifetime is a
key factor in the effectiveness of data separation in PHFTL.

As such, we are able to answer RQ2: The Page Classifier can
accurately identify short-living and long-living pages in real-world
workloads.

D. Feasibility and Performance on Cosmos+ OpenSSD

Overhead analysis. Training the model for one epoch takes less
than one second, which is negligible compared to the duration of a
window in real-world workloads (minutes to hours), and CPU usage
is at most 15% on our testbed. To analyze prediction overhead, we
use fio to issue write requests of different sizes. Figure 6 presents
the average latency (error bars are standard deviation). Only write is
tested because reads do not trigger prediction. Write offset is capped
to 16MB, the size of the RAM data buffer on the OpenSSD, so that
no data are written to flash. This setting allows us to stress the FTL
to the extreme for otherwise flash latency will be the bottleneck.

In PHFTL-hw (sync), prediction is placed on the critical path
by using only one core to perform prediction and other internal
tasks. In this case, latencies increase dramatically, by 139.7% on
average. When we take prediction off the critical path (PHFTL-hw),
average latency returns to normal and is almost the same as the stock
FTL. This confirms the effectiveness of off-critical path prediction
techniques. Latency standard deviation is higher in PHFTL-hw than
in stock because of occasional synchronization between the two cores
and more cache line misses due to sharing.

At this point, we can answer RQ3: Almost no visible overhead is
incurred by ML at runtime.

Real-world traces. We further evaluate the performance of
PHFTL-hw on the Alibaba Cloud traces (Figure 7). The OpenSSD
has ~500GB flash. We therefore test the most representative traces
backed by S00GB drives. Trace #144 with the highest WA and trace
#52 with the lowest WA are picked since a trace with high WA
allows us to analyze the performance gains from lower GC overhead,
whereas a trace with low WA reveals the impact of ML overhead
on performance. We do not test all the baselines and traces due to
device endurance concerns. We break the trace replay into 2 phases.
In phase 1, we stress load the trace data (except the last hour) and
report bandwidth. In phase 2, we follow the timestamps in the trace
and replay the last-hour trace data to measure latency.

As shown in Figure 7, PHFTL-hw has slightly lower bandwidth
during the first 3 drive writes in phase 1. After the 4th drive write,
WA reduction starts to take effect (even for #52 with low WA),
and the bandwidth of PHFTL-hw surpasses that of the stock FTL.
As more data are written and the drive enters steady state, the gap
widens. During the last drive write, PHFTL-hw delivers 12.1% and
61.6% higher bandwidth on #52 and #144, respectively. In phase
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2, PHFTL-hw and the stock FTL have almost the same latency
distribution (within 5% discrepancy) at low percentiles on both #52
and #144. However, thanks to lower GC overhead, tail latencies are
significantly lower in PHFTL-hw, which contributes to a 16.2% and
53.0% reduction in average latency on #52 and #144, respectively.
Hence, the answer to RQ4 is clear: The reduction in GC write
amplification contributes to substantial improvement in steady-state
bandwidth and latency, despite extra machine learning overhead.

VI. CONCLUSION

In this paper, we present PHFTL. PHFTL successfully incorporates
ML for real-time and fine-grained data separation inside the SSD.
The ML model in PHFTL can accurately and adaptively identify
short-living and long-living pages. A set of enabling techniques are
proposed to integrate the model into the SSD while keeping computa-
tion and storage overhead low. Evaluation against state-of-the-art data
separation schemes shows that PHFTL can achieve significantly lower
WA. Further evaluation on real hardware demonstrates that PHFTL
is a practical design and can improve steady-state I/O performance.
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