
Zebra: An Efficient, RDMA-Enabled
Distributed Persistent Memory

File System

Jingyu Wang1, Shengan Zheng2(B), Ziyi Lin3, Yuting Chen1,
and Linpeng Huang1(B)

1 Shanghai Jiao Tong University, Shanghai, China
{wjy114,chenyt,lphuang}@sjtu.edu.cn

2 MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong
University, Shanghai, China

shengan@sjtu.edu.cn
3 Alibaba Group, Hangzhou, China
cengfeng.lzy@alibaba-inc.com

Abstract. Distributed file systems (DFSs) play important roles in dat-
acenters. Recent advances in persistent memory (PM) and remote direct
memory access (RDMA) technologies provide opportunities in enhanc-
ing distributed file systems. However, state-of-the-art distributed PM
file systems (DPMFSs) still suffer from a duplication problem and a fixed
transmission problem, leading to high network latency and low transmis-
sion throughput. To tackle these two problems, we propose Zebra, an
efficient RDMA-enabled distributed PM file system—Zebra uses a repli-
cation group design for alleviating the heavy replication overhead, and
leverages a novel transmission protocol for adaptively transmitting file
replications among nodes, eliminating the fixed transmission problem.
We implement Zebra and evaluate its performance against state-of-the-
art distributed file systems on an Intel Optane DC PM platform. The
evaluation results show that Zebra outperforms CephFS, GlusterFS, and
NFS by 4.38×, 5.61×, and 2.71× on average in throughput, respectively.

Keywords: RDMA · Adaptive transmission · Persistent memory ·
Distributed file system

1 Introduction

Nowadays, distributed file system plays an increasingly important role in data-
centers. A distributed file system is a client/server-based application that allows
clients to access and process remote files as they do with the local ones. Many
efforts have been spent on leveraging persistent memory (PM) and Remote
Direct Memory Access (RDMA) technologies to enhance the distributed file sys-
tems. Persistent memories are of large capacities and near-DRAM performance,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 341–349, 2022.
https://doi.org/10.1007/978-3-031-00123-9_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_28&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_28

342 J. Wang et al.

Fig. 1. A comparison of a typical DPMFS and Zebra.

while RDMA supports direct accesses of PMs. PM and RDMA supplement each
other, enabling efficient access to remote files.

Several RDMA-enabled distributed PM file systems (DPMFS), such as Octo-
pus [5], Orion [12] and Assise [2] achieve high performance through coupling PM
and RDMA features. A DPMFS, as Fig. 1(a) shows, is composed of a manage-
ment node and many storage nodes. The management node is responsible for
receiving clients’ requests and/or managing file replications. The storage nodes
are organized into a chain structure or a star topology, on which file replications
are stored. Persistent memories are deployed on the central and storage nodes,
as they are of large capacities and near-DRAM accessing speeds, and RDMA is
employed, allowing users to directly access PMs and efficiently synchronize file
replications [6]. Conventional distributed file systems adopt RDMA by substi-
tuting their communication modules with RDMA libraries.

The problem of file replication can be cast into a problem of file transmission:
file replications are transmitted from the management node to the storage nodes,
or vice versa, such that clients can access files close to them. Meanwhile, the
performance of existing DPMFSs suffers from two transmission problems.

Problem 1: Duplication Problem. File replications need to be intensively trans-
mitted. In a chain-structured DPMFS [4,9], the management node is followed by

Zebra 343

a chain of storage nodes—a file is transmitted along the chain and much effort
needs to be spent on synchronizing file replications so as to avoid inconsistency.
Comparatively, in a DPMFS with a star topology, file replications are only trans-
mitted between the central node and the storage nodes [4,8,11], whilst the loads
are not balanced, as the central node suffers from heavy replication overhead.

Problem 2: Fixed Transmission Problem. A DPMFS, or even a traditional DFS,
usually adopts a fixed transmission strategy. Such a DPMFS does not adapt to
different granularity, and thus suffers from a mismatch between the file replica-
tions and the transmission block sizes. A DPMFS needs to adopt a much more
flexible transmission strategy in small/large file transmission scenarios (in which
files of small/large sizes are transmitted), binding files to different transmission
modes.

To tackle the duplication and the fixed transmission problems, we present
Zebra, an efficient, RDMA-enabled distributed PM file system. The key idea is to
(1) use a replication group design for alleviating the heavy replication overhead,
and (2) design an adaptive RDMA-based transmission protocol that adaptively
transmits file replications among nodes, solving the fixed transmission problem.
In addition, to support multithreaded data transmission, Zebra leverages a lock-
free work request (WR) pool and a conflict resolution mechanism to accelerate
transmission. This paper makes the following contributions:

– Design: Zebra uses a replication group design that alleviates the heavy repli-
cation overhead between the central node and storage nodes.

– Protocol: Zebra provides an adaptive RDMA transmission protocol for dis-
tributed PM file systems, significantly improving the transmission through-
put.

– Implementation and evaluation: We implement Zebra and evaluate its per-
formance against state-of-the-art distributed file systems on an Intel Optane
DC PM platform. The evaluation results clearly show the efficiency of Zebra
in small/large file transmission scenarios.

2 The Zebra System

2.1 Design

Zebra is an efficient DPMFS that uses an adaptive transmission mode to speed
up accesses to PMs. As Fig. 1(b) shows, Zebra consists of a management layer
containing management nodes (M-nodes) which are responsible for coordinating
resources, and a server layer containing a set of storage nodes (D-nodes):

Group of D-nodes. Zebra provides a replication group (RG) mechanism that
divides D-nodes into groups. The D-nodes in a group work as backups for each
other. Each RG contains a master D-node that coordinates the D-nodes, guar-
antees their orderliness, and feedback to the M-node.

M-nodes. Zebra decouples its metadata and data to improve the scalability
and performance. File I/O requests are received, processed, and broadcasted by
the M-node.

344 J. Wang et al.

Zebra also pre-allocates memories for work requests (WR) during the regis-
tration phase, reducing the overhead of memory allocation during RDMA trans-
missions. As Fig. 2 shows, Zebra uses a lock-free WR pool for storing WRs, which
is produced for each transfer.

Fig. 2. Workflow in a lock-free work request pool.

2.2 An Adaptive Replication Transmission Protocol

All of the nodes in Zebra system are connected through an RDMA network.
During file transmission, Zebra first establishes a critical transmission process
that transmits data and transmission control information from the M-node to
one or more D-nodes; Zebra then asynchronously transmits data among D-nodes,
exchanging file replications.

Let {d1, d2, . . . } be a set of data packets to be transmitted. Let g(Di) be
the D-node Di in a replication group g. Zebra flexibly chooses the transmission
modes on the basis of file transmission scenarios, adapting to I/O sizes:

1) When transmitting a small number of files and/or files of small sizes, Zebra
uses a sequential transmission mode due to the sufficiency of the transmission
bandwidth. The file replications can be transmitted directly to the D-nodes using
a chain replication style, where (1) the M-node M picks up a D-node, say Di,
as a master D-node and writes the data to it; (2) Di receives the transmission
control information and writes data to the other n nodes in the RG g. Di−2 (the
D-node next to last) sends an ACK message to the M-node for completing the
writing activity.

2) Zebra uses a novel, split/interleaved transmission mode in large I/O sce-
narios (when a large number of files and/or files of large sizes are transmitted).
This mode reduces the transmission overhead from the M-node to the D-nodes.
First, Zebra takes a split transmission process, M → g(D1) = {d1, d2, ..., dk},
M → g(D2) = {dk+1, dk+2, ..., dj}, . . . in which the data is split and transmitted
from the M-node M to the D-nodes. The successive interleaved transmission are
g(D1) ↔ g(D2) ↔ · · · ↔ g(Dn), indicating that the file replications are inter-
leaved between the D-nodes in the replication group, rather than between the
M-node and the replication group.

For example, the upper bound of the RDMA throughput (TR) is approxi-
mately 12GB/s in Mellanox ConnectX-5, whereas the bandwidth of PM (TPM) is
approximately 35GB/s in read and 20GB/s in write. In the case, even though the

Zebra 345

maximal bandwidth of RDMA is reached, the bandwidth of PM is not fully lever-
aged. The split/interleaved mode expands the transmission bandwidth, reducing
the latency to Ls =

Sd/m
TR

, where Sd is the total size of data in transmission and
the data is split into m parts. Here we let the number of splits be m = TPM

TR
,

where TPM is the maximal bandwidth of PM. The latency of transmitting unsplit
data/files is m times of that of taking the split/interleaved transmission mode,
i.e., Lus = Sd

TR
. The latency increases exponentially after the bandwidth reaches

a bottleneck.

Load Balance. The M-node manages all space allocations in Zebra. It balances
the storage usage and the throughput by sampling the realtime load across the
RGs: the M-node gathers the operations; a load-balance controller records the
total capacity and realtime usage of each RG, and computes the throughput of
each node according to the number of ongoing RDMA operations.

Let g be a replication group and Cg be the percentage of its available capacity.
Let Task be the set of unfinished tasks and Taskg be the set of unfinished tasks
w.r.t. g. Let availability of g be availabilityg = α × Cg + β × |Task|

|Taskg| × 100%,

where α and β are two real values defined by human engineers. The RG with a
smaller availability (i.e., with less running tasks) is assigned a higher possibility
for storing file replications. An RG with the largest C is chosen when several
RGs are of the same availability values. To avoid frequent calculations, Zebra
selects RG candidates with the highest availability values and updates them
periodically. This reduces the load-balancing overhead.

2.3 Multithreaded RDMA Transmission

Multithreaded transmission are frequent in DFSs. Traditionally, lock operations
need to be performed in resource pools to guarantee the availability of resources,
while it incurs excessive lock contention among multiple threads. Zebra takes a
lock-free mechanism that uses kernel atomic verbs to manage WR resources in
the WR pools. When Zebra performs a transmission, a daemon thread calls
atomic_dec_and_test to search for an available WR entry.

In order to avoid conflicts caused by linear detection among multi-threading,
we adopt a decentralized query strategy to speed up usable WR acquisition
process. Threads process work requests scattered within the WR pool. Every
time a thread obtains an available WR, it linearly searches and points to the
next available WR in advance. When a thread detects that the current WR has
been occupied, it searches for the next available WR. If a thread detects that the
previously available WR is now occupied, and then performs a location hash.
This ensures a high level of parallelism.

3 Evaluation

We evaluated the performance of Zebra against other state-of-the-art distributed
file systems using a set of benchmarks. The evaluation is designed to answer the
following research questions (Fig. 3):

346 J. Wang et al.

– RQ1. How effective is Zebra in transmitting files of different sizes?
– RQ2. How effective is Zebra in processing multithreaded workloads, compared

to the other distributed file systems?
– RQ3. Is Zebra scalable for real-world applications?

Fig. 3. Systems’ throughput w.r.t. filebench with different workloads.

3.1 Setup

We conduct the evaluation on an Intel Optane DC PM platform. Each node
is equipped with six 256GB Intel Optane DCPMMs that are configured in the
App-Direct interleaved mode. The nodes communicate with each other through
a Mellanox ConnectX-5 RNIC with the Infiniband mode. The workload threads
are pinned to local NUMA nodes. Zebra is deployed on a cluster, on which every
two D-nodes are organized into a replication group.

We compare Zebra against four file systems: CephFS [11], GlusterFS [7], and
NFS [3]. We use Filebench [10], to evaluate the adaptive transmission design in
large/small file transmission scenarios. We use fileserver, a workload in Filebench,
to emulate the multithreaded scenario. Furthermore, we evaluate the overall
performance of Zebra using four Filebench workloads. In addition, we evaluate
Zebra’s scalability with Redis [1], which is a popular persistent key-value store.

3.2 Sensitivity to I/O Size

We use four filebench workloads (fileserver, varmail, webproxy, and webserver)
to evaluate Zebra. For small I/O sizes (Fig. 4(a)(c) where the I/O size is smaller
than 64KB), Zebra adopts a sequential transmission mode. This reduces the
overhead of one-to-many transmission, increasing the throughput. Figure 4(b)(d)
corresponds to the scenario in which the I/O sizes are larger than 256MB. The
threshold of switching the transmission modes depends on the I/O size, which is
also determined by the peak throughput of the other systems. This ensures that
the use of efficient split/interleaved transmission can alleviate the performance
degradation caused by throughput bottlenecks. In the case of large data trans-
mission scenarios (i.e., 1 or 2GB), the performance of CephFS, GlusterFS, and
NFS decreases by 21%, 27% and 58% on average, respectively. The performance
of Zebra decreases by only 2.3%.

Zebra 347

Fig. 4. Performance for various I/O sizes and threads. It is normalized w.r.t. the
throughput of GlusterFS.

Fig. 5. Concurrency performance. Fig. 6. Performance of running Redis.

In a small I/O size scenario, Zebra outperforms CephFS, GlusterFS, and NFS
transmission protocols by 3.7×, 3.4×, and 2.9×, respectively. In a large I/O size
scenario, Zebra outperforms CephFS, GlusterFS, and NFS by 4.7×, 6.2×, and
2.3×, respectively.

3.3 Concurrency

Figure 5 shows the performance of the systems running with multi threads. We
set the I/O size to 64B and 4MB and run fileserver with the thread numbers
ranging from 1 to 32. Zebra adopts a two-tier concurrency mechanism, including
a lock-free WR pool and an adaptive transmission strategy that improves its
scalability.

In CephFS, each replica applies the update locally and subsequently sends an
acknowledgment to the primary node. This results in heavy network transmission
on the critical path. GlusterFS performs the worst because of its heavy data
management overhead. When NFS reaches the maximal number of threads, any
subsequent requests need to wait, resulting in timeouts. As NFS is a TCP-
based network file system, a large number of threads with unbalanced loads
can lead to give up of file transmission. Zebra allows data to be transmitted
in a multithreaded manner and achieves the highest performance among the file
systems in the multithreaded transmission scenario. Zebra outperforms CephFS,
GlusterFS, and NFS on average by 2.1×, 2.3×, and 1.8×, respectively.

348 J. Wang et al.

3.4 Scalability

We use Redis [1], a popular persistent key-value store, to further evaluate the
performance of Zebra in real world applications. We choose AOF mechanism in
Redis to achieve data persistence, which synchronizes data after every modifica-
tion. As shown in Fig. 6, Zebra achieved the optimum performance on the basis
of optimization in small data transmission. The underlying storage consistency
protocol of CephFS, makes it vulnerable to small data accesses. The perfor-
mance of CephFS drops 98.2% from 64B to 4096B. Zebra and GlusterFS use
block storage, which stores a set of data in chunks. Block storage provides high
throughput against small data I/O and also guarantees preferable performance.
Compared to the GlusterFS, Zebra gains a 17–21× throughput improvement.

4 Conclusion

This paper presents Zebra, an efficient RDMA-enabled DPMFS. The key idea
of Zebra is to improve the efficiency of file replication by improving the effi-
ciency of data transmission. Zebra leverages PMs for speeding up file accesses,
uses an adaptive RDMA protocol for reducing network latency and improving
transmission throughput. It uses the method of dividing large data into blocks
and complete data reliability backup. The evaluation results show that Zebra
outperforms other state-of-the-art systems, such as CephFS, GlusterFS, NFS,
and Octopus in transmitting data streams and synchronizing file replications.

Acknowledgements. This research is supported by National Natural Science Foun-
dation of China (Grant No. 62032004), Shanghai Municipal Science and Technology
Major Project (No. 2021SHZDZX0102) and Natural Science Foundation of Shanghai
(No. 21ZR1433600).

References

1. Redis (2018). https://redis.io/
2. Anderson, T.E., Canini, M., Kim, J., et al.: Assise: performance and availability

via NVM colocation in a distributed file system. CoRR (2020)
3. Callaghan, B., Lingutla-Raj, T., Chiu, A., et al.: NFS over rdma. In: Network-I/O

Convergence: Experience, Lessons, Implications (2003)
4. Davies, A., Orsaria, A.: Scale out with glusterfs. Linux J. (2013)
5. Lu, Y., Shu, J., Chen, Y., et al.: Octopus: an RDMA-enabled distributed persistent

memory file system. In: ATC (2017)
6. Nielsen, L.H., Schlie, B., Lucani, D.E.: Towards an optimized cloud replication

protocol. In: SmartCloud (2018)
7. Noronha, R., Panda, D.K.: IMCA: a high performance caching front-end for glus-

terfs on infiniband. In: ICPP (2008)
8. Shan, Y., Tsai, S.Y., Zhang, Y.: Distributed shared persistent memory. In: SOCC

(2017)
9. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file

system. In: MSST (2010)

https://redis.io/

Zebra 349

10. Tarasov, V., Zadok, E., Shepler, S.: Filebench: a flexible framework for file system
benchmarking. Usenix Mag. (2016)

11. Weil, S.A., Brandt, S.A., et al.: Ceph: a scalable, high-performance distributed file
system. In: OSDI (2006)

12. Yang, J., Izraelevitz, J., Swanson, S.: Orion: a distributed file system for non-
volatile main memory and RDMA-capable networks. In: FAST (2019)

	Zebra: An Efficient, RDMA-Enabled Distributed Persistent Memory File System
	1 Introduction
	2 The Zebra System
	2.1 Design
	2.2 An Adaptive Replication Transmission Protocol
	2.3 Multithreaded RDMA Transmission

	3 Evaluation
	3.1 Setup
	3.2 Sensitivity to I/O Size
	3.3 Concurrency
	3.4 Scalability

	4 Conclusion
	References

