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Abstract—Emerging byte-addressable persistent memory (PM) has the potential to disrupt the boundary betweenmemory and storage.

Combined with high-speedRDMAnetworks, distributed PM-based storage systems offer the opportunity to provide huge increases in

storage performance by closely coupling PM and RDMA features. However, existing distributed file systems adopt the conventional

centralized client-server architecture designed for traditional disks, leading to excessive access latency, limited scalability, and high

recovery overhead. In this paper, we propose a fully decentralized PM-based file system, Hydra. By exploiting the performance

advantages of local PM, Hydra leverages data access locality to achieve high performance. To accelerate file transmission amongHydra

nodes, file metadata and data are decoupled and updated differentially through one-sided RDMA reads. Hydra also batches RDMA

requests and classifies RPCs into synchronous and asynchronous types to minimize network overhead. Decentralization enables Hydra

to tolerate node failures and achieve load balancing. Experimental results show that Hydra outperforms existing distributed file systems

by a largemargin, and shows good scalability onmulti-threaded and parallel workloads.

Index Terms—Persistent memory, file system, RDMA, distributed system, decentralization

Ç

1 INTRODUCTION

EMERGING persistent memory (PM), such as Intel Optane
DC Persistent Memory Module (Optane DCPMM) [1], is

blurring the line between memory and storage. Byte-
addressable, non-volatile PM enables applications to directly
access persistent data in the main memory. Compared with
conventional storage devices (e.g., HDD or SSD), PM offers
near-DRAM access latency and bandwidth. PM-aware stor-
age systems promise to significantly improve application
performance.

Recent advances in Remote Direct Memory Access
(RDMA) technologies enable programmers to build efficient
distributed storage systems that combine PM storage and
RDMA networks. RDMA is a memory access technique that
enables network interface cards (NICs) to directly access
remote memory. Several PM-based distributed file sys-
tems [2], [3] have been proposed to exploit the benefits of PM
and RDMA networks. Different from disk-based distributed
file systems [4], [5], [6] that isolate file system and network

layers for simplicity, these file systems install PM on server
nodes to store metadata and data, and closely couple PM and
RDMA features to achieve high performance and reliability.
For metadata and data management, these file systems adopt
the conventional centralized client-server architecture that
uses main memory as the volatile cache for clients. Upon file
access, file metadata and data are fetched from remote servers
to thememory buffer on local clients to serve I/O requests.

However, conventional centralized client-server architec-
ture falls short in leveraging the full potential of PM and
RDMA networks in PM-based distributed file systems. First,
compared with traditional disk-based distributed systems,
the major performance bottleneck of PM-based distributed
storage systems has shifted from storage to network. Con-
trary to the historical trend, network latency is expected to
remain far above PM latency for the foreseeable future, due
to propagation delay and network round trip [7]. Local PM
I/O significantly reduces access latency than remote access
via RDMA networks. Second, the centralized client-server
architecture limits system scalability. Centralized servers
simplify the coordination between clients at the cost of poor
scalability. The problem becomes even worse when the serv-
ers are running on real Optane DCPMM, since its I/O perfor-
mance does not scale well with thread count [8], [9], [10].
Third, client-side DRAM cache increases server monetary
costs and introduces high recovery overhead upon power or
system failure on client nodes. The per-GB cost of Optane
DCPMM is only around 39% that of DRAM [11]. Moreover,
DRAM-based client nodes must rebuild metadata and data
cache from remote servers from scratch during recovery,
which increases recovery overhead as well as server load.

The unique characteristics of PM and RDMA technologies
provide the opportunity to interconnect the local PM-aware
file systems on individual storage servers into a rack-scale
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file system cluster, in which file metadata and data are disag-
gregated among cluster nodes and connected through high-
speed RDMA networks. On each cluster node, file data is
stored locally and durably, allowing applications to take
advantage of the high performance and large capacity of
local PM during runtime, and quickly recover after a system
crash. However, using PM as persistent storage on applica-
tion-side cluster nodes presents a host of challenges. The syn-
chronization between stale and latest file copies on different
cluster nodes should be efficient and scalable. The decentral-
ized file system cluster should tolerate arbitrary node failure
gracefully and balance the load among nodes during
runtime.

We present Hydra, a decentralized file system designed
to improve scalability and fault tolerance by taking advan-
tage of directly accessible persistent memory and high-
speed RDMA networks. Hydra is the first distributed
persistent memory file system to systematically optimize
for scalability throughout its design. Different from the tra-
ditional paradigm that strictly separates storage servers
from clients, Hydra combines them into a set of PM-
equipped nodes, and connects them with RDMA networks
to form a decentralized file system cluster. Hydra leverages
the data access locality by fully exploiting the performance
advantages of local PM to minimize I/O latency. To acceler-
ate file transmission among nodes, Hydra proposes differen-
tial file update scheme to transmit the file metadata and data
differentially via one-sided RDMA reads from remote
nodes. To achieve load balancing, file metadata and data
are decoupled and replicated across Hydra nodes dynami-
cally. Hydra also introduces RDMA request batching and
RPC classification mechanisms to leverage the full potential
of RDMA networks to minimize the overhead of file meta-
data and data transmission. Furthermore, Hydra supports
online node addition and removal, providing high elasticity
and flexibility.

The contributions of this paper include:

� We propose Hydra, a fully decentralized distributed
file system that takes full advantage of data locality
on local persistent memory to achieve high scalabil-
ity, high availability, and crash consistency.

� We design a differential file update scheme to accel-
erate file transmission and node recovery by trans-
mitting file metadata and data differentially through
one-sided RDMA reads.

� We describe how Hydra tolerates arbitrary node fail-
ures and balances the load among cluster nodes.

� We implement and evaluate Hydra. Experimental
results show that Hydra demonstrates good scal-
ability on multi-threaded and parallel workloads,
and significantly outperforms existing distributed
file systems.

The remainder of the paper is organized as follows. Sec-
tion 2 provides the background on PM-aware file systems
and RDMA networks. Section 3 presents the design overview
of Hydra. We describe the file transmission mechanism, clus-
ter management, and RDMA optimization techniques in Sec-
tions 4, 5, and 6, respectively. The experimental results are
presented in Section 7. Section 8 discusses related work, and
Section 9 concludes the paper.

2 BACKGROUND AND MOTIVATION

Hydra is a distributed file system designed for PM and
RDMA networks. This section provides background on PM,
the NOVA file system that Hydra is based on, and RDMA
technology. We conclude by motivating the need for a new
distributed PM file system that is fully decentralized.

2.1 PM and PM-Aware File Systems

Persistent memories such as STT-RAM, ReRAM, and PCM
provide data persistency, byte-addressability, as well as
access latency and bandwidth within an order of magnitude
of DRAM. Persistent memories are directly attached to the
main memory bus alongside DRAM, and can be accessed
via a load/store interface. Intel Optane DCPMM [1] is the
first commercially available persistent memory DIMM.

The high performance and non-volatility of PM have
attracted extensive research efforts on local PM-aware file
systems in the last decade [12], [13], [14], [15], [16], [17], [18],
[19], [20]. Among them, NOVA [17], [21] is a state-of-the-art
PM-based file system designed to maximize performance
while providing strong consistency guarantees. NOVA uses
per-CPU free lists, journals, and inode tables to ensure good
multi-core scalability. For each file, NOVA maintains a sep-
arate log in PM, which consists of a singly linked list of 4 KB
log pages. The relationship between the inode, its log, and
its data pages is illustrated in Fig. 1. The tail pointer in the
inode points to the latest committed entry in the log. For
each file update, NOVA creates the corresponding log entry
in its log, and atomically updates the log tail pointer in PM.
To accelerate file access, NOVA maintains a radix tree in
DRAM that maps file offsets to data page addresses in PM.

SinceNOVA fully exploits the performance benefits of PM
and the multi-core scalability of CPU, and its log-structured
file design naturally fits Hydra’s differential file update
scheme for its linearizability, we implement Hydra based on
NOVA. Specifically, Hydra inherits the design of log-struc-
tured file layout and scalable memory allocators from
NOVA. In Hydra, the head and tail pointers are also used to
maintain the file logs connected through linked lists. Stale
files can be synchronized with their latest versions by trans-
mitting and replaying the differential file logs. Nevertheless,
we also make necessary adjustments to the content of log

Fig. 1. The file structure of NOVA and Hydra. The file log contains inode
update entries and file write entries. These file write entries contain
pointers to data pages.
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entries to enable Hydra to manage the log and data pages
across distributed cluster nodes. Hydra also maintains an
inode table, journal, and PM free page list at each CPU to
avoid global locking. This helps Hydra to avoid scalability
bottlenecks on each cluster node.

2.2 Remote Direct Memory Access

RDMA provides low-latency and high-bandwidth remote
memory access by directly accessing memory from remote
servers. In the Reliable Connection (RC) mode, nodes are
connected with a pair of send/receive queues (queue pairs,
QPs). Applications initiate RDMA requests by placing work
queue entries (WQEs) in the send queue. After completing
an RDMA request, the NIC signals the completion by post-
ing a completion queue entry (CQE) to the completion
queue (CQ). The applications can poll for the completion
from the CQ to receive notification that the requests have
been completed successfully.

RDMA supports read/write operations (one-sided verbs)
as well as send/receive operations (two-sided verbs)
between two nodes. One-sided verbs deliver higher through-
put by directly accessing the pre-registered memory region
exposed by the remote host, without notifying the host CPU.
For two-sided verbs, the remote CPU is involved in handling
the RDMA requests. In addition, RDMA provides atomic
verbs such as compare-and-swap (CAS) and fetch-and-add
(FAA) to atomically update 64-bit data in remotememory.

Existing RDMA-based RPC requests are sent by either one-
sided [22], [23] or two-sided [24], [25], [26], [27], [28], [29]
verbs. Requests sent through one-sided verbs are written to a
dedicated message buffer on the server. The server threads
busy checking the message buffer for new request arrival.
Such design provides low latency RPC processing at the cost
of high server CPU overhead, which does not fit a scalable
decentralized system. Hydra adopts two-sided verbs for its
RPC implementation to eliminate the cost of busy message
checking at the receiver side, so as to balance the load among
cluster nodes.

2.3 Challenges in Distributed PM File Systems

Emerging high-performance PM and RDMA technologies
are both appealing building blocks for high-performance
distributed storage systems. Incorporating these hardware
technologies in distributed file systems poses new challenges

in terms of (1) system scalability, (2) access latency, and (3)
fault tolerance.

System Scalability. In the conventional client-server archi-
tecture, the centralizedmetadata nodes are used to handle the
metadata access throughout the entire cluster. Even when
employing techniques like replication and partitioning, the
metadata nodes are still vulnerable to skewed file accesses
from massive concurrent accesses. Furthermore, the scalabil-
ity of RDMA NICs declines with the number of active QPs
due to their limited memory [30], leaving the file system
unable to provide scalable metadata service under heavy
workloads.

Access Latency. Compared with the components of tradi-
tional distributed file systems (such as hard disks and Ether-
net), PM and RDMA networks provide substantially higher
performance, which exposes the latency bottlenecks within
the storage stack. At the client side, excessive data copies in
user, kernel, and network buffers drastically increase the
latency of remote data access. At the server side, traditional
RPC handlers introduce substantial CPU overhead during
request processing. Moreover, file data is often transferred
at a coarse granularity, while PM and RDMA networks sup-
port byte-addressable data access, resulting in severe write
amplification and increased data access latency.

Fault Tolerance. Distributed file systems should be capable
of tolerating system failureswhile maintaining high availabil-
ity for both file data and metadata. The potential failures of
distributed file systems include cluster node failures and net-
work partitions. However, distributed file systems that adopt
the centralized client-server architecture are vulnerable to
both. Although some file systems improve availability
through replication approaches, they still suffer from high file
access latency and suspended file service during fail-over.

Distributed PM file systems demand new methods to
improve system scalability, minimize access latency, and
tolerate failures gracefully. As such, we present Hydra, a
fully decentralized PM file system that fully utilizes the
unique characteristics of persistent memory and high-speed
RDMA networks.

3 DESIGN OVERVIEW

Hydra is built for a cluster of servers that are equipped with
PM and RDMA networks. Fig. 2 summarizes its high-level
design components and presents an overview of the Hydra

Fig. 2. The architecture of Hydra. Hydra fully exploits the access locality of local PM and efficient file transmission via differential file update to provide
high scalability and availability to the applications.
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system. In Hydra, a typical I/O workflow of file update
consists of four stages: (1) Permission checking stage.
Hydra acquires the write permission through a lightweight
distributed locking module. The decentralized file locks are
transferred via low-overhead RDMA atomic operations (Sec-
tion 4.3). (2) File synchronization stage. Each Hydra node
manages its local files in a log-structured layout. To fetch the
latest file metadata and data or handle replication requests
from remote nodes, Hydra utilizes a differential file update
scheme (Section 4.2) to transmit differential file logs efficiently
through one-sided RDMA reads. (3) Local I/O stage. Hydra
serves I/O requests with the latest file data on the local node,
taking the advantage of data locality to achieve high perfor-
mance. After file updates, new log entries are appended to the
file log. (4) Data transmission stage. Hydra issues RPC
requests to remote nodes to commit the update. To reduce
network overhead and provide scalable performance, Hydra
employs RDMA request batching and RPC classification
mechanisms (Section 6.1).

In addition, Hydra achieves fast recovery after a system
crash (Section 5.1) and efficient migration during load bal-
ancing (Section 5.2) by exploiting the differential file update
scheme. Hydra also exposes a normal POSIX interface on
each cluster node and supports dynamically adding or
removing cluster nodes during runtime, providing high
elasticity and flexibility to applications. Overall, Hydra
achieves the following design goals:

� Scalable performance: Multi-core and multi-node scal-
ability are essential for Hydra to effectively harness
the performance advantages of PM and RDMA net-
works. Hydra leverages data locality by placing file
data in application-side PM to improve overall per-
formance and achieves multi-node scalability by
adopting RDMA request batching and RPC classifi-
cation mechanisms.

� File transmission with low overhead: Hydra leverages
the linearizability of file logs to implement differen-
tial file update for synchronizing stale files among
cluster nodes. Files are synchronized differentially
among nodes via one-sided RDMA reads, which
accelerates file transmission and eliminates remote
CPU bottleneck.

� High reliability and availability: File metadata and data
are dynamically replicated across all decentralized
Hydra nodes, enabling Hydra to tolerate node failures
without data loss. In the event of a node failure, appli-
cations can fail-over to any other node in the cluster.

� Lightweight coherency mechanism: Since there is no
central metadata server to arbitrate concurrent file
updates, we employ lock tokens to grant file-granular-
ity write permissions to coordinate simultaneous file
accesses in a Hydra cluster. The tokens are exchanged
simply through local/RDMA compare-and-swap
(CAS) operations,minimizing coherence overhead.

� High elasticity: Hydra supports dynamically adding
or removing cluster nodes during runtime, provid-
ing high elasticity and flexibility to applications.

To achieve these design goals, unlike conventional dis-
tributed file systems that strictly differentiate cluster man-
agement nodes, metadata server nodes, data server nodes,
and client nodes, Hydra combines their functionalities into
a single decentralized file system module. Upon file access,
Hydra exploits locality by performing file I/O directly on
the local PM. If the local file is stale or non-existent, Hydra
will update the file to the latest version in the cluster differ-
entially. As for replication, each file in Hydra has at least
two copies (a primary copy and a secondary copy) of meta-
data and data that are distributed among cluster nodes by
default. This enables Hydra to tolerate arbitrary single node
failure without data loss.

4 FILE TRANSMISSION

In this section, we describe how Hydra significantly acceler-
ates file transmission among cluster nodes. We first illustrate
how Hydra updates file metadata and data differentially.
Then, we discuss how Hydra maintains coherency among
the cluster nodes. Finally, we summarize the design of
Hydra by walking through some typical directory and file
operation examples.

4.1 Distributed File Management

As shown in Fig. 3, Hydra has no centralized management
node. Instead, from each file’s perspective, Hydra has three
types of file copies distributed among the cluster nodes.

Fig. 3. The global and local views of the Hydra cluster. After the directories and files have been created on a Hydra cluster (step �1 -�4 ), each node
contains a fraction of the entire file set, but all the files in the cluster are accessible to every node. For newly connected nodes, Hydra creates auxiliary
copies to facilitate directory and file accesses (step�5 and�6 ).
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Primary copy is the authoritative copy of the file. Each file
in Hydra has one primary copy, which is synchronously
updated. The primary copy has the longest metadata log of
the file, as well as a complete copy of file data. The node
that creates the file is designated as its primary node by
default. The identity of the primary node is stored in the
inode and it may change due to migration (during load bal-
ancing) or primary election (upon node failure). In these
cases, Hydra designates another node as primary, and
broadcasts the message to all relevant nodes through RPCs.

Secondary copy is a replicated copy of the file. The nodes
that hold the secondary copies are determined by a variant
of the power of two choices algorithm during file creation (Sec-
tion 5.2). The secondary copies are asynchronously
updated, unless fsync is called to synchronize the file. The
number of secondary copies is set by the user. By default,
there is one secondary copy of each file in the Hydra cluster.

Auxiliary copy is an extra copy of a file. When a file is rep-
licated to a Hydra node, the file itself and its parent direc-
tory must be synchronized with other nodes in order to
maintain the directory tree structure of the local file system
view. If the local node does not currently possess either the
primary or secondary copy of the file/directory, Hydra will
create an auxiliary copy of it. This ensures that each Hydra
node is able to retrieve all its local files via directory tree
walk, and runs like a local file system even when all other
nodes in the Hydra cluster are lost. The auxiliary copies of
files are subject to eviction in an LRU manner when the PM
usage of the node is high. These copies will be retrieved
from the primary/secondary nodes upon next file access.

Hydra provides high availability to applications. As
shown in Fig. 3 step �4 , files and their replicas are distrib-
uted among cluster nodes in Hydra. Each node only con-
tains a fraction of the entire file set, but all the files in the
Hydra cluster are accessible to every node. Stale or non-
existent auxiliary copies of files on the local node are only
synchronized with the latest version when they are
accessed. From each file’s perspective, we refer to the node
that holds the primary/secondary copy of the file as the pri-
mary/secondary node of the file.

Hydra nodes are identified with unique 8-bit global IDs,
which are generated by hashing the RDMA addresses of the
nodes by default. All the nodes in the Hydra cluster periodi-
cally communicate with each other via heartbeat messages.
The heartbeat messages contain the current CPU, network,
and PM usages, which are used for load balancing.

4.2 Differential File Update

Hydra uses differential file update scheme (diff-update)
to update stale (or non-existent) files/directories on the
local node with their latest versions on a remote node.
Diff-update enables any Hydra node to fetch the latest
version of any file from other nodes in the cluster. As shown
in Fig. 2, Diff-update is widely used in Hydra for trans-
mitting directories and files in various scenarios. Hence, the
local and remote transmission overhead of diff-update
is crucial for the overall performance and scalability of the
Hydra cluster. We go through the steps involved during
diff-update in this section.

File Version Verification. Before pulling metadata and data
from a remote node, Hydra first verifies whether the local

version of a file (or a directory) is up-to-date or stale
through local and remote verification. First, Hydra checks
whether the local node is either the primary node or the
token-holder (Section 4.3) of the file. Since any committed
modifications are mirrored in the primary node, and only
the token-holder can modify the file, the file content of
either the token-holder or the primary node is up-to-date.

If local verification fails, Hydra turns to remote verifica-
tion. Hydra issues a small RDMA read to the file metadata
of the primary file copy to retrieve the number of log pages
and the head and tail pointers (Fig. 4 step �1 ). The head
pointer is used to indicate the starting point of the file log,
while the tail pointer is used to calculate the log length of the
file. If the local log length matches the remote one, the local
file is up-to-date. This is because Hydra coordinates file
locks through lock tokens (discussed in Section 4.3). For any
file, only one of the nodes is able to modify it and increase
its log length. As a result, the latest file version is the file
copy of the node with the longest log length. If the local file
is up-to-date, the whole synchronization process takes only
one network roundtrip. Otherwise, the local file has become
obsolete. Hydra initiates the process of differential metadata
and data updates.

In Hydra, the log length is calculated by comparing the
number of log pages and the offset of the tail pointer. As
illustrated in Fig. 1, the number of log pages is the logical
number of the last log page. Therefore, the logical log length
is essentially equivalent to the version number of each file
in Hydra. When a new log page is allocated to the file, the
number of log pages is incremented by one. During garbage
collection, old log pages that only contain invalid logs are
reclaimed. However, the logical number of log pages will
not decrease. If the numbers of the local and remote log
pages match, Hydra compares the in-page offset of the tail
pointers for an accurate comparison of log length.

Metadata Update. Hydra inherits the log-structured file
design of NOVA to organize file metadata and data. Meta-
data update in Hydra is implemented by transmitting dif-
ferential file logs from the source node to the target node.
Since the source node with the latest version of the file is
usually the bottleneck during file replication, we choose

Fig. 4. Differential file update. The local (target) node synchronizes with
the remote (source) node to update the local stale file copy to the latest
version differentially.
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RDMA reads over RDMA writes for metadata and data
updates. For the source node, not only do one-sided RDMA
reads bypass its CPU, serving inbound RDMA reads also
imposes less overhead than issuing outbound RDMA
writes [31].

As shown in Fig. 4, after remote verification �1 , the
addresses of the begin and end log pages are cached locally.
Combining with the number of pages on both nodes, Hydra
is able to calculate the corresponding log address on the
remote node that matches the current log tail on the local
node. Then, the local node pulls the differential logs after its
current log tail through an RDMA read request �2 , and
updates the log tail accordingly. Hydra recursively pulls
the subsequent log pages, if any, using the next-page pointer
in the current log page, until the local log length matches
the remote one.

When the log pages have been fetched, Hydra replays the
logs on the local node to update metadata. For instance, file-
mode-change logs are applied directly, whereas file write
logs are replayed by updating the file radix tree with local/
remote data page pointers in DRAM.

During metadata update, file data is optionally updated
depending on the request type. For instance, file synchroniza-
tion focuses on data integrity, and calls diff-update with
data update. Meanwhile, file open pursues fast log replica-
tion, therefore omits data update. In this case, local data
logs still contain valid pointers to the remote data on other
Hydra nodes (i.e., the black arrows in Fig. 4), which can be
used to retrieve file data upon future access. Optional data
update lowers the latency of diff-update by postponing
data transmission.

Data Update. If the local node requests data update along
with metadata update, the data pages will be fetched
through batched RDMA reads (Section 6.1) to reduce trans-
mission overhead �3 . During the replay of file write logs,
Hydra allocates data pages on local PM and asynchronously
issues the corresponding RDMA read requests to fetch the
data pages from the remote node. In Hydra, each file write
log contains eight global data pointer slots. Each global
pointer encapsulates a node ID (8 bytes) and the corre-
sponding data page address (56 bytes) of a current pri-
mary/secondary node that holds the data. For data update,
Hydra scans the pointer slots for valid addresses, and
selects the node with the minimal network load to transmit
data. During data transmission, Hydra decapsulates the
global node ID and the logical address of the remote page,
and performs a remote memory access via RDMA. After
that, Hydra updates the local data page addresses in the
logs (i.e., the grey arrows in Fig. 4). When all the newly
fetched logs have been replayed, Hydra pulls the CQ for the
completion of the batched RDMA read requests of file data
pages.

Directory Update. During diff-update, directories are
treated as log-only files with no data. File creation/deletion
logs are replayed by adding/removing the corresponding
dentries to/from its DRAM cache. Note that for the file crea-
tion logs in the directory, the newly created sub-files are not
actually created on the local node by the log replay. Only
their corresponding dentries are inserted into the directory.
The newly created sub-files are locally created and synchro-
nized only when they are accessed.

Hydra adopts a lazy file synchronization approach to only
update the stale directories on the bottom-up directory path
of the accessed files on-demand. As illustrated in Fig. 3 step
�4 , to create fileD in directory C on node 4, C is synchronized
with its primary node (i.e., node 3). Since directory C is up-
to-date, the recursive synchronization is completed. Then,
file D can be created locally on node 4. Note that directory A
and file B are not involved in the creation of fileD.

Through directory tree walk and on-demand recursive
directory updates, the lazy file synchronization approach
also guarantees that all the files in the Hydra cluster are
accessible to every Hydra node. By decoupling directories
and their sub-files, Hydra eliminates significant communi-
cation overhead of exchanging redundant file modification
and directory structure information among nodes.

Consistency Guarantee. After the metadata and data have
been synchronized, Hydra updates the number of log pages
and the log tail pointer at the file’s inode in local persistent
memory to complete diff-update (Fig. 4 step �4 ). Since
the log tail pointer update is an atomic operation, the consis-
tency of diff-update is guaranteed.

File Replication. Diff-update facilitates efficient file rep-
lication in Hydra. To initiate file replication, the primary
node sends asynchronous RPC requests (Section 6.1) to sec-
ondary nodes. Then, it handles inbound RDMA read
requests of diff-update issued by secondary nodes con-
currently and asynchronously. (Unless the application calls
fsync, which forces file replications to complete synchro-
nously.) When diff-update completes, the secondary
nodes will send asynchronous RPC requests to the primary
node to update the global pointer slots. After that, other
nodes can fetch file data from either the primary node or
secondary nodes. In contrast, conventional primary replica-
tion uses synchronous outbound RDMA writes with serial-
ized chain-replication approach, leading to higher latency
and lower scalability.

The diff-update approach offers three major advan-
tages: First, transmitting differential file logs significantly
reduces transmission overhead. Diff-update enables
Hydra to coalesce duplicated changes in the packed file logs
to improve transmission efficiency. Second, handling one-
sided RDMA reads issued from target nodes eliminates CPU
bottlenecks at the source node, providing higher scalability.
Third, by decoupling file metadata (logs) and data, files can
be synchronized by only updatingmetadata to the latest ver-
sion, reducing the critical-path latency of file accesses.

4.3 Decentralized Distributed Locking

Since most datacenter workloads are read-mostly [32],
Hydra supports multiple readers and single writer among
all the Hydra nodes in the cluster. Hydra coordinates file
locks across nodes with lock tokens. Each file has only one
global lock token to grant write permission to one of the file
copies. The lock token is managed by the primary node of
the file.

We use a lightweight token-based locking mechanism
with atomic operations to minimize token transfer overhead.
Initially, the value of the file’s lock token field on the primary
node is set to zero. To acquire the lock token, the primary/
non-primary node issues an local/RDMA compare-and-
swap (CAS) request to the lock token on the primary node. If
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the lock token is successfully acquired, the value of the lock
token on the primary node is swapped with the unique 8-bit
global ID of the node. When the lock token is released, its
value will be reset to zero.

In order to reduce the quantity of network communica-
tions between nodes, we employ a lazy token transfer
approach. In Hydra, the primary node does not actively
revoke the lock token. Instead, when a write operation on
the local node fails to acquire the lock token, the CAS opera-
tion returns the node ID of the current token-holder. In this
case, the local node determines whether the token-holder is
alive through recent heartbeat messages. If the token-holder
node is alive, the local node will send a synchronous RPC
message to that node, and then retry the CAS request until
the lock is released. Upon receiving the message, the token-
holder node will reset the lock token value on the primary
node back to zero once its pending writes are completed. If
the token-holder node or the primary node is down, the
local node will initiate a primary election (Section 5.1) to
recover the distributed lock.

The token-holder node differs from the non-token-holder
nodes in two aspects. First, both read and write permissions
of the file on the token-holder node can be granted by its
read-write semaphore, whereas only read permissions can
be granted by the non-token-holder nodes. Second, in order
to avoid inconsistent logs, garbage collection to the file can
only be performed on the token-holder node. The other
nodes will synchronize file logs and data from the latest,
garbage-collected file copy.

4.4 Directory and File Operations

Applications access the directories and files in Hydra via the
POSIX interface. In this section, we show how Hydra han-
dles directory operations to a file (file) in a directory (dir) as
well as file operations to file. Note that file can be either a
sub-file or a sub-directory in directory operation examples.

File Creation. File creation involves appending a new
directory entry (dentry) to dir, as well as creating the meta-
data of file. In order to append a new dentry, the local Hydra
node first obtains the permission for inserting the new den-
try to dir by acquiring the lock token of dir, and then calls
diff-update to synchronize dirwith its primary node.

After file has been created on the local node, Hydra issues
an RPC request to the primary node of dir to notify the
newly inserted dentry, unless the local node itself is the pri-
mary node of dir. The primary node synchronizes dir with
the local node, replays the new log that creates file, and then
replies to the local node. After that, the primary node issues
asynchronous RPC requests (Section 6.1) to update dir on
the secondary nodes.

File Deletion. File deletion can be broken down into two
steps: unlink (remove the dentry of file from dir) and evict

(free the storage space that file occupies). Unlink is imple-
mented similar to file creation. We use synchronous file
update requests to inform the primary and secondary nodes
of dir to remove the corresponding dentry. Evict, however,
does not have to be completed synchronously. Hydra only
needs to issue asynchronous RPC requests to the primary
and secondary nodes to free the resources of file.

Directory Lookup. To lookup a dentry within dir, Hydra
first synchronizes dir with its primary copy via diff-

update, then conducts the lookup of file. If the directory is
stale or non-existent before the lookup, Hydra will synchro-
nize its parent directories recursively from the bottom up.

File Open. If the local node currently holds the lock token
of file, then file is opened the same way as in a local file sys-
tem. For non-token-holder nodes, Hydra first acquires the
corresponding lock, and then issues a diff-update

request to the primary node to update the local file logs.
When diff-update is finished, Hydra wakes up a back-
ground thread to replicate file data to the local node
asynchronously.

File Read. If the target data has been replicated to the local
node, Hydra handles the read requests locally. Otherwise,
Hydra fetches the requested data from the primary node
with the pointers in the corresponding local file log to serve
the read request. A local copy of the data is created simulta-
neously so that future reads become local. These auxiliary
file copies are subject to eviction when the local PM usage is
high.

File Write. File writes are directed to local PM to reduce
latency. The consistency of file writes is guaranteed by the
atomic log tail pointer update on the local file. When a file
write completes, an asynchronous RPC request to the pri-
mary node is issued. The proxy threads (Section 6.1) on the
primary node will pull the updated data on the local node
with diff-update, and then propagate the updates to the
secondary nodes asynchronously.

File Synchronization. When an application calls an fsync

to a file, a synchronous RPC request is sent to each primary
and secondary node to update the file log and data with the
local node using diff-update.

Memory Mapping. To handle the mmap requests, Hydra
maps the pages on persistent memory into the application’s
address space. The file is synchronized with the primary
copy when the application unmaps the pages.

5 CLUSTER MANAGEMENT

As a Hydra cluster scales to a large number of nodes or
serves applications for a long period of time, it becomes
increasingly unlikely that all the nodes are working cor-
rectly and all the file accesses are balanced. In this section,
we describe how Hydra handles node failures gracefully
and achieves load balancing during runtime.

5.1 Fault Tolerance

Hydra provides high availability to the applications by tol-
erating arbitrary node failures during runtime. In the sce-
nario described in Fig. 3 step �4 , since there are two copies
of each file, arbitrary single node failure can be tolerated by
Hydra during runtime with the guarantee that all the files
can be retrieved. For the Hydra cluster, by setting the repli-
cation factor to n, concurrent failures of any n� 1 nodes can
be tolerated without any data loss. Decentralization enables
Hydra to isolate failed nodes from the rest of the cluster
nodes.

Node Failure. If a file is accessed by a non-primary node
while its primary node is down, the non-primary node will
initiate a primary election procedure to elect a new primary
node for the file. The primary election is implemented based
on the Paxos consensus protocol [33]. The node with the
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longest file log will be elected as the new primary node. If
none of the living nodes contains another file copy, the initi-
ator becomes the primary node. Once the primary node has
been elected, the new primary node will send RPC requests
to the secondary nodes to make sure all other file copies in
the Hydra cluster are up-to-date.

Node Recovery. If the crashed node is recoverable, it will
rejoin the Hydra cluster after reboot. After that, it updates
the root directory to the latest version, and then continues
file service. Outdated files are synchronized with the latest
version when they are accessed by directory tree walk from
the root. Users may also run fsck to force update all the
local files to the latest version. Note that since the local file
logs are still valid, we only need to pull the newly-generated
file logs that are committed during the downtime of the node
through diff-update, instead of replicating the whole file.
This significantly improves the efficiency of node recovery.

5.2 Load Balancing

Hydra utilizes a variant of the power of two choices algo-
rithm [34] to achieve load balancing. The primary node uses
two consistent hashing [35] functions to choose the second-
ary node of a file by its inode number. Between the two can-
didate nodes, the one with the lower PM usage is chosen as
the secondary node. If Hydra is configured with more than
one secondary node, then the other node is the second
choice of the secondary node, and the rest of the secondary
nodes are chosen in the ascending order of their PM usage.

Data Migration. Hydra adopts the hierarchical file system
design that decouples directories and their sub-file/sub-
directories completely, so as to balance the load among
Hydra nodes. For Hydra nodes with high PM usage, file
data is migrated to the node with the lowest PM usage.

Node Addition. New servers can be introduced into the
Hydra cluster flexibly. They will join the consistent hashing
ring with unique global IDs, so that new files created on
other Hydra nodes can designate them as the primary or
secondary nodes.

As a fully decentralized file system, Hydra strives to be
highly scalable and expandable throughout its design. At the
cluster-level, Hydra supports dynamically adding or remov-
ing cluster nodes during runtime, as well as tolerating
arbitrary node failures. This provides high elasticity and flexi-
bility to the cluster configurations, enabling online expansion
of the distributed file system. At the node-level, Hydra organ-
izes files in a fully decentralized manner that eliminates the

bottleneck from centralized metadata management, provid-
ing high expandability. Coherency and consistency among
nodes are also guaranteed through a lightweight decentral-
ized distributed locking approach, minimizing the overhead
of lock exchange in large-scale Hydra clusters. At the file-
level, Hydra synchronizes file updates through differential
file update scheme via one-sided RDMA reads. During file
synchronization, the remote CPU is bypassed, allowing for
more concurrent accesses from applications on different
Hydra nodes. At the data-transmission-level, Hydra achieves
high scalability through RDMA request batching and RPC
classification mechanisms to minimize network overhead
and facilitate high concurrent access from other Hydra nodes.
We discuss these twomechanisms in the next section.

6 IMPLEMENTATION

In this section, we first demonstrate our approach to
batch RDMA requests and classify RPCs to achieve scal-
able RDMA communication among Hydra nodes. Then,
we describe how Hydra maintains data consistency on each
node.

6.1 Scalable RDMA Communication

Compared with traditional storage and network devices,
PM and RDMA technologies offer significantly lower
latency, higher bandwidth, and higher scalability, which
exposes the latency and scalability bottlenecks in the storage
stack. We propose RDMA request batching and RPC classi-
fication mechanisms for network communication in Hydra,
aiming to achieve scalable connection management and
request handling by fully utilizing the benefits of technolog-
ical advances in high-speed PM and RDMA networks.

RDMA Request Batching. At the sender side of each Hydra
node (Fig. 5a), Hydra issues RDMA requests with per-CPU
RDMA entry lists. This avoids request contention and
allows for parallel request issuing and handling. When
RDMA requests are issued, an RDMA entry that contains
the WR is created and appended to the corresponding entry
list �1 . The first 12 bits of the 64-bit wr_id are reserved to
indicate the RDMA operation type (4 bits) and the CPU ID
(8 bits)�2 . Hydra posts the RDMA verbs to QP, and modifies
the RDMA request state to posted �3 . When the RDMA oper-
ation is completed, the CQ handler will pull the CQE from
CQ �4 , trace the RDMA entry with wr_id, and update the
RDMA request state to completed�5 .

Fig. 5. The sender and receiver side message flow of a Hydra node. Hydra batches RDMA requests at the sender side, and classifies RPC requests
into synchronous and asynchronous types at the receiver side.
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Hydra is capable of coalescing multiple RDMA requests
into a single entry to enable RDMA request batching. Large
file I/O requests from applications or file data replication
among Hydra nodes may issue massive asynchronous
RDMA requests. Batching these requests significantly
reduces the overall transmission latency. The corresponding
file system functions will be blocked until all the RDMA
requests within an RDMA batched entry are completed�6 .

RPC Classification. At the receiver side of each Hydra
node (Fig. 5b), the RPC requests are classified into two cate-
gories: synchronous and asynchronous. Synchronous RPC
requests, such as file replication during fsync, are handled
by the RPC threads with high priority to reduce latency.
When an RPC request is received by a CQ handler �1 , the
request will be immediately dispatched to the wait-list of
the corresponding per-CPU RPC thread according to its
wr_id�2 .

In order to achieve scalable request processing, Hydra
amortizes the overhead of CPUs over multiple RDMA
requests through work-stealing. If the designated RPC
thread is currently busy handling other RPC requests, the
new RPC request will traverse the wait-lists of other RPC
threads and select the CPU with the lowest load �3 . After
the request has been processed, the receiver replies to the
sender �4 . Asynchronous RPC requests, such as background
file migration, are handled by per-CPU proxy threads.
These proxy threads act as the proxies of other nodes to per-
form tasks asynchronously �5 . The asynchronous RPCs are
handled with low priority to minimize the performance
impact.

6.2 Data Persistence

In Hydra, the persistence of file updates, including local file
writes and inbound RDMA reads during file transmission,
is guaranteed via the combination of clwb and sfence

instructions to flush the data from the processor cache to
PM. For RDMA reads, Intel Direct Data I/O (DDIO) tech-
nology supports direct communication between RDMA net-
works and the last level cache (LLC) [36]. Since DDIO
significantly improves the performance of data service [7],
[37], [38], we enable DDIO for evaluation in our work.
Hence, the destination of inbound RDMA reads becomes
the local LLC, which may evict the cacheline in any order.
To ensure the durability of file transmission, Hydra syn-
chronously flushes the transmitted data to PM.

7 EVALUATION

In this section, we evaluate the performance of Hydra
against existing distributed file systems that support PM
and RDMA, as well as local PM-aware file systems. Our
evaluation answers the following questions:

� How do different Hydra replication configurations
affect its I/O performance? (Section 7.2)

� Howdoes Hydra perform against other distributed file
systems onmulti-threadedworkloads? (Section 7.3)

� How large is the performance gap between local and
remote file access of Hydra? (Section 7.4)

� How does Hydra scale over parallel workloads on
multiple nodes? (Section 7.5)

� How do metadata operations perform on Hydra?
(Section 7.6)

� How quickly can Hydra recover from failures?
(Section 7.7)

7.1 Experimental Setup

We run Hydra on a 4-node cluster. Each node is equipped
with two Intel Xeon Gold 6240 CPUs (running at 2.6 GHz
with 36 physical cores), 384 GB DDR4 DRAM, 12 Optane
DCPMMs (128 GB per module, 1.5 TB in total). Each cluster
node has a Mellanox ConnectX-5 InfiniBand network adapter
that connects to an InfiniBand switch.

We compare Hydra with five distributed file systems on
the same cluster: CephFS [4], GlusterFS [6], NFS [39], Octo-
pus [2], and Assise [11]. For a fair comparison, the clients
and servers of all these distributed file systems are connected
with the same RDMA networks and run on all four PM-
equipped cluster nodes (except NFS which only has one
server node). For disk-based distributed file systems, we use
PM on the server nodes as the storage device for their meta-
data and data, and support RDMA network by substituting
their communication modules. For Assise, Assise-1r/Assise-
3r indicates that there are one/three hot replicas among clus-
ter nodes. We also compare Hydra with two local PM-aware
file systems: EXT4-DAX [40] andNOVA [17], [21].

For Hydra, we vary the replication factor to illustrate
how performance changes with different storage configura-
tions. Hydra-1r/Hydra-2r/Hydra-3r indicates that there are
one primary copy and none/one/two secondary copies
among cluster nodes. By default, each workload runs on the
local Hydra node (primary node). For read-dominated
workloads, the replication factor of Hydra does not impact
the read throughput on the primary node. For these work-
loads, we setup Hydra-2r on two cluster nodes, and then
pre-load file data on one of the nodes. During the experi-
ments, we compare the throughput of the workloads exe-
cuted on the primary node (Hydra-p), the secondary node
(Hydra-s), and a newly connected node that needs to fetch
all the working set files from the primary node (Hydra-n).
We run each workload three times and report the average
across these runs.

7.2 Microbenchmarks

We evaluate the read/write throughput of Hydra using
FIO [41] benchmark. We perform single-threaded random
I/O operations to a 1 GB file with various I/O sizes for one
minute, and report the average throughput. In the synchro-
nous write workload, an fsync is called after every write
operation.

Fig. 6 shows the read/write throughput over various I/O
sizes. Hydra leverages the data access locality by fully exploit-
ing the performance advantages of local PM to minimize I/O
latency. Therefore, Hydra’s throughput is close to NOVA for
various I/O sizes in the file read and asynchronous write
workloads. For asynchronous writes (Fig. 6a), Hydra-3r
achieves 77% of NOVA’s throughput with 4 KB I/O size. The
gap narrows rapidly with the increasing I/O size. Although
each file write initiates an asynchronous RPC request to each
secondary node, secondary nodes synchronize the update
only through one-sided RDMA reads, which bypasses the
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CPU of the primary node. When the I/O size is increased, the
asynchronous RPC requests are issued less frequently. Hence,
Hydramaintains high throughput for large filewrites.

Synchronous writes (Fig. 6b), however, stall each write
until all replications are completed. When the I/O size is
4 KB, Hydra-2r and Hydra-3r achieve 42% and 30% of
NOVA’s throughput, respectively. Frequent synchroniza-
tion introduces heavy network traffic for data replication.
However, Hydra utilizes differential file update scheme to
only synchronize the latest logs with efficient RDMA reads.
Besides, when the I/O size is increased, the major bottle-
neck shifts from log replication to data replication, Hydra is
able to batch multiple RDMA requests to reduce data syn-
chronization overhead.

For file reads (Fig. 6c), the read throughputs of all Hydra
configurations are very close. The secondary node possesses
another complete copy of files, thus its throughput is close to
the primary node’s. For the newly connected node (Hydra-
n), the file does not locally exist initially. When a data seg-
ment is read for the first time, Hydra will replicate that data
segment to the local node so that future reads become local.
At the same time, Hydra will also initiate an asynchronous
request to replicate the whole file to the local PM.

Octopus performs 5.1� and 3.1�worse than Hydra-3r for
reads andwrites on average, respectively. AlthoughOctopus
bypasses the kernel buffer cache, file I/O still incurs signifi-
cant overhead due to the FUSE indirection layer. Besides,
Octopus accesses file data only through RDMA networks
without client-side caching, which leads to higher latency.
Since fsync in Octopus is a no-op, its synchronous and
asynchronouswrite throughputs are close.

Hydra outperforms CephFS, GlusterFS, and NFS by a
large margin. These three distributed file systems introduce
substantial software overhead to the critical I/O path due to
their disk-based design, which makes them unable to lever-
age the direct access feature of PM and the full potential of
RDMA networks. The high remote synchronization over-
head further lowers their synchronous write throughput.
On average, the overall FIO performance of Hydra-3r out-
performs CephFS, GlusterFS, and NFS by 54.4�, 32.9�, and
7.3�, respectively.

7.3 Macrobenchmarks

We evaluate the multi-threaded performance and scalability
of Hydra with three Filebench [42] workloads: fileserver,
webproxy, and varmail. Table 1 summarizes the characteris-
tics of these workloads. The dataset size of each workload is
set to 32 GB for a fair comparison.

Fig. 7 shows the Filebench throughput of Hydra on one
of the cluster nodes along with that of other file systems.
We observe that Hydra demonstrates good scalability in all
three workloads, and achieves the best performance among
all distributed file systems. The performance gap between
Hydra-1r and NOVA is within 5%. However, file replication
has different impacts on Hydra-2r and Hydra-3r among the
three workloads. On average, Hydra-3r achieves 91%, 88%,
and 78% of NOVA’s performance in fileserver, webproxy,
and varmail, respectively. The throughput of webproxy and
varmail saturated with eight threads due to the limited
write scalability of Optane DCPMM.

Fileserver emulates the I/O activity of a simple file
server. Hydra performs close to NOVA, and its throughput
highly scales along with the number of threads. Hydra uti-
lizes the differential file update scheme to lower the CPU
overhead when dealing with the small asynchronous writes
in fileserver. Therefore, Hydra achieves high throughput in
all configurations. Hydra-3r outperforms CephFS, Glus-
terFS, NFS, and Assise by 47.3�, 21.6�, 5.1�, and 1.7� on
average, respectively.

Webproxy is a read-intensive workload, which involves
creates, deletes, appends, and repeated reads to files. Differ-
ent from the fileserver and varmail workloads, the webproxy
workload has a large directory width, which makes the effi-
ciency of directory updates critical under such a scenario.
Fortunately, Hydra only needs to synchronize the newly cre-
ated dentry logs thanks to the differential file update scheme.
Moreover, these dentry logs are transferred via outbound
RDMA reads, which mitigates the transmission latency and
improves scalability. For webproxy, Hydra achieves the
highest throughput among all distributed file systems.

Varmail emulates an email server with frequent synchro-
nous writes. During each fsync, Hydra posts synchronous
RPC requests to secondary nodes concurrently and waits for
their completion. Therefore, as shown in Fig. 7c, the through-
puts of Hydra-2r and Hydra-3r are close. RDMA request
batching and RPC classification also lower the overhead of

Fig. 6. FIO performance (log scale). Hydra achieves high throughput with increasing I/O sizes, and outperforms CephFS, GlusterFS, NFS, and Octo-
pus by a large margin in all three workloads, especially for synchronous writes.

TABLE 1
Filebench Workload Characteristics

Workload Average
file size

# of
files

I/O size
(R/W)

Directory
width

R/W
ratio

Fileserver 2MB 16K 16KB/16KB 20 1:2
Webproxy 2MB 16K 1MB/16KB 1M 5:1
Varmail 2MB 16K 1MB/16KB 1M 10:1

The workloads have different read/write ratios and access patterns.
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file synchronization. CephFS and GlusterFS introduce high
synchronization overhead during fsync due to their disk-
based design. Overall, Hydra outperforms CephFS, Glus-
terFS, and NFS by 13.9�, 16.5�, and 1.6� on average,
respectively.

Assise-1r achieves the best performance among all distrib-
uted file systems in the varmail workload. Synchronous
updates to the log records onAssise-1r aremostly superseded
by subsequent updates, which drastically reduces the syn-
chronization overhead ofAssise. The hierarchical lease design
of Assise also alleviates the network bottlenecks through
localized leasemanagement. However, Assise exhibits higher
replication overhead than Hydra due to its RDMA write
based chain-replication design. On average, Hydra-3r outper-
formsAssise-3r by 1.6� in all three Filebenchworkloads.

Storage Overhead. We evaluate the storage overhead of
Hydra by gathering the PM usage of each node with respect
to different replication factors. We measure the PM usage of
file replication after executing the fileserver workload on
one of the Hydra nodes. Since all Hydra nodes in our cluster
have the same PM capacity, Hydra distributes file replica-
tions (secondary copies) evenly among other cluster nodes.
For Hydra-2r/3r, we observe that the storage overhead of
replication is slightly higher than two/three times the size
of the dataset on the primary node (2.08�/3.17�). The addi-
tional usage overhead comes from a small number of auxil-
iary directories and file inodes on the secondary nodes.
They are used to maintain the directory tree structure on
each Hydra node. This allows Hydra to continue file service
of its local files even if all other Hydra nodes are lost.

Load Balancing. As we discussed above, the load of Hydra
is properly balanced for static cluster configurations. To
explore whether Hydra rebalances after node addition, we
run Filebench workloads with 16 threads on Hydra-3r with
three nodes, and then add another node into the cluster and
rerun the workload. We compare the performance and PM
usage of two load-balancing techniques: lazy balancing
(Hydra-L) and eager balancing (Hydra-E). Lazy balancing is
the default strategy of Hydra that steers the new file writes
to the new node, but it does not migrate existing files from
old nodes unless their PM usages are high. Eager balancing,
on the other hand, is employed by some distributed file sys-
tems (such as the CRUSH algorithm [43] of CephFS) that ini-
tiate background migration when nodes are added to the
cluster. The throughputs of Hydra-L are close to previous
runs (within 1%), whereas Hydra-E’s throughputs decline
by 4% on average due to minor performance impact from
node communication and background migration. However,

Hydra-E reaches a balanced data distribution sooner than
Hydra-L, which will benefit file accesses from other nodes
in the near future, especially when Hydra is deployed in a
large-scale cluster. We leave the optimizations for a fast and
low-overhead load balancing approach as future work.

7.4 RocksDB

We illustrate the high efficiency of metadata and data repli-
cation with RocksDB [44], an embedded key-value store
based on LSM-tree. We measure the performance of
RocksDB with three workloads from db_bench: sequential
read (readseq), random read (readrandom), and random
update (updaterandom). For each workload, we first load the
database (fillseq) with 10M key-value entries on the local
node, and then report the throughput of running 10M key-
value operations on the local node as well as the remote
node with the same dataset. For each workload, the key size
is set to 16 bytes, and the value size is set to 4 KB.

Fig. 8 shows the RocksDB throughput. Hydra has the
highest throughput among all distributed file systems. For
local access, the performance gap between Hydra and
NOVA is within 4%. Less frequent file I/O and differential
file update scheme help Hydra to hide the replication over-
head from foreground file operations. In the sequential read
workload, Hydra-n performs 41%, 8.3�, 27% better than
CephFS, GlusterFS, and NFS, respectively. During file
reads, CephFS and NFS use the kernel buffer cache to
achieve high throughput. GlusterFS performs worst due to
its high data management overhead. Compared with
Hydra-1r, the performance of Hydra-n dropped by 24% for
remote random reads. This is because Hydra replicates file
data in the background according to the order of file logs,
which are sequentially written during the loading period of
the workload. Consequently, random reads incur more
access misses than local reads.

For local random updates, Hydra takes the advantage of
local PM to achieve high performance. CephFS performs
worst for its long OSD-based I/O path and mis-prefetching
due to the random access pattern. When the random
updates are handled by the remote node, all the distributed
file systems except Hydra have to go through multiple
cache layers to synchronize file data. Not only does Hydra
provide direct PM access to file data, RDMA request batch-
ing and RPC classification also enable Hydra to perform
efficient file transmission by fully utilizing the performance
benefits of RDMA networks. For remote random updates,
Hydra-n outperforms CephFS, GlusterFS, and NFS by 4.9�,
2.1�, and 2.7�, respectively.

Fig. 7. Filebench performance (log scale). Hydra demonstrates good multi-core scalability in all three Filebench workloads, and achieves the best
overall performance among all distributed file systems. The throughput lines of Hydra-1r and NOVA are highly overlapped.
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7.5 MongoDB

We further analyze the parallel performance of Hydra by
measuring MongoDB [45], a popular NoSQL database. In
MongoDB, each update is logged to a journal file. After the
log is persisted, MongoDB writes the update to a memory-
mapped database file, and it calls fsync to flush its mem-
ory to persistent storage periodically. We run all six
YCSB [46] workloads on MongoDB. In YCSB, the size of
each key-value pair is 1KB (by default). For each workload,
we use a total of 1M key-value entries and 10M operations.
The number of threads is set to 8.

Fig. 9 shows the MongoDB throughput on five compari-
son file systems, Hydra with one and three replication con-
figurations, as well as the aggregated throughput when
simultaneously running the workloads in private directo-
ries on all four cluster nodes of Hydra. For single-node
performance, Hydra-1r and Hydra-3r perform close to
NOVA, and is 18%, 32%, and 4% faster than CephFS, Glus-
terFS, and NFS on average, respectively. CephFS and Glus-
terFS suffer from complicated data management layer,
while NFS utilizes the kernel buffer cache to reduce access
latency. Due to the less intensive I/O activities, Hydra out-
performs these conventional distributed file systems by a
smaller margin.

The aggregated throughput of Hydra highly scales with
the number of nodes, indicating that decentralization takes
full advantage of local PM on each node to achieve high par-
allel performance. On average, the aggregated throughput
of Hydra-3r on four nodes yields 3.8� NOVA’s throughput.
For write-intensive workloads (workload A and F), Hydra
takes the advantage of differential file update scheme to
replicate differential file logs and data to the secondary
nodes, which effectively mitigates the heavy journal syn-
chronization overhead. Moreover, the RDMA optimization
techniques adopted by Hydra further lower the CPU over-
head of the decentralized cluster nodes.

7.6 MDTest

We evaluate the metadata performance of the file systems
with the metadata benchmark MDTest [47]. We measure the
throughput of the creation , stat , and deletion opera-
tions to directories and files. We configure the MDTest work-
load to operate in a directory tree and process 0.1million files.

Fig. 10 depicts the throughput of directory and file meta-
data operations. Hydra achieves the highest overall meta-
data throughput among all distributed file systems. For
directory and file creation, the performance of Hydra-1r is
close to NOVA. As for Hydra-2r and 3r, their throughputs
drop by 37% on average due to RPC request transmission
and processing. Meanwhile, all the disk-based file systems
have to transmit the metadata requests to the server nodes
through a complex software path designed for ethernet and
disks, leading to orders of magnitude higher latencies than
Hydra. After dir/file creation, Hydra caches them on the
local node to accelerate future accesses. As a result, the
throughputs of reading directory and file status of Hydra are
similar to local PM-based file systems. CephFS and NFS uti-
lize the kernel buffer cache to provide higher metadata read
performance than GlusterFS. For directory and file deletion,
Hydra sends synchronous RPC requests to commit the dele-
tion and asynchronous requests to free up storage space
(described in Section 4.4). Hence, Hydra has a much smaller
performance overhead. Meanwhile, CephFS and GlusterFS
perform worse than NFS due to their strict persistence
requirement and inefficient software design, respectively.

7.7 Recovery Overhead

We evaluate the recovery overhead of Hydra by measuring
its recovery time and the time it takes for Hydra to restore
full I/O performance. To simulate a crash, we first load a
file set of eight 4 GB files using FIO, and then unmount the
file system. After that, we measure the time it takes for
Hydra and other file systems to recover their runtime state.
Finally, we monitor Hydra’s I/O throughput over time until
it fully recovers its performance.

As shown in Table 2, the recovery time of Hydra, as well
as that of other file systems, is at sub-second level. For
Hydra’s recovery, it needs to read the superblock to recover
the file system metadata, such as the utilization of each PM
allocator and inode table, and it also establishes RDMA con-
nections to all the other cluster nodes. As a result, the recov-
ery time of Hydra is slightly longer than that of NOVA.
Since we adopt a lazy file synchronization approach that
only updates the local stale directories and files upon access,
the recovery time does not scale with increasing data sizes.

Fig. 8. RocksDB performance. The performance gap between local and remote file access of Hydra is small due to the differential file update scheme
and RDMA optimization techniques adopted by Hydra.

Fig. 9. MongoDB performance under YCSB workloads. The results are
normalized to NOVA’s throughput. Hydra’s parallel performance is highly
scalable with the number of nodes.
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To investigate the impact of lazy file synchronization on
the runtime performance of Hydra, wemeasure the dynamic
throughput during the first 8 seconds of FIO read with 8
threads on a newly-connected Hydra node (Hydra-n) after
fail-over. The FIO workload is configured to issue 50% ran-
dom read requests and 50% random write requests to the
files. Since Hydra-n does not have any local copies of the files
in the file set, it must obtain the file data from other nodes to
serve local I/O requests, which temporarily impacts the per-
formance. As shown in Fig. 11, the I/O throughput is
affected by data replication during the first 2-4 seconds after
fail-over. With the increasing I/O size, the replication over-
head is decreased due to less metadata RPC transmission,
reducing the time it takes for Hydra to fully recover its I/O
performance.

8 RELATED WORK

The emergence of persistent memory and high-speed RDMA
networks provides an opportunity of having large high-perfor-
mance distributed storage space across servers. In this section,
we briefly describe theworks that are closely related toHydra.

Persistent Memory File Systems. The promising features of
emerging persistentmemory have stimulated the design and
implementation of several PM-based file systems ([12], [13],
[14], [17], [19], [20], [21], [48], [49], [50]). Among them,
NOVA [17] is a log-structured kernel-space file system that
stores metadata and data in PM andmaintains file indexes in
DRAM. NOVA combines logging, light-weight journaling,
and copy-on-write techniques to provide strong atomicity
guarantees to both metadata and data. Strata [49], on the
other hand, is a user-space tiered file system that manages
data accesses in user space and processes metadata in kernel
space. Strata utilizes the byte-addressability of PM to store
file logs efficiently and asynchronously digest the logs to
storage devices. Compared to these file systems, SplitFS [19]
utilizes a user-space library file system and a kernel PM file
system to handle data andmetadata operations, respectively.
It uses EXT4-DAX for metadata management and introduces

a new relink primitive to speed up file appends and atomic
data operations. Linux has also added support for persistent
memory to existing file systems, such as EXT4-DAX [40] and
XFS-DAX [51] to allow direct access to persistent memory,
bypassing DRAMpage cache to improve performance.

Distributed File Systems. Existing disk-based distributed
file systems, such as CephFS [4], HDFS [5], GlusterFS [6],
Lustre [52], and GFS [53], are employed in large scale data-
center deployments. Several decentralized file systems, such
as GPFS [54], Farsite [55] and DeltaFS [56], have also been
proposed to achieve high scalabilitywithout dedicatedmeta-
data servers. These file systems focus on providing high
availability and scalability by distributing and replicating
data blocks in large chunks across servers. In order to adapt
to RDMA networks, these disk-based file systems simply
replace the communicationmodule with an RDMA library.

Octopus [2] is a user-space distributed file system that
uses FUSE [57] for file I/O. Octopus introduces self-identi-
fied RPC and collect-dispatch transaction to provide low-
latency metadata and data access. However, Octopus uses a
static hash function for file placement, which limits its scal-
ability and prevents it from running complex workloads.
Besides, Octopus does not provide either metadata or data
replication, which makes it vulnerable to server failure.

Orion [3] is a kernel-space distributed file system that
leverages RDMA to provide low latency file access. For file
I/O, Orion uses local DRAM read cache and PM write
buffer to reduce network overhead. As for metadata, Orion
replicates file metadata with a Mojim-like [58] technique.
All the metadata updates flow to a central metadata server,
and then propagated to a mirror server. Since the metadata
server handles all metadata updates, the scalability of meta-
data access becomes a bottleneck for Orion.

Assise [11] is built on top of a cache coherence layer
called CC-NVM, which provides linearizability and crash
consistency. Similar to Hydra, Assise utilizes persistent
caching in client-local PM to achieve fast fail-over and maxi-
mizes locality. However, Assise coordinates leases and fault
tolerate service via a centralized cluster manager. Besides,

Fig. 10. Throughput of file systemmetadata operations.Hydra provides orders ofmagnitude higher throughput than disk-based distributed file systems.

TABLE 2
File System Recovery Time

File System NOVA Hydra-1r Hydra-2r Hydra-3r

Recovery Time 225 ms 241 ms 239 ms 246 ms

File System EXT4 CephFS GlusterFS NFS

Recovery Time 122 ms 427 ms 386 ms 183 ms

Hydra’s recovery time remains constant because it needs a fixed amount of
work upon recovering.

Fig. 11. I/O throughput of Hydra after fail-over with different I/O sizes.
Once a file has been completely replicated to the local Hydra node, its I/
O throughput becomes stable.
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during node recovery, Assise invalidates every block from
every file that has been written since its crash, which signifi-
cantly increases the recovery overhead compared with the
differential file update scheme proposed by Hydra.

To the best of our knowledge, Octopus, Orion, and Assise
are the only existing distributed file systems that are designed
for PM and RDMA networks. Nevertheless, all three file sys-
tems adopt centralized cluster management and/or data
management architecture that limits scalability. As for file
replication, both Orion and Assise replicate files via RDMA
writes from the source node, while Hydra performs replica-
tion via RDMA reads from the target node with lower over-
head. Octopus does not provide either metadata or data
replication.

Distributed Persistent Memory Systems. Many existing sys-
tems explore how to use RDMA to accelerate shared memory
access to applications. Hotpot [26] provides a global, shared
persistent memory space to applications and uses a multi-
stage commit protocol to ensure datadurability and reliability.
AsymNVM [22] is a framework based on an asymmetric per-
sistent memory architecture. It uses operation logs to reduce
the stall time due to remote persistency, and enables efficient
batching and caching. Flatstore [29] is a PM-based log-struc-
tured storage engine that decouples key-value store into a vol-
atile index and a log-structured storage to amortize the
persistence overhead. FileMR [59] is a new memory region
abstraction that combines RDMA memory regions and files,
merging the persistentmemory file systemandRDMAcontrol
plane. Clover [60] is a key-value store system that separates
the distributed data plane and the centralizedmetadata plane,
exploiting the benefits of disaggregating persistentmemory.

Several RPC approaches have been proposed to optimize
performance for RDMA networks as well. DaRPC [61] dis-
tributes computation, network, and RPC resources across
CPU cores andmemory to achieve high aggregated through-
put. FaSST [24] is an RDMA-based RPC system built entirely
with two-sided RDMA verbs on unreliable datagram (UD)
transport to reduce the number of QPs. ScaleRPC [28] pro-
poses connection grouping to reduce NIC cache contention
for outbound messages and implements virtualized map-
ping to improve CPU cache efficiency for inboundmessages.

9 CONCLUSION

We have implemented and described Hydra, a decentral-
ized file system for high-speed PM and RDMA networks.
By exploiting the performance advantages of local PM,
Hydra leverages data access locality to achieve high perfor-
mance. To accelerate file transmission, file metadata and
data are decoupled and updated differentially through one-
sided RDMA reads. We further minimize network overhead
by introducing RDMA request batching and RPC classifica-
tion mechanisms. The decentralized design enables Hydra
to tolerate node failures and achieve load balancing. Our
evaluation shows that Hydra significantly outperforms
existing distributed file systems, and shows good scalability
on multi-threaded and parallel workloads.
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