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Abstract—Emerging die-stacked memories can provide higher band-
width than traditional off-chip DRAM and serve as an off-chip DRAM
cache or part of OS-visible memory (POM). This paper presents
Bumblebee, a new hybrid memory architecture combining the advantages
of both DRAM cache and POM. The ratio of DRAM cache to POM is
adjustable in real time to better exploit both temporal and spatial locality
benefits for different memory access patterns. Our evaluations indicate at
least 35.2% performance improvement and 10.9% ~20.1% less memory
dynamic energy consumption for Bumblebee over state-of-the-art designs,
as well as orders of magnitude less metadata storage space.

Index Terms—Heterogeneous memory, Die-stacked high-bandwidth
memory, Caching and migration

I. INTRODUCTION

Many modern big-data applications have vast datasets that dwarf
capacity-limited SRAM caches, resulting in excessive cache miss re-
quests and severe bandwidth pressure to off-chip DRAM modules [4].
Consequently, the memory bandwidth becomes the bottleneck for
these applications. Die-stacked or on-die memories (e.g., HBM [1],
HMC [3]) have been proposed to offer substantially higher band-
width and better energy efficiency than traditional off-chip DRAM.
These high-bandwidth memories (abbreviated as HBM) have limited
capacity and are often complemented with a larger off-chip DRAM.

Recent works have employed HBM as an off-chip DRAM
cache [11]-[15], part of OS-visible memory (POM) [6]-[10], and
both DRAM cache and POM (hybrid mode) [17], [18]. DRAM cache
designs react fast to hotness changes by fetching all requested data,
but take the HBM capacity away from the memory system and have
a bad performance for workloads with weak temporal locality. POM
designs enhance the OS-visible memory capacity and bandwidth
efficiency, but make the migration decision slower since only data
with potential for future reuse is migrated. Hybrid mode designs aim
to combine the advantages of both DRAM cache and POM.

Unfortunately, existing hybrid mode designs [17], [18] suffer from
three limitations: (1) Incapability of supporting an adjustable ratio
of DRAM cache to POM during runtime. Fixed DRAM cache
and POM capacity lack the flexibility to match different memory
access patterns. (2) Unnecessary migration overhead for mode switch
between DRAM cache and POM stemming from the separate DRAM
cache and POM space. For example, for evicting a page from DRAM
cache to POM, a victim page in POM is swapped out to off-chip
DRAM, and then cached for the subsequent access, which brings
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unnecessary migration cost. (3) Large metadata management and
access overheads. Their space-inefficient metadata structures such
as pointers to index pages and tags to manage DRAM cache lines
consume large storage space. Besides, they employ small metadata
management granularity to reduce over-fetching. Not only is the
metadata size too large to be accommodated in on-chip SRAM, but
also the potential spatial locality benefit is not fully exploited.

In this paper, we propose a new hybrid memory architecture named
Bumblebee to preserve the advantages of both DRAM cache and
POM while overcoming the above three limitations. All HBM can
be utilized as DRAM cache (cHBM) or OS-visible POM (mHBM).
HBM can be dynamically switched between cHBM and mHBM over
time to better exploit both temporal and spatial locality benefits for
different memory access patterns. cHBM can be compelled to become
mHBM for high memory footprint condition to maximize the total
system memory capacity and reduce page faults. Caching and mi-
gration decisions are made based on workloads’ temporal and spatial
locality features as well as the system memory footprint. Bumblebee
employs a unified set-associative mechanism for PRT (Page Location
Entry Remapping Table) to track page migration and BLE (Block
Location Entry) array to record blocks’ information in an HBM page
for evaluating the spatial locality. A hot table is designed to track data
hotness changes and provide the temporal locality information. To
minimize the migration cost between cHBM and mHBM, all cHBM
and mHBM space are not separate but multiplexed to enable the mode
switch process to move only necessary data. To limit the metadata
storage space, space-efficient metadata structures and suitable cHBM
and mHBM management granularity are employed. The over-fetching
risk is lowered by providing more cHBM capacity for workloads
with weak spatial locality to reduce the eviction frequency, extending
pages’ residency in mHBM, and preventing data with a low access
frequency into HBM. This paper makes the following contributions:

e We present Bumblebee, a new hybrid memory architecture in
which HBM may serve as both cHBM and mHBM. The ratio of
cHBM to mHBM is adjustable in real time to better exploit both
temporal and spatial locality benefits for different memory access
patterns, without rebooting.

e All cHBM and mHBM space in Bumblebee are not separate but
multiplexed, which minimizes the data movement overhead for mode
switch between cHBM and mHBM.

e Bumblebee greatly reduces the storage space for metadata by
1~2 orders of magnitude through employing space-efficient metadata
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Fig. 1. Percentage of cache lines with different access numbers before eviction
in 1GB cHBM. N represents the average access number for each 64B data in
different sizes of cache lines.

structures and appropriate migration and caching granularity with a
low over-fetching risk.

e In our evaluations, Bumblebee outperforms state-of-the-art de-
signs by at least 35.2%, incurs 17.9% less HBM traffic and 9.1%
less off-chip DRAM traffic than the best respectively, and consumes
10.9%~20.1% less memory dynamic energy.

II. BACKGROUND AND MOTIVATION

In order to break the memory bandwidth wall, many designs have
been proposed to combine HBM with traditional off-chip DRAM in
hybrid memory systems [5]—[18]. State-of-the-art designs leverage the
on-chip HBM as an off-chip DRAM cache (¢cHBM), POM (mHBM),
and both DRAM cache and POM (hybrid mode).

A. Three types of HBM utilization

HBM used as cHBM: A large body of works have utilized HBM
as cHBM between the last level cache (LLC) and off-chip DRAM.
They can be divided into two classes: block-based [11]-[13] and
page-based [14]-[16]. To enhance the caching capacity and better
exploit the temporal locality, common block-based cHBM manages
data at 64B cache line granularity. Unfortunately, tags may occupy
12.5% of the HBM capacity [12]. Besides, block-based cHBM
has a poor hit rate for workloads with weak temporal and strong
spatial locality [13]. Page-based cHBM reduces the tag overhead by
caching 1~8KB pages. However, many pages contain data that is
not accessed prior to the page’s eviction from the cHBM, wasting
memory bandwidth [14]. In general, small cache lines better exploit
the cache but have higher tag overhead. Large cache lines reduce the
tag overhead but may cause over-fetching.

HBM used as mHBM: Contrary to cHBM designs, mHBM designs
make all HBM capacity visible to OS and have the potential to utilize
the bandwidth of all memories for serving memory requests. As a
result, they can potentially reap the benefits of both higher aggregate
bandwidth and capacity. However, the high remapping overhead [5]—
[7] and over-fetching issue caused by coarse migration granularity
[8]-[10] still plague modern mHBM designs.

HBM in hybrid mode: Some researches aim to combine the
advantages of both cHBM and mHBM, and they show that hybrid
mode could gain more performance benefits than single mode.
State-of-the-art hybrid mode designs adopt statically reconfigurable
mechanisms to manage the two modes. In particular, KNL [18]
supports 25% or 50% HBM as cHBM and Hybrid2 [17] fixes a
small cHBM capacity of 64MB or 128MB. The other HBM is used
as mHBM. Both of them require a system reboot to switch from
one hybrid configuration to another. They employ small metadata
granularity for HBM management and these metadata cannot be
totally accommodated in SRAM. Hundreds of kilobytes SRAM is
used as a metadata cache to place those hot pages’ information.

B. Motivation

As described before, state-of-the-art hybrid mode designs fix the
cHBM and mHBM capacity, which cannot always meet the memory
requirements for different memory access patterns. Figure 1 shows
the memory access patterns of three representative SPEC2017 [20]
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Fig. 2. System overview.

workloads’ slices selected by Simpoint [19] as an example: we
collect the average access number for each 64B data in different
sizes of cache lines before eviction in 1GB cHBM. For the slice
of mcf (strong spatial and strong temporal locality), both the large
and small cache lines achieve a high access number. To reduce the
high tag overhead and better leverage the spatial locality and memory
bandwidth, most HBM is preferable to be used as mHBM with large
management granularity without causing over-fetching. For the slice
of wrf (weak spatial and strong temporal locality), with the cache
line size increasing, the number of hot cache lines decreases, which
means large cache lines may bring over-fetching. Thus, a small part
of HBM is better to serve as mHBM to store those large hot data
while the other HBM is recommended to be utilized as cHBM with
small management granularity. For the slice of xz (strong spatial and
weak temporal locality), most data is rarely accessed and hard to
benefit from caching. A large amount of data movement may generate
significant bandwidth cost and frequent hot data evictions. Thus, most
HBM is favored as mHBM with large management granularity for
better bandwidth efficiency and spatial locality, with a non-aggressive
migration scheme. To sum up, for different kinds of workloads, a
fixed cHBM capacity cannot fully exploit the temporal and spatial
locality and utilize all the memory bandwidth. Worse still, they may
cause over-fetching and bring unnecessary data movement cost. The
ratio of cHBM to mHBM should be dynamically adjustable over time.

In addition, the statically reconfigurable designs consume more
bandwidth for data movement between cHBM and mHBM due to the
separate cHBM and mHBM space. For example, for evicting a page
from cHBM to mHBM, another mHBM page as a victim is swapped
out to off-chip DRAM, and then cached for the subsequent access,
which brings extra unnecessary migration costs. Thus, the space of
cHBM and mHBM need to be multiplexed in order to minimize the
data movement overhead for switching the two modes.

Besides, the metadata access latency (MAL) on the critical path in
modern hybrid mode designs cannot be ignored. They employ small
caching and migration granularity to lower the over-fetching risk. Not
only is the potential spatial locality not fully exploited, but also the
metadata storage space can reach tens of megabytes, which cannot be
accommodated in on-chip SRAM and takes large HBM capacity away
from the memory system. Their space-inefficient metadata structures
such as pointers to index pages and tags to manage DRAM cache
lines consume large storage space as well. We calculate the MAL in
HBM and find that it accounts for 2% ~ 26% of the total memory
request latency for workloads in section IV. As a result, the metadata
size should be minimized as small as possible.

III. BUMBLEBEE ARCHITECTURE

Bumblebee is a hybrid memory architecture in which HBM can
be used as either cHBM or mHBM. Data can be fetched from oft-
chip DRAM to cHBM in block size, and migrated in page size
between off-chip DRAM and mHBM. The ratio of cHBM to mHBM
is adjustable in real time to match different memory access patterns.

A. Bumblebee system overview

Figure 2 presents the overall architecture of our system. A Hybrid
Memory Management Controller (HMMC) is added between the
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Fig. 3. An example of the unified set-associative mechanism for caching and
migration. The data movement indicated by arrows in (b) corresponds to the
values of PRT and BLE array in (a).

shared LLC and the memory layer to facilitate the migration along
with the DRAM cache functionality. Metadata in HMMC consists of
three components: the PRT (PLE (Page Location Entry) remapping
table), the BLE (Block Location Entry) array, and the hotness tracker.
For each LLC miss memory request, the PRT is responsible for
querying the actual location of a page, either in off-chip DRAM or
mHBM. The BLE array records the information of blocks in HBM
pages to manage cHBM and provides the spatial locality information.
The hotness tracker keeps track of the most recently visited hot
pages to provide the temporal locality information and monitors the
memory footprint, determining the migration and caching logic in
Bumblebee. The metadata is only a few hundred kilobytes in size and
can be entirely placed in on-chip SRAM (described in section IV-B).
Similar to previous works, the data movement module moves data
asynchronously and ensures that those data being moved can be
fetched by memory access requests. By using the HMMC, HBM
is logically, not physically, partitioned between cHBM and mHBM.

For high memory footprint condition, in order to provide more OS-
visible memory, part of cHBM may be compelled to become mHBM,
but the remaining HBM can still serve as cHBM. For low memory
footprint condition, since the data migration granularity of mHBM
(page size) is larger than the fetching granularity of cHBM (block
size), data with strong spatial locality is preferred to be placed into
mHBM, which can ensure the hit rate of HBM, better utilize all the
memory bandwidth, and decrease the metadata query overhead for
blocks. cHBM is better suited to pages with weak spatial locality and
only hot blocks need to be cached to reduce over-fetching. In this
way, the whole HBM not only is visible as a flat address space for
OS, but also can flexibly serve as cHBM or mHBM most of the time
to match different workloads’ memory access patterns.

B. Memory space layout and metadata

Since cHBM can be flexibly switched to mHBM and the metadata
does not take up any memory space, all the off-chip DRAM and HBM
are visible as a flat address space for OS, as shown in Figure 2. The
space of cHBM and mHBM in Bumblebee are multiplexed. That
means any HBM space can serve as either cHBM or mHBM, and
the mode switch (in section III-E) between cHBM and mHBM only
modifies the metadata and requires moving necessary blocks.

For metadata management, direct remapping has a bad perfor-
mance [23] due to the poor flexibility, uneven HBM utilization and
frequent page swaps. Besides, the hardware query overhead for a
fully-associative remapping table is unacceptable on chip. Therefore,
for a balance between the hardware overhead and performance,
Bumblebee adopts a unified set-associative mechanism to manage
metadata both for caching and migration, as Figure 3 illustrates. An
off-chip DRAM page is only allowed to be cached or migrated to
another HBM page location in the same set. Since the metadata query
is on the critical path and large quantities of memory accesses may
degrade the performance, all metadata, including the PRT, the BLE
array, and the hotness tracker, are stored in on-chip SRAM.

Off-chip DRAM pages
popped out ™ Paged;
counter

Off-chip DRAM pages pushed in
Paged, <  Pageh
counter HBM pages popped out___counter

HBM pages
Page h; pushed in

—
counter

Hot table queue for off-chip DRAM pages

Fig. 4. The hot table in a remapping set.

Hot table queue for HBM pages

PLE remapping table (PRT). The set-associative PRT holds the
new PLEs and the Occup bits in each set, as Figure 3(a) shows. Each
set includes m off-chip DRAM pages and n HBM pages. The PLE
(Page Location Entry) refers to the original page index (i.e., offset
from the first page in this set) in the remapping set, decided by the
OS memory allocator and the virtual to physical address mapping
mechanism in OS. The new PLE combines the functions of page
address remapping (the remapped page index) and page allocation
(-1: the page has not been allocated). For example, the blue arrow in
Figure 3(b) indicates a swap between the ith and jth pages, recorded
by the corresponding ith and jth new PLEs. One PLE requires less
storage space ([log, (m + n)] bits) than a traditional tag or pointer
(a few bytes). The Occup bit indicates if the memory page space has
been occupied, queried by the page allocation process.

Block Location Entry (BLE) array. One BLE contains a PLE, a
valid bit vector, and a dirty bit vector as Figure 3(a) shows. For a
cHBM page, the corresponding BLE indicates if an off-chip DRAM
page is cached in it and if the blocks in the page are valid and dirty.
For an mHBM page, the valid bit vector records all accessed blocks
in the page for evaluating the spatial locality.

Hotness tracker. In each remapping set, the hotness tracker includes a
hot table and five parameters: the HBM occupied ratio (1), a hotness
threshold (7') to decide if an off-chip DRAM page should be brought
in HBM for high R} condition, the number of cHBM pages (N.),
and the number of mHBM pages in which most blocks have/have not
been accessed (INo/Ny,). To reduce the metadata storage overhead and
get the temporal locality information, the hot table only monitors the
hottest pages, including all HBM pages and the recently accessed
off-chip DRAM pages. The hot table includes two queues with LRU
replacement strategy, one for HBM pages and the other for off-chip
DRAM pages, as shown in Figure 4. Each entry in the queue serves
as a counter to record the access number for a page before popped
out from the queue. The popped-out HBM page entries are pushed
back into the off-chip DRAM queue and incur page evictions from
HBM to off-chip DRAM. The five parameters are used for making
data movement decision and detailed in section III-E.

C. Memory access flow

Figure 5 illustrates the memory access flow. The PRT miss (D)
indicates that the requested page has never been allocated and needs
to be assigned an address in PRT. After that, the memory request is
sent to the allocated memory address. In the case of a PRT hit (@),
the target page may reside in mHBM @) or off-chip DRAM (®).
For (), the memory request goes to mHBM and for (4, HMMC
checks the BLE array if the page is cached in cHBM. If the page is
not cached (()), the memory request directly goes to off-chip DRAM
and if the page is cached (&), HMMC further checks if the target
block is cached as well. For block cached ((7)), the requested data is
in cHBM and for block not cached (), the memory request goes
to off-chip DRAM. All memory accesses update the corresponding
metadata and may incur data movement asynchronously.

D. Page allocation process

Few previous studies discuss the page allocation process. However,
simply allocating all pages to off-chip DRAM or HBM by the OS
memory allocator could not fully exploit all benefits of the hybrid
mode design. A suitable page allocation mechanism could reduce
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the migration cost for hot pages migrated from off-chip DRAM to
HBM and cold pages evicted from HBM. For a PRT lookup miss, the
requested page should be assigned an address in PRT. Since the PRT
records the remapping information for all pages in both HBM and
off-chip DRAM, the page to be allocated could be remapped to any
free memory space. Based on the observation that adjacent allocation
requests intend to have similar memory access patterns [24], we
propose a hotness-based remapping allocation mechanism. If the
recently allocated pages still reside in the hot table queue for HBM
pages and there is free HBM space available, the page is allocated in
HBM. Otherwise, the page should be allocated in off-chip DRAM.

E. Data movement decision

In this section, Bumblebee makes the data movement decision
based on the temporal and spatial locality features of different
memory access patterns and the system memory footprint to support
flexible cHBM and mHBM capacity, lower the over-fetching risk,
maximize the OS-visible memory capacity, and remove the eviction
latency of cHBM pages from the critical path in the case of memory
shortage. Memory accesses bring changes to the hotness tracker and
as a result, incur data movement. Besides, for high memory footprint,
data movement is triggered to meet OS memory requirements.

For spatial locality, the BLE array tracks the accessed blocks
in both cHBM and mHBM pages. If most blocks in a page have
been fetched into cHBM, that means the page has a strong spatial
locality and should be switched to an mHBM page. More requested
off-chip pages should be migrated to mHBM if most HBM pages
have strong spatial locality. mHBM pages are switched from cHBM
pages (most blocks in the page have been accessed) or migrated
from off-chip DRAM (not sure if most blocks in the page have
been accessed). Thus, mHBM pages with a high access ratio reflect
a strong spatial locality degree while those with a low access ratio
and the remaining cHBM pages reflect a weak spatial locality degree.
The spatial locality degree (SL) in a remapping set is evaluated by:

SL:Na_Nn_Nc (1)

For SL>0 (strong spatial locality), more hot data should be brought
in mHBM to better exploit the spatial locality and utilize the memory
bandwidth. For SL < 0 (weak spatial locality), hot data should be
cached in cHBM to reduce over-fetching.

For temporal locality, Bumblebee uses the hot table to track hot and
recently accessed pages. It is hard to benefit from bringing data with
low access frequency into HBM, which wastes memory bandwidth
and may cause frequent hot page evictions for high HBM footprint
condition, resulting in performance degradation. The threshold 7" in
the hotness tracker can alleviate this issue. If Ry, is high, for SL>0,
only pages whose hotness value is larger than 7" are permitted to
be migrated to mHBM and for SL < 0, only blocks in a page
whose hotness value is larger than 7" are permitted to be cached in
cHBM. In this way, for weak temporal locality workloads, a large
amount of data with low access frequency is not brought into HBM,

which reduces the data movement overhead and eviction frequency
of hot pages, and better utilizes the off-chip DRAM bandwidth. For
strong temporal locality workloads, despite some hot data that may
benefit from caching and migration not brought in HBM, the eviction
frequency of those hottest pages is reduced to make them serve more
memory requests before eviction. The off-chip DRAM bandwidth is
better utilized and the data movement overhead is reduced as well.

Based on the above analysis to better exploit both temporal and

spatial locality benefits for different memory access patterns, the data
movement triggered by memory access is shown as follows.
Data movement triggered by memory access. (1) For accessing an
off-chip DRAM page, if SL>0 with a low R}, the page is migrated
to mHBM due to the strong spatial locality. If SL>0 with a high
Rp, the page is migrated to mHBM only if its hotness value is larger
than 7. If SL < 0 with a low Ry, the page is cached to cHBM and
only the requested block is fetched. If SL < 0 with a high Ry, the
page is cached to cHBM only if its hotness value is larger than 7'. (2)
For accessing a cHBM cached page, if the target block is not cached
in cHBM, Bumblebee caches the block. If most blocks in the page
have been cached, the cHBM page turns into an mHBM page. Only
blocks not cached are fetched from off-chip DRAM, minimizing the
data movement overhead for mode switch. (3) Accessing an mHBM
page does not incur data movement.

Data movement triggered by high memory footprint to provide

more free HBM space, evict zombie pages in HBM, and remove the
eviction latency of cHBM pages from the critical path in the case of
memory shortage is detailed below.
Data movement triggered by high memory footprint. (1) If a
cHBM page entry is popped out from the hot table queue for HBM
pages, the corresponding cHBM page is evicted to off-chip DRAM.
(2) Since evicting an mHBM page to off-chip DRAM consumes much
higher bandwidth (at least 2x) than a cHBM page, mHBM pages to be
evicted have one more chance to reside in HBM. The mHBM page to
be evicted is switched to cHBM mode without data migrated to off-
chip DRAM and all blocks in the page are marked as dirty. The mode
switch from mHBM to cHBM is designed as a buffering mechanism
for increasing colder pages in mHBM to reduce the migration cost
resulting from hotness fluctuations and extend the residency in HBM
to serve more memory requests. There is no data movement cost for
mHBM switched to cHBM due to our multiplexed space design. In
this way, if these pages then become hotter, no data movement is
required. (3) For high Ry, in case of both the head page in the hot
table queue for HBM pages and its counter value remain unchanged
over a long time, the page (zombie page) should be evicted to oft-
chip DRAM since there is no other page able to evict the zombie
page from HBM. (4) If all memory in the set is used by OS, that
means all the HBM in this set serves as mHBM. The five parameters
are reused to track the hottest pages in off-chip DRAM and the
coldest pages in HBM for swap. (5) If the system memory footprint
is high in general (i.e., the address in LLC miss memory request
packet is larger than the off-chip DRAM capacity), cHBM pages in
multiple remapping sets are flushed to off-chip DRAM. This batching
mechanism provides more OS-visible memory to reduce page faults.
For pages to be allocated in these sets later, there is no need to wait
for the eviction from cHBM to make free page space, which removes
the eviction latency from the critical path. In these sets, all HBM will
not be used as cHBM until the OS memory footprint drops.

To sum up, the migration and caching mechanism in Bumblebee
could address the limitations of state-of-the-art hybrid mode designs
for different kinds of workloads in Figure 1. For workloads with
strong spatial and strong temporal locality, most HBM is used as
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Table 1. System configuration.

Core ARM A72(AArch64), 3600MHz
IL1/DL1 cache | private 64 KB per core, 4-way, LRU
L2 Cache private 256 KB per core, 8-way, SRRIP
L3 Cache shared 8 MB, 16-way, DRRIP
1 GB, 8 128-bit channels, 512B interleaved,
HBM2 [1] 8 banks, tCAS-tRCD-tRP: 7-7-7, VDD:1.2,
IDDO0:65, IDD2P/N:28/40, IDD3P/N:40/55,
IDD4W/R:500/390, IDD5/6:250/31
10 GB, 2 64-bit channels, 8 banks,
Off-chip tCAS-tRCD-tRP: 22-22-22, VDD:1.2,
DDR4_3200 [2] | IDDO0:52, IDD2P/N:25/37, IDD3P/N:38/47,
IDD4W/R:130/143, IDD5/6:250/30

Table II. Benchmark characteristics (MPKI: LLC Misses per Kilo

Instructions).
Benchmark | MPKI | Footprint(GB)
roms 31.9 10.6
. Tbm 31.4 5.1
High MPKI bwaves 20.4 7.5
wrf 18.5 2.7
xalancbmk 16.9 0.6
. mcf 16.1 0.2
Medium MPKI camd 3% 108
cactuBSSN 12.2 2.9
fotonik3d 2.0 0.2
x264 0.9 1.9
nab 0.8 0.9
Low MPKI namd 05 19
XZ 0.4 7.2
leela 0.1 0.1

mHBM for better spatial locality and memory bandwidth efficiency
without over-fetching. For workloads with strong spatial and weak
temporal locality, most HBM is used as mHBM with a non-aggressive
migration scheme to better utilize all the memory bandwidth and
exploit spatial locality benefits. Data with a low access frequency does
not bring significant memory bandwidth waste and frequent evictions.
For workloads with weak spatial and strong temporal locality, most
HBM is used as cHBM to better exploit the temporal locality benefit
and reduce over-fetching. Compared to the fixed cHBM capacity in
existing hybrid mode designs, more cHBM capacity contributes to
a lower eviction frequency for data in cHBM. For workloads with
weak spatial and weak temporal locality, few data are moved.

IV. EVALUATION
A. Experimental setup

Table I gives our system configurations. We use the gemS5 sim-
ulator [21] and DRAMSim2 [22] to model Bumblebee, compared
against the latest hybrid mode design: Hybrid2 [17], POM design:
Chameleon [5] and three cache designs: Banshee [16], Alloy Cache
(AC) [12] and Unison Cache (UC) [15]. We allow 512KB SRAM to
store metadata for all designs for a fair comparison. The configura-
tions for Bumblebee are shown as follows. Both cHBM and mHBM
are managed with 8-way associativity. The hot table monitors the
eight recently accessed off-chip DRAM pages for a balance between
the performance and metadata size. We set 1" as the smallest hotness
value of HBM pages in each set to match the temporal hotness
pattern. The Ry, is defined as high if its value reaches 1 to maximize
the HBM utilization rate. We use the SPEC2017 benchmarks [20]
in Table II to evaluate our design. We simulate at least 6 billion
instructions for each benchmark using the Simpoint [19]. All our
results are normalized to a baseline system without HBM.

B. Design space exploration and over-fetching analysis.

Bumblebee can be configured with any block and page size, which
affects the performance and metadata size. To place all metadata in
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SRAM, we limit the metadata size within 512KB and show some
possible configurations in Figure 6. We use the average normalized
Instruction Per Cycle (IPC) for all benchmarks in Table II during
execution as a performance metric for the speedup comparison.
Smaller blocks miss the opportunity to exploit spatial locality while
larger blocks cause over-fetching. Thus, a block of 2KB is a good
compromise between the spatial locality exploitation and bandwidth
consumption. For the same block size, 64KB pages reduce the over-
fetching and perform better than 96KB and 128KB pages. Our design
achieves the best performance at 2KB blocks and 64KB pages, and
for the rest of experiments in this paper, we present our results in
this configuration. The metadata storage space (334KB: 110KB PRT,
136KB BLE array, and 88KB hotness tracker) is reduced by 1~2
orders of magnitude compared to prior designs.

The sizes of blocks and pages in Bumblebee are larger than those
in Hybrid2 (256B blocks and 2KB pages). We analyze the over-
fetching by collecting the percentage of data brought in HBM but
unused: 13.7% for Hybrid2 and 13.3% for Bumblebee. The reasons
for the over-fetching of large blocks and pages reduced by Bumblebee
are as follows: (1) The over-fetching is mainly caused by workloads
with weak spatial locality. The adjustable design in Bumblebee can
provide more cHBM capacity (up to 1GB) than Hybrid2 (64MB)
for workloads with weak spatial locality, which greatly reduces the
eviction frequency and enables large blocks in cHBM to serve more
memory requests before eviction. (2) Our data movement mechanism
only permits data in a page that reaches a certain hotness level (i.e.,
T) to be brought in HBM for high memory footprint condition, which
prevents pages with low hotness into HBM and reduces the eviction
frequency of pages in HBM. Hybrid2 brings all requested blocks into
cHBM, which causes significant over-fetching for workloads with
weak spatial locality. (3) The buffering mechanism for mHBM page
eviction extends the pages’ residency in HBM, enabling data brought
in HBM to serve more memory requests before eviction.

C. Performance breakdown

The performance speedup of Bumblebee can be attributed to the
cHBM and mHBM combination, the dynamically adjustable cHBM
and mHBM capacity, the multiplexed cHBM and mHBM space,
the metadata access overhead reduction, the allocation and the data
movement mechanism. Figure 7 illustrates the average normalized
IPC speedup for all SPEC2017 benchmarks in Table II to show the
effect of each factor. From left to right: C-Only and M-Only represent
all the HBM used as cHBM and mHBM, respectively. The more
benefits achieved by M-Only than C-Only mainly stem from the better
memory bandwidth efficiency for both HBM and off-chip DRAM.
We also evaluate the performance of fixing the cHBM capacity of
25% and 50% total HBM capacity (25%-C and 50%-C) and both
of them outperform the single mode designs. A hybrid mode design
without the multiplexed cHBM and mHBM space (No-Multi) brings
more data movement overhead for mode switch, wasting both HBM
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Fig. 8. Comparing Bumblebee against state-of-the-art designs.

and off-chip DRAM bandwidth. Placing all the metadata in HBM
(Meta-H) degrades the performance mainly due to the performance
gap between SRAM and HBM as well as more HBM traffic. Alloc-
D and Alloc-H represent allocating all pages to off-chip DRAM
and HBM respectively. Compared to our hotness-based remapping
allocation, Alloc-D consumes more bandwidth for hot data migration
from off-chip DRAM to HBM. Alloc-H reduces the migration cost
for workloads with low memory footprint since all the data can be
placed in HBM while incurs significant bandwidth waste for high
memory footprint workloads due to a large amount of data evicted
from HBM. Without the data movement triggered by high memory
footprint (No-HMF), simply evicting HBM pages popped out from
the hot table queue degrades the system performance due to the extra
eviction overhead for mHBM pages, the data movement hindered by
zombie pages to react to the hotness changes, and the eviction latency
of cHBM pages on the critical path in the case of memory shortage.

D. Performance

With the same system configuration, Bumblebee outperforms state-
of-the-art designs by at least 46.7%, 44.9%, 9.9% and 35.2% on aver-
age for high, medium, low and all MPKI benchmarks respectively, as
shown in Figure 8(a). Compared to Hybrid2, Bumblebee makes better
use of HBM due to the adjustable capacity for cHBM and mHBM.
Besides, since the metadata storage space is greatly minimized and
the cHBM and mHBM space are multiplexed, the overhead for
metadata access and mode switch are reduced by 69.7% and 44.6%
on average respectively. Chameleon is designed based on POM [6]
with the added option to economize on migration bandwidth. It
restricts only one HBM sector in each remapping set, which brings
uneven HBM utilization rate in different sets and frequent sector
migration cost. The metadata access overhead in HBM degrades
Chameleon’s performance as well. Bumblebee outperforms cache
designs by better exploiting the spatial locality benefit, improving
the memory bandwidth efficiency, reducing the metadata management
overhead and lowering the eviction frequency for hot data.

E. Memory traffic analysis and energy consumption

Figure 8(b) and Figure 8(c) illustrate the normalized HBM and
off-chip DRAM traffic for each benchmark group. Bumblebee econ-
omizes bandwidth for both HBM (17.9% less traffic than the best,
i.e., Chameleon) and oft-chip DRAM (9.1% lower than the best, i.e.,
Banshee), which is one of the reasons why Bumblebee has the best
performance. The traffic reduction mainly attributes to lowering the
eviction frequency for pages in cHBM and mHBM, preventing data
with a low access frequency into HBM, lowering the over-fetching
risk, eliminating the metadata query in HBM, and reducing the data
movement overhead for mode switch between cHBM and mHBM.

Bumblebee consumes 10.9%~20.1% less memory dynamic energy
than state-of-the-art designs on average as Figure 8(d) shows, mainly
due to the memory traffic reduction. Besides, Bumblebee consumes
less processor energy and memory static (refresh) energy since these
energies are mostly proportional to the program runtime.

V. CONCLUSION

This paper presents Bumblebee, a new hybrid memory system to
make HBM serve as either cHBM or mHBM flexibly. The ratio of

cHBM to mHBM is adjustable in real time to better exploit both
temporal and spatial locality benefits. Bumblebee lowers the over-
fetching risk and reduces the data movement cost for mode switch
between cHBM and mHBM. In our evaluations, Bumblebee beats
the best-previous hybrid memory designs by at least 35.2%, and
consumes orders of magnitude less metadata storage space as well
as 10.9%~20.1% less memory dynamic energy.
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