
NBTree: a Lock-free PM-friendly Persistent B+-Tree for
eADR-enabled PM Systems

Bowen Zhang
Shanghai Jiao Tong University

bowenzhang@sjtu.edu.cn

Shengan Zheng
MoE Key Lab of Artificial Intelligence, AI Institute,

Shanghai Jiao Tong University

venero1209@sjtu.edu.cn

Zhenlin Qi
Shanghai Jiao Tong University

qizhenlin@sjtu.edu.cn

Linpeng Huang
Shanghai Jiao Tong University

lphuang@sjtu.edu.cn

ABSTRACT

Persistent memory (PM) promises near-DRAM performance as well

as data persistency. Recently, a new feature called eADR is available

on the 2𝑛𝑑 generation Intel Optane PMwith the 3𝑟𝑑 generation Intel

Xeon Scalable Processors. eADR ensures that data stored within the

CPU caches will be flushed to PM upon the power failure. Thus, in

eADR-enabled PM systems, the globally visible data is considered

persistent, and explicit data flushes are no longer necessary. The

emergence of eADR presents unique opportunities to build lock-free

data structures and unleash the full potential of PM.

In this paper, we propose NBTree, a lock-free PM-friendly B+-

Tree, to deliver high scalability and low PM overhead. To our knowl-

edge, NBTree is the first persistent index designed for eADR-enabled

PM systems. To achieve lock-free, NBTree uses atomic primitives

to serialize leaf node operations. Moreover, NBTree proposes four

novel techniques to enable lock-free access to the leaf during struc-

tural modification operations (SMO), including three-phase SMO,

sync-on-write, sync-on-read, and cooperative SMO. For inner node

operations, we develop a shift-aware search algorithm to resolve

read-write conflicts. To reduce PM overhead, NBTree decouples

the leaf nodes into a metadata layer and a key-value layer. The

metadata layer is stored in DRAM, along with the inner nodes, to

reduce PM accesses. NBTree also adopts log-structured insert and

in-place update/delete to improve cache utilization. Our evaluation

shows that NBTree achieves up to 11× higher throughput and 43×

lower 99% tail latency than state-of-the-art persistent B+-Trees

under YCSB workloads.

PVLDB Reference Format:

Bowen Zhang, Shengan Zheng, Zhenlin Qi, Linpeng Huang. NBTree: a

Lock-free PM-friendly Persistent B+-Tree for eADR-enabled PM Systems.

PVLDB, 15(6): 1187-1200, 2022.

doi:10.14778/3514061.3514066

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/SJTU-DDST/NBTree.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
doi:10.14778/3514061.3514066
∗ Linpeng Huang and Shengan Zheng are corresponding authors.

1 INTRODUCTION

Byte-addressable persistent memory (PM), such as Intel Optane DC

persistent memory module (DCPMM) [17] is now commercially

available. PM offers DRAM-comparable performance as well as

disk-like durability. In general, PM-equipped platforms support the

asynchronous DRAM refresh (ADR) feature [21], which ensures

that the content of the PM DIMMs, as well as the writes that have

reached the memory controller’s write pending queues (WPQ),

survives power failures. However, writes within CPU caches remain

volatile. Thus, explicit cache line flush instructions and memory

barriers are required to guarantee the persistence of PM writes.

Recently, a new feature called extended ADR (eADR) is available

with the arrival of the 3𝑟𝑑 generation Intel Xeon Scalable Processors

and the 2𝑛𝑑 generation Intel Optane DCPMM [24]. Compared with

ADR, eADR further guarantees that data within CPU caches will

be flushed back to PM after a crash through the reserved energy. It

ensures the persistence of the globally visible data in CPU caches

and eliminates the need to issue costly synchronous flushes. The

emergence of eADR not only facilitates the design of lock-free data

structures but reduces PM write overhead.

Building efficient index structures in PM is promising to offer

both high performance and data durability for in-memory databases.

Most existing persistent indexes [2, 4–6, 28, 32, 37, 40, 43, 47, 59, 61]

are solely designed for ADR-based PM systems. On eADR-enabled

platforms, an intuitive transformation approach is to simply remove

all cache line flush instructions [45]. However, this naïve approach

cannot fully exploit the potential of eADR. Those indexes still suffer

from two major drawbacks even with the eADR support.

First, existing persistent indexes suffer from inefficient concur-

rency control. Locks are widely used in persistent indexes because

none of the existing primitives can atomically modify and persist

data on ADR-based platforms. Atomic CPU hardware primitives,

such as Compare-And-Swap (CAS), can atomically modify the data

but do not guarantee its persistence because CPU caches are volatile.

Therefore, without locking, it’s possible that a store hasn’t been
persisted before a dependent read from another thread, leading to

dirty read anomaly. Fortunately, eADR closes the gap between the

visibility and persistency of the data in CPU caches, making sure

that threads always read persistent data. Thus, eADR provides us

an opportunity to develop efficient lock-free data structures.

Second, existing persistent indexes still impose high overheads

on PM accesses. Prior researches strive to lower PM overhead by

1187

https://www.acm.org/publications/policies/artifact-review-and-badging-current

reducing the number of flush instructions, because data flushing is

the primary bottleneck of ADR-based PM systems [37]. With eADR,

explicit data flushes to PM are no longer necessary. However, the

performance of persistent indexes is still restricted by excessive

PM accesses since PM has higher read latency and lower band-

width than DRAM [16, 52, 55]. Especially for the write operations,

although data flushing to PM is off the critical path, dirty cache

lines will eventually be written back to PM due to the limited CPU

cache capacity. Therefore, it’s necessary to redesign the PM-friendly

persistent indexes for eADR-enabled PM systems.

In this paper, we present NBTree, a lock-free PM-friendly B+-Tree

to deliver high scalability and low PM overhead. To our knowledge,

NBTree is the first PM index based on eADR-enabled PM systems.

To achieve high scalability, NBTree proposes a fully lock-free con-

currency control protocol. For leaf node operations, NBTree adopts

log-structured insert and in-place update/delete, combining with CAS
primitives, to support lock-free accesses. When the inserted leaf

is full, NBTree replaces the old leaf with new leaves to maintain

the balance of nodes via structural modification operations (SMO).

NBTree proposes three novel techniques (three-phase SMO, sync-on-

write, and sync-on-read) to deal with the potential anomalies during

the lock-free accesses to the leaf in SMO: (1) Lost update caused by

concurrent updates and deletions to the leaf. NBTree addresses this

anomaly by utilizing three-phase SMO and sync-on-write. When an

update or deletion operates on the leaf during SMO, it first in-place

modifies the old leaf. Then, the modification is either passively mi-

grated to the new leaf by three-phase SMO or actively synchronized

to the new leaf using sync-on-write. (2) Dirty or stale read caused

by concurrent search operations. The lock-free search on the SMO

leaf might read uncommitted dirty data or stale data. NBTree uses

the sync-on-read technique to detect and resolve those anomalies.

To further reduce tail latency, we propose cooperative SMO to make

concurrent insertions to the same SMO leaf work cooperatively.

For inner node operations, NBTree applies hardware transactional

memory (HTM) [26] to achieve atomic writes. Meanwhile, NBTree

designs a shift-aware search algorithm to ensure the lock-free inner

node search reaches the correct leaf.

To reduce PM overhead, NBTree minimizes PM line accesses and

improves cache utilization. For leaf nodes in NBTree, the metadata

and key-value pairs are decoupled into two layers. The metadata

layer is stored in DRAM along with inner nodes. PM only contains

the key-value layer so that the number of PM line reads and writes

is minimized. The volatile part of NBTree can be rebuilt with the

persistent key-value layer after a crash. Moreover, our proposed

log-structured insert and in-place update improve the possibility of

write combining and write hits, optimizing the cache utilization in

eADR-enabled PM systems.

In summary, the contributions of this paper include:

• We provide an in-depth analysis of the benefits of the eADR

feature. Then, we propose NBTree, the first persistent index

based on eADR-enabled PM systems as far as we know.

• We propose lock-free concurrency control for NBTree to

achieve high scalability. Our proposed techniques, such as

three-phase SMO, sync-on-write, sync-on-read, cooperative

SMO, and shift-aware search, ensure strong consistency for

lock-free operations.

• We propose a two-layer leaf node structure for NBTree,

which reduces the number of PM line reads and writes in

each operation and improves cache utilization.

• We implement NBTree and our evaluation results show

that NBTree achieves up to 11× higher throughput and 43×

lower 99% tail latency than state-of-the-art counterparts

under YCSB workloads.

2 BACKGROUND AND MOTIVATION

In this section, we introduce the background of persistent memory

and eADR (Section 2.1), the PM overhead analysis in eADR-enabled

PM systems (Section 2.2), and the challenges of designing lock-free

persistent data structures (Section 2.3).

2.1 Persistent Memory and eADR

Persistent memory (PM), which is now commercially available,

provides many attractive features, such as byte-addressability and

data persistency. However, PM still has higher latency and lower

bandwidth than DRAM. To reduce the write latency, existing PM-

based systems utilize the ADR mechanism [21] to drain the writes

sitting on the write pending queues (WPQ) to PM by the reserved

energy during a power outage. Therefore, data that reaches the

WPQ in ADR-based PM systems is considered persistent, whereas

data in the CPU caches remains volatile. As a result, an additional

pair of the flush instruction (e.g. clwb, clflush, clflushopt) and
memory barrier (e.g. mfence, sfence) is necessary for programmers

to guarantee data persistency [45].

Fortunately, eADR is supported on the 2𝑛𝑑 generation Intel Op-

tane DCPMM with the 3𝑟𝑑 generation Intel Xeon Scalable Pro-

cessors. eADR-enabled PM systems reserve more energy that en-

ables them to flush data in CPU caches to PM after a power fail-

ure, thereby expanding the persistence domain to include CPU

caches [46]. eADR offers the following advantages over ADR.

The first one is reducing PM write overhead. With eADR, the

synchronous flush instructions are no longer necessary, which

reduces PM write overhead in two aspects. (1) Reducing the latency

in the critical path. Previously, the flush instructions and memory

barriers result in high latency in the critical path [37]. (2) Saving

PM write bandwidth. Delaying writes to PM increases write hits

and write combining in CPU caches, which reduces PM writes.

The second one is facilitating the lock-free design. Data struc-

tures can atomically modify and persist data with eADR, which

facilitates the lock-free design in PM. Most lock-free data struc-

tures [1, 18, 36, 41] rely on atomic CPU hardware primitives, such

as CAS. However, in ADR-based PM systems, those primitives can

atomically modify data but cannot ensure their persistence because

CPU caches are volatile. Threads are likely to read unpersisted data

in CPU caches, resulting in the dirty read anomaly. With eADR, the

globally visible data in CPU caches is ensured to be persisted. Thus,

it is possible to modify and persist data atomically.

2.2 PM Overhead Analysis

The performance gap between PM and DRAM encourages people

to design PM-friendly storage systems to reduce I/O overhead.

Previous works [7, 8, 12, 31, 42, 49, 53, 54, 58] designed for ADR-

based PM systems mostly focused on reducing the costly flush

1188

Table 1: The PM overhead of tree operations. (𝑎/𝑏/𝑐 indicates
the PM overhead of an individual insert/delete/update. 𝑛 in-

dicates the number of key-value pairs in the leaf node.)

Flush PM line write PM line read

NVTree [56] 2/2/2 2/2/2 O(n)

WB+Tree [3] 4/3/3 3/2/2 O(log(n))

FPTree [43] 3/1/3 3/1/3 3

RNTree [39] 2/1/2 3/1/3 O(log(n))

BzTree [2] 15/7/10 11/6/7 O(log(n))

FAST&FAIR [20] O(n)/O(n)/1 O(n)/O(n)/1 O(n)

uTree [4] 2/1/1 2/2/1 2

NBTree 1/1/1 1/1/1 1

instructions. With eADR, flushing is no longer required. However,

although the persistence latency of the writes is hidden by CPU

caches, dirty cache lines will eventually be evicted to PM according

to the cache replacement policy. Excessive PM writes still result in

high latency due to the poor PM write bandwidth. Besides, PM also

has higher read latency than DRAM. Thus, the unique features of

eADR require a rethinking of how to reduce PM overhead.

We conclude the following three design goals to reduce PM over-

head. First, reducing the number of PM line writes per operation.

PM line writes indicate the 64-byte aligned PM lines modified in

CPU caches. Reducing PM line writes per operation can produce less

dirty cache lines, saving PM write bandwidth. Second, increasing

the possibility of write combining and write hits in CPU caches. In

this way, multiple write operations can write to the same cache line,

reducing PM writes. ADR-based PM systems do not benefit much

from it because write operations often need to be synchronously

flushed. Third, reducing the number of PM line reads per operation.

The relatively higher read latency of PM is overlooked in the previ-

ous works [3, 39, 56]. However, it is non-negligible, especially in

read-intensive data structures, such as B+-Tree.

Table 1 lists PM costs of state-of-the-art persistent B+-Trees and

NBTree. We notice that the strategies of reducing the number of

flushes sometimes result in fewer PM line writes. However, they are

not equivalent. RNTree [39], for example, applies selective metadata

persistence to reduce the number of flushes but cannot avoid the PM

line writes. We also find that trees that keep the order of leaf nodes

or slot arrays produce non-constant PM line reads per operation,

which incurs non-negligible overhead.

2.3 The Design Challenges of Lock-free
Persistent Data Structures

It’s non-trivial to design lock-free data structures (LFD) in PM

because they not only need to handle subtle race conditions like

volatile indexes, but need to make sure that writes are persisted

before any dependent read [14, 51, 62]. There are the following two

hardware restrictions to keep us away from designing efficient LFDs

in PM. (1) The granularity of atomicity in memory load and store
is oneword, that is 8 bytes. Atomic CPU hardware primitives used in

many LFDs, such as compare-and-swap (CAS), can only atomically

modify a single word. However, a single operation in non-trivial

data structures needs to read and write multiple words. Therefore,

LFDs are likely to expose intermediate states to concurrent threads.

Moreover, when a thread is performing an operation, data structures

might be changed by other threads. Those problems may result in

anomalies such as lost update, stale read, and inconsistent read. (2)

ADR-based PM systems do not support atomic primitives to modify

and persist the data. Updates are first sent to the CPU caches and

then persisted using flush instructions and memory barriers. As

the globally visible data in CPU caches are volatile, other threads

can easily read unpersisted data, resulting in dirty read anomaly.

In the following, we use the persistent B+-Tree as an example to

specify how anomalies mentioned above happen.

Lost Update/Stale Read. Updates may be lost permanently, and

reads might access stale data due to non-atomic state changes. For

example, structural modification operations, such as split, are the

most complex state change in B+-Trees. During the split, B+-Tree

transfers the content of the old node to newly allocated nodes and

then replaces the old node with new nodes. As the split cannot be

completed atomically, a concurrent update may occur in the old

node but bemissed in the newnodes. In this situation, newnodes are

facing the risk of the stale read anomaly since they are stale. Even

worse, if the update is not synchronized to new nodes in a proper

way, it will be lost permanently, incurring the lost update anomaly.

Thus, existing B+-Trees often lock the leaf during the modification.

BzTree [2] uses the PMwCAS [51] to guarantee the atomicity of writes.

However, BzTree performs even worse than lock-based B+-Trees

due to the high software overhead of PMwCAS [35].

Inconsistent Read. Threads might read the inconsistent state

of data structures due to non-atomic state change. For example,

the shift operation to keep nodes in B+-Tree sorted cannot be com-

pleted atomically. During an insertion or deletion, B+-Tree needs

to shift array elements by calling a sequence of load and store
instructions. During shifting, the same entry may appear twice

in different slots, which is an inconsistent state that can result in

the inconsistent read. FAST&FAIR [20] proposes a lock-free search

algorithm, which tolerates such inconsistency. During searching,

the key is ignored if its left and right child pointers have the same

address. However, inconsistent read may occur when the state of

the node changes between two load operations [57].

Dirty Read. Reads might access the uncommitted dirty data

due to non-durable writes. Because of the lack of atomic instruc-

tions with the functionality of persistence, there is a temporal gap

between when an update becomes globally visible and when it be-

comes durable. During the update, we firstly store the data in CPU

caches, then persist it using a flush instruction and a memory bar-

rier. Other concurrent threads may view the new update before it

persists. If a power outage occurs between these two steps, the read

operation will get the unpersisted dirty data. Previous works pro-

pose several approaches to deal with this issue. ROART [40] and P-

ART [32] use the non-temporal store to prevent the unpersisted

data from being globally visible, but this method does not benefit

from CPU caching. Link-and-persist [10] and PMwCAS [51] use

the help mechanism, which allows read threads to flush unpersisted

data proactively. However, it adds additional software overhead

and design complexity. With eADR, the dirty read anomaly is less

likely to happen as the globally visible data is always persistent.

1189

Figure 1: The overall architecture of NBTree.

3 PM-FRIENDLY B+-TREE

NBTree achieves low latency and high scalability by lowering PM

overhead in the following two aspects: (1) Reduce the number of

PM line reads/writes per operation. (2) Leverage the eADR benefits

to increase the write combining and write hits in CPU caches.

In this section, we describe the PM-friendly design of NBTree.

We first present the overall architecture (Section 3.1), and then

describe the base operations of NBTree (Section 3.2).

3.1 NBTree Structure

The overall architecture of NBTree is shown in Figure 1. In NBTree,

the metadata and key-value pairs of the leaf nodes are separated

into two layers. The metadata layer, as well as the inner nodes

of NBTree, is maintained in DRAM. They can be rebuilt from the

persistent key-value layer of leaf nodes in PM during recovery.

The two-layer leaf node design enables NBTree to absorb metadata

operations in DRAM, reducing PM line accesses drastically.

Specifically, for leaf nodes, both the metadata layer and the key-

value layer are linked into a singly linked-list. In the key-value

layer, each key-value block is an unsorted array of key-value en-

tries. Each key-value entry stores a 64-bit key and a 64-bit payload.

The highest 2 bits (copy_bit and sync_bit) of the payload are

reserved for concurrency control. For variable-sized key-value en-

tries, NBTree stores pointers that indicate the actual keys or values.

Each leaf’s metadata consists of the following fields: (1) fps to store
the one-byte fingerprint (hash value) for each key in the leaf, which

speeds up key-search on the unsorted array. (2) num to store the

number of entries occupied by both the committed and in-flight

insertions, which handles concurrent insertions. (3) bitmap to track
the position of the committed insertions in the leaf. (4) data_ptr
to indicate the address of its key-value block. (5) copy_ptr to store

the address of newly allocated leaves when the leaf performs SMO.

(6) flag to track the status of SMO. (7) next to indicate the address
of the sibling leaf. For inner nodes, NBTree adopts the structure of

FAST&FAIR [20], which maintains the sorted array.

3.2 Base operations

NBTree reduces the overhead of base operations (insert, update,

delete, and search) by minimizing PM line accesses and maximizing

the cache utilization. For each base operation, NBTree first locates

the corresponding leaf by searching the inner nodes in DRAM.

Then, it uses log-structured insert, in-place update/delete, and efficient

search to reduce the average number of PM line read/writes on

Figure 2: Procedure of an insertion on an NBTree’s leaf. (The

fingerprints (fps) of the keys are set to 𝑘𝑒𝑦%10 for brevity.)

the persistent leaf node to 1 and increase the write hits and write

combining. During recovery, NBTree retrieves all the key-value

entries with non-zero keys from the persistent leaf nodes.

Log-structured Insert. Insertions perform in a log-structured

manner in NBTree. Figure 2 illustrates the steps of inserting a new

key-value pair in NBTree’s leaf. First, NBTree increases the number
(�) to occupy the next free slot. Then, NBTree writes the value (�)

and the key (�) to the occupied slot. After writing the key, the

new insertion can survive a power failure. Finally, NBTree updates

the fps (�) and bitmap (�) to make insertion visible. We observe

that the only PM overhead in an insertion is storing a key-value

pair. Moreover, with eADR, the log-structured insert manner also

allows the consecutive insertions on the same leaf to combine in

CPU caches, reducing PM writes.

In-place Update/Delete. Conventional log-structured B+-Trees,

such as NVTree [56] and RNTree [39], update or delete key-value

entries by appending new entries. NBTree, on the other hand, per-

forms in-place update/delete. To update a key-value entry, NBTree

modifies its value in-place. To delete an entry, NBTree invalidates

it by resetting its key to 0. Update and delete can survive system

crashes by modifying and persisting the 8-byte key or value with

eADR support. In-place update manner is not favored in ADR-

based PM systems, as repeatable flushes to the same cache line

cause extra latency especially running on skewed workload [5].

With eADR, in-place update manner fully utilizes CPU caches and

minimizes PM line writes.

Efficient Search. The search range is confined to the valid en-

tries indicated by the bitmap. This ensures that the entry found

by the search operation is persistent and committed. NBTree fur-

ther narrows the average number of candidate entries to one by

checking the fingerprints. Finally, NBTree scans the candidate
entries to filter the unmatched keys and the deleted keys. In most

cases, the search operation produces only one PM line read, since

the candidate entry is often unique.

Crash Consistency. NBTree can restore its metadata layer and

inner nodes using the key-value layer after a crash. During recovery,

NBTree scans the list of key-value blocks and labels the slots with

non-zero keys as the valid key-value entries. Then, NBTree rebuilds

the metadata layer and the inner nodes based on those valid entries.

We find that rebuilding NBTree from persistent leaf nodes with

16 million key-value entries takes only 0.32s with a single thread,

which is 32× quicker than recovering from the base data.

NBTree maintains consistency even if a crash occurs in the mid-

dle of a write operation (insertion/update/deletion). As shown in

1190

Figure 2, during an insertion, writing the key (�) happens after

writing the value (�). If the crash happens after writing the key, the

intact key-value pair will survive. Otherwise, the in-flight insertion

will not leave NBTree in an inconsistent state because the key of

the occupied slot is still 0, which is discarded after the recovery.

For updates and deletions, they can be completed atomically.

4 LOCK-FREE DESIGN

In this section, we introduce the lock-free concurrency control of

NBTree, which is based on a precondition guaranteed by the eADR-

enabled platform: globally visible data is persistent. We propose

different concurrency-control protocols for operations on normal

leaf nodes (Section 4.1), leaf nodes during SMO (Section 4.2), and

inner nodes (Section 4.3).

4.1 Leaf Node Operations

We divide the base operations in NBTree into two categories. The

first category is insert, which appends new data to the free slot.

The second category is UDS operations, including update, deletion,

and search. The UDS operations always work on the committed

insertions. In the following, we discuss how NBTree resolves the

insert-insert, UDS-UDS, and insert-UDS conflicts.

Insert-Insert Conflicts. We use atomic primitives to serialize

concurrent insertions. As shown in Figure 2, to begin an insertion,

NBTree uses the fetch_and_add to atomically increase the num,
occupying the next free slot. This ensures that concurrent insertions

are placed in separate slots. At the end of an insertion, NBTree uses

CAS to atomically update the bitmap, which commits the insertion.

In this way, NBTree achieves lock-free insert on the leaf nodes.

Insert-UDS Conflicts. Those conflicts are naturally solved in

NBTree. Firstly, an insertion always writes the data into the unused

space, which does not affect the UDS operations. Secondly, NBTree

commits an insertion by atomically updating the bitmap, which
makes the new insertion visible to UDS operations. Therefore, UDS
operations always operate on the completed insertions.

UDS-UDS Conflicts. UDS-UDS conflicts in NBTree are resolved

in eADR-enabled PM systems without additional overhead. As men-

tioned above, updates and deletions are completed atomically with-

out exposing the intermediate state. With eADR, those modifica-

tions are atomically persisted. Thus, the order of commit and visi-

bility for concurrent updates and deletions are always maintained,

and the search operation always reads the latest committed data.

Moreover, UDS operations are never aborted by other threads, which
dramatically improves NBTree’s scalability under the workloads

with high contentions.

4.2 Structural Modification Operations

Structural modification operations (SMOs) are initiated when a key-

value entry is inserted into a full leaf. The conventional procedure

of SMO is to copy the entries from the full old leaf to the newly

allocated leaves, and then replace the old leaf with the new leaves.

However, since the copy phase cannot be completed atomically,

lock-free concurrent modifications to the old leaf may not be syn-

chronized to the new leaves, resulting in the lost update anomaly.

Table 2: The approaches employed during different phases

of SMO to facilitate lock-free leaf node operations.

SMO

Phase
Copy Sync Link

Update/

Delete

three-phase SMO

(sync phase)
sync-on-write

Search unnecessary sync-on-read unnecessary

Insert cooperative SMO

Moreover, the lock-free search might read dirty or stale data due to

the inconsistency between the old leaf and new leaves.

Table 2 shows the approaches used by NBTree to resolve the

potential anomalies and facilitate lock-free accesses. In NBTree,

SMO is divided into three phases (copy phase, sync phase, and link

phase). During each phase, different approaches are used to handle

concurrent operations on the SMO leaf. For UD (update/delete) op-

erations, NBTree resolves the lost update anomaly with the sync

phase of the SMO and the sync-on-write technique. For search oper-

ations, NBTree uses sync-on-read to prevent the dirty read and stale

read anomaly. We also propose cooperative SMO, which enables

concurrent insertions to complete SMO cooperatively.

Three-phase SMO. Different from the SMO of traditional B+-

Trees that only includes the copy phase and link phase, NBTree

adds a sync phase to avoid the lost update anomaly caused by UD
operations during the copy phase. In the following, we will describe

the procedure of each phase.

In the copy phase, SMO copies the valid entries with non-zero

keys in the full leaf to new leaves. As shown in Figure 3, NBTree

allocates two new leaves if the number of valid entries exceeds a

certain threshold (half of the leaf capacity by default). Otherwise,

only one new leaf is allocated. Then, NBTree distributes key-value

pairs to the new leaves and constructs their metadata layer. Finally,

NBTree sets the copy_ptr in the old leaf to indicate the address of

the first new leaf.

In the sync phase, NBTree synchronizes the lost UD operations to
new leaves. During the copy phase, concurrent UD operations still
write to the old leaf. As the copy phase cannot be completed within

an atomic instruction, those UD operations, such as Update(2,s) in
Figure 3, might not have beenmigrated to new leaves yet. Therefore,

in the sync phase, NBTree employs CAS to synchronize the missed

UD operations to new leaves.

The link phase replaces the old leaf in NBTree with new leaves.

NBTree firstly links new leaves into the singly linked-list of the key-

value layer and the metadata layer by changing the next pointer
of the previous leaf. Then, NBTree installs new leaves to the parent

node (described in Section 4.3).

Sync-on-write. In the post-copy phases of SMO, UD operations
resolve the lost update anomaly by adopting a sync-on-write ap-

proach, which actively synchronizes the modification from the old

leaf to the new leaf. Specifically, for an update, after modifying a

key-value in the old leaf, it re-searches the target key in the new

leaf. If the corresponding value in the new leaf is not up-to-date,

NBTree synchronizes the latest update to the new leaf using CAS.

1191

Figure 3: The procedure of three-phase SMO and sync-on-

write when updates and deletions operate on an SMO leaf.

With the support of eADR, CAS can atomically modify and per-

sist the synchronization. Similar to the update, the deletion also

re-executes in the new leaf if it contains the target key. NBTree

imposes low-overhead on sync-on-write because it only incurs one

additional search on the new leaf and one CAS primitive.

During the post-copy phases of SMO, sync-on-write prevents

lock-free UD operations from suffering the lost update anomaly. As

illustrated in Figure 3, during the copy phase, any UD operation that

happens on the old leaf (e.g. update(2,s)) will be synchronized to

the new leaf in SMO’s sync phase. However, UD operations happen

after the copy phase (e.g. update(8,y), delete(3)) may still be

lost. To avoid the lost update anomaly, UD operations need to actively
synchronize the modification by calling sync-on-write.

Through sync-on-write and three-phase SMO, we ensure that

NBTree always maintains a consistent state that includes all com-

mitted operations after a crash. As we previously mentioned, SMO’s

durability point is when the new leaves replace the old leaf in PM by

linking themselves into the key-value layer during the link phase.

If a crash occurs before the durability point, the old leaf will remain

in the key-value layer. During SMO, any modification must first

operate on the old leaf. Therefore, as illustrated in Table 3, the

old leaf always holds both the latest committed and uncommitted

operations during SMO. The uncommitted operations in the old

leaf won’t cause inconsistency because the in-flight sync-on-write is

unnecessary after discarding new leaves. If a crash occurs after the

durability point, the new leaf will be linked into the key-value layer.

At that time, all UD operations committed in the copy phase have

been synchronized to the new leaf in the sync phase. For UD opera-

tions that happen after the copy phase, they are only committed

when they write to a new leaf. As a result, new leaves hold the latest

committed operations after the durability point. Besides, with the

support of eADR, the new leaf is consistent as the sync-on-write is

atomic. To summarize, the consistent leaf with the latest committed

operations will survive whenever the crash happens.

SMO threads (sync phase) and UD threads (sync-on-write) may

synchronize the same value to the new leaf concurrently. NBTree

can serialize those synchronizations using the highest two bits of

each entry’s value. We will discuss this scenario in Section 5.

Sync-on-read. To deal with the potential inconsistency between

the old leaf and the new leaves, the search operations employ the

sync-on-read approach to synchronize the corresponding key-value

Table 3: The latest and clean leaves in different phases of SMO.

(The latest leaf contains all committed writes. The Clean leaf

does not contain any uncommitted dirty write.)

SMO

Phase

Latest Clean

old leaf new leaf old leaf new leaf

Copy � �
Sync � �
Link � � �

After SMO � �

entries from the old leaf to the new leaf. Specifically, NBTree

searches the target key in both old and new leaves. If the returned

results differ, the search operation updates or deletes the key-value

in the new leaf to match the one in the old leaf. The overhead of

the sync-on-read is as low as the sync-on-write.

Sync-on-read guarantees that a lock-free concurrent search re-

turns the latest and committed version of a key-value entry. During

SMO’s sync phase, reading from either old or new leaves without

performing sync-on-read may lead to the stale read or dirty read

anomaly. As illustrated in Table 3, in the sync phase, the old leaf is

possibly dirty because the UD operations might have not committed

due to an on-going sync-on-write. Meanwhile, the new leaf is likely

stale as the SMO thread may not have finished synchronizing the

latest modification that happened during the copy phase. To address

this problem, the search operation uses sync-on-read to synchronize

the latest key-value from the old leaf to the new leaf. It makes sure

that the target key-value pair in the new leaf is both the latest and

clean before returning the search result.

Search operations on the leaf that is not in the sync phase can

directly read the correct value without calling sync-on-read. Table 3

shows the destination of reads, which is the leaf that holds both the

latest and clean key-value pairs. During the copy phase, incoming

reads go to the old leaf, which is both the latest and clean since

concurrent UD operations directly commit in the copy phase. After

the sync phase, reads go to the new leaf. This is because previous UD
operations that happened in the copy phase have already been syn-

chronized to the new leaf, while later UD operations are committed

once they are visible in the new leaf with the eADR support.

Cooperative SMO. In NBTree, concurrent insertions to the leaf

during SMO employ cooperative SMO. The insertion thread that

encounters a leaf with an in-flight SMO will help complete its SMO

before continuing. NBTree uses atomic primitives, such as CAS,
to coordinate multiple SMO threads, making sure only the fastest

modification can be visible. In this way, instead of waiting for the

completion of SMO, NBTree guarantees that SMO moves forward

at the fastest speed, even when a certain SMO thread is suspended.

Specifically, in the copy phase, multiple SMO threads prepare

new nodes respectively and use CAS primitive to atomically in-

stall the copy_ptr. In the sync phase, the synchronization of each

key-value entry can also be completed cooperatively by using CAS
primitive. In the link phase, NBTree uses CAS to link the new leaf

into the metadata layer and the key-value layer. Then, NBTree uses

HTM (described in Section 4.3) to atomically update the parent

node and set flag.link.

1192

Figure 4: Shift-aware search on the inner node under the read-

write conflict. (XBEGIN means the start of the transaction,

XEND means the end of the transaction.)

4.3 Inner Node Operations

We propose a shift-aware search algorithm and use the HTM-based

update to coordinate concurrent inner node operations.

HTM-based Update. NBTree uses HTM to atomically update in-

ner nodes following FPTree [43]. HTM is an optimistic concurrency

control tool that uses hardware transactions tomakemultiple writes

atomically visible. It is non-blocking since it only aborts when con-

flicts are detected. Wrapping updates in HTM is efficient because

the conflict of inner node modifications rarely happens. Moreover,

updates do not expose intermediate states to other threads, which

avoids the read thread viewing the inconsistent state.

Shift-aware Search. Although the modifications to the inner

nodes are atomic, lock-free inner node search might find the wrong

child pointer due to the read-write conflict. As illustrated in Fig-

ure 4, the search operation performs a linear search (Search(18))
to retrieve the key of 20 (�). However, before it fetches the corre-

sponding pointer 𝑃2, an insertion (Insert(PL,15,PR)) modifies

the node. Therefore, the search operation loads the wrong pointer

𝑃𝐿 (�) instead of 𝑃2 or 𝑃𝑅. As a result, an existing key might be

missed in the search operations.

NBTree proposes a shift-aware search algorithm to ensure the

correctness of lock-free inner node search despite concurrent write

transactions (insertion or deletion) on the same node. As shown

in Figure 4, before proceeding to the next level of the tree through

𝑃𝐿, NBTree checks if the fetched key (20 in �) has been shifted by

concurrent write transactions. If so, NBTree re-searches the node

from the current position (�-�), making sure that the target key

lies within the sub-tree indicated by the returned pointer.

The shift-aware search algorithm always finds the correct pointer

for the following two reasons. First, NBTree keeps searching and

data shifting in the same direction. As shown in Figure 4, dur-

ing the search, the insertion shifts the data from left to right. If

the search proceeds in the same direction, then it never misses

the newly inserted key. Inspired by FAST&FAIR, we maintain a

switch_counter in each node, which is increased when the inser-

tion and deletion on the inner node take turns. Second, we adopt

the concurrency protocol of the B-link tree [33] to handle SMO.

NBTree maintains a high_key (the largest key in the node) and

sibling_ptr in each inner node. NBTree re-searches in the sibling

node if the target key is less than the high_key, which indicates

an SMO has happened on the node.

Shift-aware search is efficient for two reasons: (1) It achieves lock-

free search without using HTM, avoiding transaction abortions and

Algorithm 1: Insert(K key, V val)

1 leaf = findLeaf(key);

2 pos = fetch_and_add(&leaf→num, 1);

3 if pos >= LEAF_NODE_SIZE then

4 leaf→setSMOBit(); // Set the highest bit of bitmap

5 SMO(leaf);

6 goto Line 1;

7 leaf→insert(key, val, pos);

8 if ! leaf→atomicSetBitmap(pos) then

9 goto Line 1;

hardware overheads. (2) Linear search on small arrays is more

efficient than binary search for its better cache locality, which is

illustrated in FAST&FAIR [20].

5 IMPLEMENTATION

In this section, we first describe the implementation of NBTree:

insert (Section 5.1), update/delete (Section 5.2), and search (Section

5.3). Then we present the limitation of our work (Section 5.4).

5.1 Insert

Algorithm 1 describes the insert operation. After locating the target

leaf, NBTree occupies the next free slot using the atomic primitive

(Line 2). If the leaf is full, NBTree initiates SMO by setting the smo
bit, the highest bit of the bitmap (Line 3-5). NBTree commits the

insertion by updating the bitmap using CAS (Line 8).
The procedure of SMO is listed in Algorithm 2. In the copy phase

(Line 2-9), NBTree distributes valid entries with non-zero keys to

newly allocated leaf nodes and constructs the metadata layers for

the new leaves (Line 4-8). For each copied entry, NBTree sets the

highest bit (copy_bit) of the value (Line 5). The copy_bit indicates
that the value is copied from the old leaf in the copy phase.

In the sync phase (Line 11-24), NBTree sequentially obtains

the valid entries in the old leaf (entry, Line 11) and new leaves

(syncEntry, Line 13). If their keys match but values mismatch (Line

14-16), NBTree uses CAS to synchronize the lost update, clear the

copy_bit and set the sync_bit (the second highest bit) of the

target value in the new leaf. The sync_bit indicates the value is

synchronized from the old leaf. CAS will abort if the copy_bit of
the target value has been cleared. This ensures that any key-value

pair is synchronized at most once during the sync phase. If the

key of entry and syncEntry mismatch, NBTree synchronizes the

lost deletion because it usually indicates the key of syncEntry has

been deleted in the old leaf (Line 19-22). However, there are two

exceptions that the key of entry has been deleted in the new leaf.

(1) SMO has been completed by another SMO thread. As a result,

the latest operations directly delete the entry in the new leaf with-

out having to go through the old leaf. In this case, NBTree directly

aborts SMO (Line 17). (2) A concurrent operation deletes the key of

entry on the old leaf after the entry has been read. Meanwhile, the

deletion has been synchronized by other threads before syncEntry
is read. In this case, synchronization is not required (Line 18).

In the link phase (Line 26-36), NBTree uses CAS to link the leaf to
both the key-value layer and the metadata layer (Line 27-28). If the

previous leaf is in SMO, NBTree will join the cooperative SMO to

1193

Algorithm 2: SMO(Leaf leaf)

1 if ! leaf→copy_ptr then // Copy phase
2 splitKey = leaf→findSplitKey();

3 leftLeaf, rightLeaf = allocNewNode();

4 while (entry = leaf→next()).key != 0 do

5 entry.val |= copy_bit; // Set the copy_bit

6 copy(entry, leftLeaf, rightLeaf, splitKey)

7 end

8 setMetadata(leftLeaf, rightLeaf);

9 CAS(&(leaf→copy_ptr), NULL, leftLeaf);

10 if ! leaf→flag.sync then // Sync phase
11 while (entry = (key, val) = leaf→next()).key!=0 do

12 syncLeaf = key < splitKey ? leftLeaf : rightLeaf;

13 (k, v) = syncEntry = syncLeaf→next();

14 if k == key then

15 if (v & ∼(copy_bit | sync_bit)) != (val &= ∼(copy_bit |

sync_bit)) then

16 CAS(&syncEntry.val, v|copy_bit, val|sync_bit);

17 else if leaf→flag.link then return ;

18 else if ! entry.key then syncLeaf→prev() ;

19 else

20 syncEntry.key = 0;

21 mfence();

22 goto Line 13;

23 end

24 leaf→flag.sync = 1;

25 if ! leaf→flag.link then // Link phase
26 pred = findPredLeaf(key);

27 CAS(&(pred→data_ptr→next), leaf→data_ptr,

leftLeaf→data_ptr);

28 CAS(&(pred→next), leaf, leftLeaf);

29 if pred→isSMO() then

30 SMO(pred);

31 goto Line 25;

32 xbegin(); // Start an HTM transaction

33 if ! leaf→flag.link then

34 update_parent(leaf);

35 leaf→flag.link = 1;

36 xend();

avoid the lost update of next pointer (Line 29-31). Finally, NBTree

employs HTM to update the parent node and set the flag.link
atomically (Line 32-36).

NBTree adopts the epoch-based garbage collection [13] to re-

claim the old leaves. Epoch-based garbage collection recycles the

old leaves two epochs after the end of SMO, which ensures that

those leaves have no concurrent references.

5.2 Update/Delete

Algorithm 3 shows the process of the update operation. NBTree

firstly performs an in-place update in the target leaf (Line 1-2). If the

leaf is in the post-copy phases of its SMO and the target key exists

in the new leaf but its value is not the latest, NBTree will perform

sync-on-write via CAS (Line 5-6). Sync-on-write clears the copy_bit,
which prevents the synchronization invoked by SMO threads from

Algorithm 3: Update(K key, V val)

1 leaf = findLeaf(key);

2 entry = leaf→update(key, val);

3 if leaf→isSMO() and leaf→copy_ptr then

4 (nKey, nVal) = nEntry = leaf→copy_ptr→find(key);

5 if nKey and ((v=nVal) & ∼(copy_bit | sync_bit)) !=

(val=entry.val) and v & (copy_bit | sync_bit) then

6 if ! CAS(&nVal, v, val|sync_bit) then

7 goto Line 5;

8 return true;

Algorithm 4: Delete(K key)

1 leaf = findLeaf(key);

2 leaf→delete(key);

3 if leaf→isSMO() and leaf→copy_ptr then

4 nEntry = leaf→copy_ptr→find(key);

5 if nEntry then

6 nEntry.key = 0;

7 mfence();

8 return true;

Algorithm 5: Search(K key)

1 leaf = findLeaf(key);

2 entry = leaf→find(key);

3 val = entry.key ? (entry.val & ∼(copy_bit | sync_bit)) : 0;

4 if leaf→isSMO() and leaf→copy_ptr then

5 if leaf→flag.sync then return leaf→copy_ptr→search(key) ;

6 (nKey, nVal) = nEntry = leaf→copy_ptr→find(key);

7 if ! nKey then return 0 ;

8 if entry.key == 0 then

9 nEntry.key = 0;

10 mfence();

11 else if (nVal & ∼(copy_bit | sync_bit)) != val then

12 CAS(&(nEntry.val), nVal|copy_bit, val|sync_bit);

13 val = nEntry.key ? (nEntry.val & ∼(copy_bit | sync_bit)) : 0;

14 return val;

overwriting the current update. It also sets the sync_bit to dis-

tinguish itself from the update directly operated on the new leaf.

When an update performs sync-on-write, the SMO might have been

completed by other threads. At that time, the latest updates directly

operate on the new leaf without setting sync_bit or copy_bit.
Sync-on-write does not overwrite those new updates to keep the

linearizability. Besides, if the value in the old leaf has been changed

by new updates, NBTree will synchronize the latest one.

Algorithm 4 depicts the delete operation. Similar to the update,

it will synchronize the deletion if necessary.

5.3 Search

The search operation is shown in Algorithm 5. For the inner node

search (Line 1), we directly reuse the code of FAST&FAIR and add

the key-checking procedure before returning the child pointer to

detect if any update happens. For the leaf node search (Line 2-14),

NBTree directly returns the search result on the target leaf if SMO

1194

is not taking place or it is in the copy phase. Otherwise, NBTree

searches the target key in the new leaf (Line 4-13). NBTree performs

sync-on-read if the SMO is in the sync phase and the search results

in two leaves mismatch (Line 8-13).

5.4 Limitation

In the current design, NBTree does not address the NUMA-related

performance issues in PM. Similar to the prior work on persistent

indexes [4, 20, 42], NBTree cannot scale well across multiple NUMA

nodes for the following two reasons. First, due to the multi-socket

cache coherence traffic, accessing PM on a remote NUMA node

has much lower bandwidth than accessing local PM, according

to recent studies [25, 27, 50]. Second, atomic primitives used in

NBTree perform poorly across NUMA nodes. We plan to address

the scalability issues of NBTree in the environment of multiple

NUMA nodes in our future work.

6 EVALUATION

In this section, we evaluate the performance of NBTree against

other state-of-the-art persistent B+-Trees. We first describe our

experiment setup (Section 6.1). Then, we perform single-threaded

evaluation (Section 6.2), multi-threaded evaluation (Section 6.3),

and YCSB evaluation (Section 6.4). After that, we compare the per-

formance of indexes in two persistence modes (Section 6.5). Finally,

we evaluate the performance in real-world systems (Section 6.6).

6.1 Experiment Setup

Testbed. Our testbed machine is a dual-socket Dell R750 server

with two Intel Xeon Gold 6348 CPUs, the third generation Xeon

Scalable processors that support eADR and TSX. Each CPU has

28 cores and a shared 42MB L3 cache, while each CPU core has a

48KB L1D cache, 32KB L1I cache, 1280KB L2 cache. The system is

equipped with 512GB DRAM and 4TB PM (eight 256GB Barlow Pass

DIMM per socket). In our evaluation, threads are pinned to NUMA

node 0, and are only allowed to access the local DRAM and PM to

avoid NUMA effects. We install a PM-aware file system (Ext4-DAX)

in fsdaxmode to manage PM devices. Then, we map large files into

the virtual address using PMDK [23] to serve tree nodes allocation.

We evaluate the performance of two persistence modes, eADR and

ADR. To persist a store, we use clwb and mfence in ADR mode

and solely use mfence in eADR mode.

Compared Systems. We compare NBTree against seven state-

of-the-art persistent B+-Trees, including NVTree,WB+Tree, FPTree,

RNTree, BzTree, FAST&FAIR, and uTree. We directly use the open-

sourced code of uTree [15], FAST&FAIR [29], BzTree [30], and

RNTree [38]. We borrow Liu’s [38] implementations of WB+Tree,

FPTree, and NVTree. We skip the evaluation of the multi-threaded

performance of NVTree and WB+Tree as their implementations

do not support concurrency control. For variable-sized keys, we

only compare NBTree with BzTree as the implementations of other

trees do not support this function.

Default Configuration. We warm up each tree with 16 million

key-value pairs and then run enough time for different workloads.

By default, we use 8-byte keys and values. For variable-sized keys

and values, we store them in the external memory region, and only

Figure 5: The average latency of base operations. (Single

thread, uniform access.)

keep the pointers (48-bit) in indexes to indicate their addresses.

The node size of each tree is configured to 1KB. We run all trees in

eADR mode except in Section 6.5.

6.2 Single Thread Evaluation

In this section, we evaluate the single-thread performance of base

operations (search, insert, update, and delete) in eADR mode. We

run individual operations under random key-access distribution

and then calculate the average latency.

As shown in Figure 5, NBTree achieves the lowest latency in

every base operation. As the persistence overhead of a write is

hidden by CPU caches in eADR mode, we attribute the good per-

formance of NBTree to low PM line reads. In most cases, NBTree

only causes one PM line read in each operation because it places

the metadata of the leaf nodes in DRAM and uses fingerprints to

filter the unmatched keys. The only PM overhead of NBTree comes

from accessing the matched key-value pairs.

In contrast, as illustrated in Table 1, other persistent B+-Trees

produce more PM line reads, resulting in higher latency. We con-

clude the sources of PM line reads in the following: (1) Most of the

B+-Trees need to access the metadata of the leaf node. The metadata

is often stored in different PM lines from the actual key-value pair,

resulting in additional PM line reads. (2) Searching in the leaf node

causes multiple PM line reads. FAST&FAIR and NVTree use linear

search to locate the key-value pair, which needs to traverse half

of the leaf on average. WB+Tree, RNTree, and BzTree perform the

binary search, which has a similar PM overhead to the linear search

when the array size is small. (3) FAST&FAIR and BzTree produce

extra PM line reads when they perform inner node search because

they store inner nodes in PM. (4) uTree invokes additional PM line

reads to access the sibling node in the linked list, which shows poor

locality with the current node. (5) BzTree applies PMwCAS [51] to

atomically persist the modification. Each PMwCAS produces multiple

PM line reads to access the descriptors.

6.3 Multi-threaded Evaluation

We evaluate the multi-threaded performance of base operations

under random key access distribution. As shown in Figure 6, NBTree

achieves the highest throughput in each operation. Compared with

other trees, the throughput of NBTree in 56 threads is 1.6-7.5×

higher on insert, 1.5-5.0× higher on update, 2.0-4.9× higher on

delete, 1.6-5.1× higher on search. This is primarily because NBTree

minimizes both PM line reads and writes. Reducing PM line writes

in eADR-enabled PM systems is important. The reason is that the

modified PM lines in CPU caches are eventually evicted to PM with

1195

Figure 6: The throughput of base operations. (56 threads, uni-

form access. NBTree-SL applies the single-layer leaf nodes.)

Figure 7: The space consumption of DRAM and PM after

initializing the trees with 16M key-value entries (Left) and

inserting 16M more key-value entries to the trees (Right).

low bandwidth. Multi-threaded writes can saturate CPU caches and

WPQ, resulting in high latency. Besides, excessive PM line reads also

degrade the multi-threaded performance due to the high latency.

NBTree scales well in the multi-threaded evaluation as it limits

the PM line read/writes per operation to 1 in most cases. Figure 6

also shows that the two-layered leaf node design speeds up the

insert operations by 2.4× because it absorbs metadata modifications

in DRAM. Furthermore, although the UDS operations do not modify

the metadata due to the optimization of NBTree, the two-layered

leaf node design still improves their throughputs by up to 29% due to

fewer PM line reads. Meanwhile, the additional DRAM consumption

from the metadata layer is tolerable. As shown in Figure 7, the ratio

of DRAM and PM consumption in NBTree is around 1:7, which

is close to the ratio of our testbed configuration (1:8). In practice,

this ratio will be much smaller if the value size is large because the

values only reside in PM.

As shown in Table 1, other persistent indexes have lower scala-

bility for their high PM line read/writes. We have analyzed the cost

of PM reads in detail in Section 6.2. Compared with NBTree, other

trees produce extra PM line writes in the following aspects: (1) They

modify the persistent metadata of the leaf nodes for various usages,

such as correct recovery, traversal acceleration, and concurrency

control. (2) BzTree produces the most PM line writes because it

needs to record a descriptor in each PMwCAS, resulting in the low-

est scalability. (3) FAST&FAIR causes additional PM line writes to

maintain the order of leaf nodes. As a result, its throughputs on

insertions and deletions are low.

6.4 YCSB Evaluation

In this section, we evaluate the performance of persistent B+-Trees

with real-world YCSB [9] workloads. We generate the skewed (zip-

fian key access distribution) and read-write mixture workloads

(a) Throughput (b) 99% tail latency

Figure 8: The throughput and 99% tail latency under YCSB

workload. (Read:write=50:50, skewness=0.99. NBTree-W dis-

ables lock-freewrite schemes. NBTree-WRdisables both lock-

free write and read schemes.)

based on YCSB. By default, the write operations in the workload

are upsert. Upsert will insert a new key if the target key does not

exist. Otherwise, it performs an update.

Overall Evaluation. Figure 8 reports the evaluation results

under YCSB workload (read:write=50:50) in a zipfian key access

distributionwith the default 0.99 skewness.We observe that NBTree

has almost linear scalability on throughput and near-constant 99%

tail latency with the increase of threads, while other trees only

scale up to 14 threads. In 56 threads, NBTree achieves 6.0× higher

throughput and 32× lower 99% tail latency than other trees.

We attribute the high performance of NBTree to our efficient

lock-free design. The skewed workload often introduces a lot of

leaf-level conflicts. The lock-free leaf node operations in NBTree

can scale well under high contentions. When operating on the leaf

that is not performing SMO, NBTree only employs a small number

of atomic primitives to support lock-free access. When operating

on the leaves in SMO, UDS operations fix the potential anomaly by

our proposed techniques, such as three-phase SMO, sync-on-write,

and sync-on-read, which only introduces at most one additional

leaf node search and one CAS primitive. Concurrent insertions also

apply cooperative SMO to achieve lock-free accesses. Besides, as the

writes happen infrequently in inner nodes, our proposed shift-aware

search and HTM-based updates can also scale well.

To better demonstrate the impact of our lock-free design and

illustrate the performance gap between NBTree and other indexes,

we implement two additional versions of NBTree. NBTree-W dis-

ables our lock-free write schemes and applies node-grained write-

locks instead. As shown in Figure 8, NBTree achieves 5.5× higher

throughput than NBTree-W due to our lock-free write design. Mean-

while, FAST&FAIR and uTree achieve similar performance with

NBTree-W as they use similar schemes for concurrency control.

NBTree-WR further disables our lock-free read approaches and

replaces them with HTM-based read, which is used in FPTree and

RNTree. We find that NBTree-W achieves 1.8× higher throughput

than NBTree-WR. Moreover, NBTree-WR is still 1.9× faster than

RNTree and 2.6× faster than FPTree due to our PM-friendly design.

As for BzTree, it achieves lock-free by utilizing PMwCAS, which is an

optimistic approach implemented by a series of CAS and RDCSS [19]

1196

(a) Throughputs-skewness (b) Throughputs-write ratio

(c) 99% tail latency-skewness (d) 99% tail latency-write ratio

Figure 9: The performance varying the write ratio and skew-

ness under YCSB workload.

operations. However, PMwCAS is vulnerable to high contentions and

brings high software overhead [35]. Therefore, BzTree has the worst

performance despite its lock-free design.

Effect of Skewness. Figure 9(a) and Figure 9(c) report the evalua-

tion results whenwe vary the skewness (zipfian coefficient) in YCSB

workload (read:write=50:50). We notice that NBTree has better per-

formance with the increase of skewness. The reason is two-fold:

(1) Our efficient lock-free designs prevent the concurrency control

from becoming the performance bottleneck. (2) Our cache-friendly

designs, including in-place update and log-structured insert, have

larger effects with the increase of the skewness. Those designs

increase the possibility of write combining and write hits in CPU

caches, which saves the PM write bandwidth.

With the increase of skewness, other trees have a slight perfor-

mance improvement when the skewness is less than 0.8, which

benefits from better cache utilization. When the skewness is larger

than 0.8, they have a dramatic performance drop because they

cannot scale well under frequent leaf-level contentions.

Effect of Write Ratio. Figure 9(b) and Figure 9(d) show the eval-

uation results when we vary the write ratio of the YCSB workload

(skewness=0.99). We observe that the performance gap becomes

larger between NBTree and other B+-Trees with the increase of

write ratio. NBTree achieves 11× higher throughput and 43× lower

99% tail latency under the write-only workload. This is because

NBTree applies efficient lock-free algorithms for both reads and

writes. In contrast, previous works focus on the optimization of

concurrent reads but do not support efficient concurrent writes.

Effect of Large Key/Value. Figure 10 reports the evaluation of

indexes when the key-value size is larger than 8 bytes. We observe

that NBTree still achieves significantly higher throughput than

other indexes, especially when the skewness is high. However,

(a) 256-byte value (b) 32-byte key

Figure 10: The YCSB performance of the indexes with large

key/value. (Read:write=50:50, skewness=0.99.)

Figure 11: The PM overhead of the leaf nodes in eADR/ADR

mode. (Single thread, uniform access.)

the performance gap between NBTree and other indexes becomes

smaller. The reason is two-fold: (1) The PM write bandwidth is

dominated by persisting large values, dwarfing the performance

benefits from our optimization on NBTree. (2) NBTree employs the

8-byte pointers to indicate variable-sized keys, which incurs a lot

of pointer dereferences in inner node search. In contrast, Bztree

continuously stores the variable-sized keys in a single node, which

avoids expensive pointer dereferences.

6.5 Comparison of Persistence Modes

In this section, we first compare the performance of persistent

indexes between two persistence modes: ADR and eADR. Then, we

evaluate the performance of NBTree in the pure DRAM setting.

Figure 11 reports the PM overhead of the leaf nodes in two per-

sistence modes. Firstly, we find that the PM overhead of all trees is

reduced in eADR mode, compared with ADR mode. The primary

reason is that the latency on the critical path caused by flush in-

structions is removed. For example, FAST&FAIR has a significant

performance improvement because eADR minimizes the large over-

head of data shifts to keep arrays sorted. The performance of BzTree

also improves a lot because a large number of flush instructions

needed by PMwCAS are removed. However, PMwCAS is still costly

due to excessive PM accesses, resulting in the poor performance of

BzTree. Secondly, we observe that NBTree has the lowest PM over-

head in ADR mode. This is attributed to our PM-friendly designs,

which cost only one flush instruction in each write operation.

Figure 12 shows the performance of two persistencemodes under

YCSB workload (56 threads, read:write=50:50, skewness=0.99). We

1197

Figure 12: The performance in

ADR/eADR mode under YCSB

workloads.

Figure 13: The perfor-

mance of base operations

on the DRAM setting.

have the following four observations. First, NBTree achieves the

most performance improvement with the eADR support. This is

because the cache-friendly designs (e.g. in-place update, and log-

structured insert) of NBTree take effect in eADR mode. Second,

NBTree also performs the best among all trees in ADR mode due to

the lock-free design. However, the dirty read anomaly is likely to

happen in ADR mode because the CPU caches are volatile. Third,

uTree and FAST&FAIR also speed up significantly because of the

better cache utilization in eADR mode. Fourth, RNTree, FPTree,

and BzTree do not benefit from eADR because their concurrency

control is vulnerable to high contentions.

Figure 13 shows the performance of NBTree in a pure DRAM

setting (uniform access). We observe that NBTree achieves 1.7×

higher throughput on search operations and 1.8× higher throughput

on insert operations when running on DRAM. We attribute this

to the limited bandwidth and high latency of PM compared with

DRAM. Meanwhile, NBTree has comparable performance with

state-of-the-art indexes (e.g. ART [34]) designed for DRAM because

NBTree avoids using redundant operations to guarantee durability.

6.6 End-to-End Evaluation

Redis [44] is a popular in-memory key-value store using a hash table

as its index. We use the multi-threaded version of the Redis [48]

and replace its internal index with our evaluated trees. We run 28

threads on the Redis server in our evaluation. NBTree achieves the

throughput of 1719.4 Kops/s, which is 1.13-1.53× higher than other

state-of-the-art persistent B+-Trees under the YCSB-A workload [9].

The evaluation results confirm our previous experiments. Note that

the performance gap among indexes becomes smaller due to the

high software overhead of Redis.

7 RELATEDWORK

Indexes Optimized for PM. In ADR-based PM systems, the

slow write is the performance bottleneck of persistent indexes

because flush instructions introduce high latency on the critical

path. Therefore, previous works have proposed various ways to

optimize the write performance of persistent indexes. Most per-

sistent B+-Trees, such as WB+Tree [3], NVTree [56], FPTree [43],

RNTree [39], and LB+Tree [37], implement the unsorted leaf nodes.

The reason is that inserting or deleting an element of the sorted

leaf node produces lots of PM writes to shift array elements. FPTree

firstly proposes the selective persistence technique to place inner

nodes in DRAM, which speeds up the inner node operations. The

volatile inner nodes can be reconstructed from persistent leaf nodes

after a crash. RNTree and ROART [40] further remove the flush

instructions when modifying reconstructable metadata in the leaf

node to reduce the critical path latency. uTree places the sorted

leaf nodes in DRAM and adds a persistent shadow list-based layer

to ensure crash consistency. In this way, uTree offloads the expen-

sive structural refinement operations (SRO) to DRAM. Persistent

hash indexes, such as level hashing [61], path hashing [60], and

CCEH [42], also make lots of efforts to write-efficient designs.

Concurrency Control for Persistent Indexes. Previous works

propose various concurrency control strategies for persistent in-

dexes to leverage the benefits of multi-core processors. For per-

sistent B+-Trees, FPTree proposes the selective concurrency tech-

nique, which handles the concurrency of inner nodes by HTM and

serializes the accesses of leaf nodes by the node-grained locks. It im-

proves the scalability in the situation with infrequent contentions

but performs poorly in skewed workloads. Based on FPTree, RN-

Tree excludes some slow persistent instructions out of the critical

section to achieve more concurrency in the leaf nodes. FAST&FAIR

designs a lock-free search algorithm inspired by B-link tree [33],

which tolerates the transient inconsistent states caused by write

transactions. It improves search performance but tends to cause

consistency problem [32]. uTree supports lock-free concurrency

control for the list layer but still uses the coarse-grained locks in the

leaf nodes. BzTree [2] develops the first lock-free persistent B+-Tree

with PMwCAS [51], which guarantees both the atomicity and persis-

tence of multi-word writes. However, PMwCAS causes high software

overhead, and it is also vulnerable to high contentions [35]. As for

hash-based persistent indexes, most of them are lock-based, such

as level hashing [61], CCEH [42], and CMAP [22]. P-CLHT [32] is

a persistent version of CLHT [11], which supports lock-free search.

Clevel hashing [6] is the concurrent version of level hashing, which

uses atomic primitives to implement lock-free algorithms. However,

it doesn’t address the dirty read anomaly.

8 CONCLUSION

Existing persistent indexes suffer from low scalability and high

PM overhead. Fortunately, the new platform feature for persistent

memory (PM) called eADR offers opportunities to build lock-free

persistent indexes and unleash the potential of PM. In this paper,

we propose a lock-free PM-friendly B+-Tree, named NBTree, which

leverages the benefits of eADR. To achieve high scalability, NBTree

develops lock-free concurrency control strategies. To reduce PM

overhead, NBTree proposes a two-layer leaf node structure, which

reduces PM line accesses and improves cache utilization. The real-

world YCSB evaluation shows that NBTree achieves up to 11×

higher throughput and 43× lower 99% tail latency than state-of-the-

art persistent B+-Trees.

ACKNOWLEDGMENTS

This work was supported by Natural Science Foundation of Shang-

hai (No. 21ZR1433600, 22ZR1435400), and Shanghai Municipal Sci-

ence and Technology Major Project (No. 2021SHZDZX0102). We

also thank Liangxu Nie and Yanyan Shen for their assistance and

valuable feedback.

1198

REFERENCES
[1] Andrei Alexandrescu. 2004. Generic< Programming>: Lock-Free Data Structures.

In C++ Users Journal. Citeseer.
[2] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. 2018.

BzTree: A high-performance latch-free range index for non-volatile memory.
Proceedings of the VLDB Endowment 11, 5 (2018), 553–565.

[3] Shimin Chen and Qin Jin. 2015. Persistent b+-trees in non-volatile main memory.
Proceedings of the VLDB Endowment 8, 7 (2015), 786–797.

[4] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu. 2020. uTree:
a persistent B+-tree with low tail latency. Proceedings of the VLDB Endowment
13, 12 (2020), 2634–2648.

[5] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, YangWang, and Jiwu Shu. 2020.
FlatStore: An efficient log-structured key-value storage engine for persistent
memory. In Proceedings of the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems. 1077–1091.

[6] Zhangyu Chen, Yu Huang, Bo Ding, and Pengfei Zuo. 2020. Lock-free Concur-
rent Level Hashing for Persistent Memory. In 2020 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 20). 799–812.

[7] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Rajesh K Gupta,
Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making persistent objects fast
and safe with next-generation, non-volatile memories. ACM SIGARCH Computer
Architecture News 39, 1 (2011), 105–118.

[8] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek, Ben-
jamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O through byte-
addressable, persistent memory. In Proceedings of the ACM SIGOPS 22nd sympo-
sium on Operating systems principles. 133–146.

[9] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[10] Tudor David, Aleksandar Dragojevic, Rachid Guerraoui, and Igor Zablotchi.
2018. Log-free concurrent data structures. In 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18). 373–386.

[11] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2015. Asynchronized
concurrency: The secret to scaling concurrent search data structures. ACM
SIGARCH Computer Architecture News 43, 1 (2015), 631–644.

[12] Subramanya RDulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj
Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System software for persistent
memory. In Proceedings of the Ninth European Conference on Computer Systems.
1–15.

[13] Keir Fraser. 2004. Practical lock-freedom. Technical Report. University of Cam-
bridge, Computer Laboratory.

[14] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. 2018. A
persistent lock-free queue for non-volatile memory. ACM SIGPLAN Notices 53, 1
(2018), 28–40.

[15] Storage Research Group. 2020. uTree. Tsinghua University. Retrieved Augest 26,
2021 from https://github.com/thustorage/nvm-datastructure

[16] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. 2020. Understanding the
idiosyncrasies of real persistent memory. Proceedings of the VLDB Endowment
14, 4 (2020), 626–639.

[17] Jim Handy. 2015. Understanding the intel/micron 3d xpoint memory. Proc. SDC
(2015).

[18] Timothy LHarris. 2001. A pragmatic implementation of non-blocking linked-lists.
In International Symposium on Distributed Computing. Springer, 300–314.

[19] Timothy L Harris, Keir Fraser, and Ian A Pratt. 2002. A practical multi-word
compare-and-swap operation. In International Symposium on Distributed Com-
puting. Springer, 265–279.

[20] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018.
Endurable transient inconsistency in byte-addressable persistent b+-tree. In 16th
{USENIX} Conference on File and Storage Technologies ({FAST} 18). 187–200.

[21] Intel. 2016. Deprecating the PCOMMIT Instruction. Retrieved Augest 26, 2021
from https://software.intel.com/content/www/us/en/develop/blogs/deprecate-
pcommit-instruction.html

[22] Intel. 2019. Key/Value Datastore for Persistent Memory. Retrieved Augest 26,
2021 from https://pmem.io/pmemkv/index.html

[23] Intel. 2020. Persistent Memory Development Kit. Retrieved Augest 26, 2021 from
http://pmem.io/pmdk

[24] Intel. 2021. eADR: New Opportunities for Persistent Memory Applications.
Retrieved Augest 26, 2021 from https://software.intel.com/content/www/
us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-
applications.html

[25] Intel. 2021. Intel 64 and IA-32 Architectures Optimization Reference Manual.
Retrieved Augest 26, 2021 from https://software.intel.com/sites/default/files/
managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf

[26] Tomas Karnagel, Roman Dementiev, Ravi Rajwar, Konrad Lai, Thomas Legler,
Benjamin Schlegel, and Wolfgang Lehner. 2014. Improving in-memory database
index performance with Intel® Transactional Synchronization Extensions. In

2014 IEEE 20th International Symposium on High Performance Computer Architec-
ture (HPCA). IEEE, 476–487.

[27] Wook-Hee Kim, R Madhava Krishnan, Xinwei Fu, Sanidhya Kashyap, and Chang-
woo Min. 2021. PACTree: A High Performance Persistent Range Index Using
PAC Guidelines. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles CD-ROM. 424–439.

[28] RMadhava Krishnan, Wook-Hee Kim, Xinwei Fu, Sumit Kumar Monga, HeeWon
Lee, Minsung Jang, Ajit Mathew, and Changwoo Min. 2021. Tips: Making volatile
index structures persistent with DRAM-NVMM tiering. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21).

[29] Data Intensive Computing Lab. 2020. FAST&FAIR. SKKU/UNIST. Retrieved
Augest 26, 2021 from https://github.com/DICL/FAST_FAIR

[30] Data-Intensive Systems Lab. 2018. BzTree. Simon Fraser University. Retrieved
Augest 26, 2021 from https://github.com/sfu-dis/bztree

[31] Se Kwon Lee, K Hyun Lim, Hyunsub Song, Beomseok Nam, and SamHNoh. 2017.
{WORT}: Write optimal radix tree for persistent memory storage systems. In
15th {USENIX} Conference on File and Storage Technologies ({FAST} 17). 257–270.

[32] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay
Chidambaram. 2019. Recipe: Converting concurrent dram indexes to persistent-
memory indexes. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles. 462–477.

[33] Philip L Lehman and S Bing Yao. 1981. Efficient locking for concurrent operations
on B-trees. ACM Transactions on Database Systems (TODS) 6, 4 (1981), 650–670.

[34] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix tree:
ARTful indexing for main-memory databases. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE). IEEE, 38–49.

[35] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas
Willhalm. 2019. Evaluating persistent memory range indexes. Proceedings of the
VLDB Endowment 13, 4 (2019), 574–587.

[36] Justin J Levandoski, David B Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for new hardware platforms. In 2013 IEEE 29th International Conference
on Data Engineering (ICDE). IEEE, 302–313.

[37] Jihang Liu, Shimin Chen, and LujunWang. 2020. LB+ Trees: Optimizing persistent
index performance on 3DXPoint memory. Proceedings of the VLDB Endowment
13, 7 (2020), 1078–1090.

[38] Mengxing Liu. 2020. RNTree. Tsinghua University. Retrieved Augest 26, 2021
from https://github.com/liumx10/ICPP-RNTree

[39] Mengxing Liu, Jiankai Xing, Kang Chen, and Yongwei Wu. 2019. Building
Scalable NVM-based B+ tree with HTM. In Proceedings of the 48th International
Conference on Parallel Processing. 1–10.

[40] Shaonan Ma, Kang Chen, Shimin Chen, Mengxing Liu, Jianglang Zhu, Hongbo
Kang, and Yongwei Wu. 2021. ROART: Range-query Optimized Persistent ART.
In 19th {USENIX} Conference on File and Storage Technologies ({FAST} 21). 1–16.

[41] Maged M Michael. 2002. High performance dynamic lock-free hash tables and
list-based sets. In Proceedings of the fourteenth annual ACM symposium on Parallel
algorithms and architectures. 73–82.

[42] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H Noh, and Beomseok
Nam. 2019. Write-optimized dynamic hashing for persistent memory. In 17th
{USENIX} Conference on File and Storage Technologies ({FAST} 19). 31–44.

[43] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A hybrid SCM-DRAM persistent and concurrent B-tree
for storage class memory. In Proceedings of the 2016 International Conference on
Management of Data. 371–386.

[44] Redis. 2009. Redis. Retrieved Augest 26, 2021 from https://redis.io
[45] Andy Rudoff. 2017. Persistent memory programming. Login: The UsenixMagazine

42, 2 (2017), 34–40.
[46] A Rudoff. 2020. Persistent memory programming without all that cache flushing.

SDC (2020).
[47] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, Roy H Camp-

bell, et al. 2011. Consistent and Durable Data Structures for Non-Volatile Byte-
Addressable Memory.. In FAST, Vol. 11. 61–75.

[48] Vipshop. 2017. Redis. Retrieved Augest 26, 2021 from https://github.com/vipshop/
vire

[49] Haris Volos, Andres Jaan Tack, and Michael M Swift. 2011. Mnemosyne: Light-
weight persistent memory. ACM SIGARCH Computer Architecture News 39, 1
(2011), 91–104.

[50] QingWang, Youyou Lu, Junru Li, and Jiwu Shu. 2021. Nap: A black-box approach
to numa-aware persistent memory indexes. In Proceedings of the 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), Virtual.

[51] Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. 2018. Easy lock-free
indexing in non-volatile memory. In 2018 IEEE 34th International Conference on
Data Engineering (ICDE). IEEE, 461–472.

[52] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swanson, and
Jishen Zhao. 2020. Characterizing and modeling non-volatile memory systems.
In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 496–508.

[53] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A hybrid index
key-value store for DRAM-NVM memory systems. In USENIX ATC 17. 349–362.

1199

[54] Jian Xu and Steven Swanson. 2016. {NOVA}: A log-structured file system for
hybrid volatile/non-volatile main memories. In 14th {USENIX} Conference on
File and Storage Technologies ({FAST} 16). 323–338.

[55] Jian Yang, Juno Kim,MortezaHoseinzadeh, Joseph Izraelevitz, and Steve Swanson.
2020. An empirical guide to the behavior and use of scalable persistent memory.
In 18th {USENIX} Conference on File and Storage Technologies ({FAST} 20). 169–
182.

[56] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. 2015. NV-Tree: Reducing consistency cost for NVM-based single
level systems. In 13th {USENIX} Conference on File and Storage Technologies
({FAST} 15). 167–181.

[57] Bowen Zhang. 2021. The consistency issue in the inner node search of FAST&FAIR.
Retrieved December 13, 2021 from https://github.com/DICL/FAST_FAIR/issues/
16

[58] Shengan Zheng, Morteza Hoseinzadeh, and Steven Swanson. 2019. Ziggurat: a
tiered file system for non-volatile main memories and disks. In 17th {USENIX}
Conference on File and Storage Technologies ({FAST} 19). 207–219.

[59] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. 2019. DPTree:
differential indexing for persistent memory. Proceedings of the VLDB Endowment
13, 4 (2019), 421–434.

[60] Pengfei Zuo and Yu Hua. 2017. A write-friendly and cache-optimized hashing
scheme for non-volatile memory systems. IEEE Transactions on Parallel and
Distributed Systems 29, 5 (2017), 985–998.

[61] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-optimized and high-performance
hashing index scheme for persistent memory. In 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18). 461–476.

[62] Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez Petrank.
2019. Efficient lock-free durable sets. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 1–26.

1200

