
Journal of Systems Architecture 120 (2021) 102279

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

PMSort: An adaptive sorting engine for persistent memory
Yifan Hua, Kaixin Huang, Shengan Zheng, Linpeng Huang ∗

Shanghai Jiao Tong University, China

A R T I C L E I N F O

Keywords:
Persistent memory
Sorting algorithm
Wear-leveling
Failure recovery

A B S T R A C T

Emerging persistent memory (PM, also termed as non-volatile memory) technologies can promise large
capacity, non-volatility, byte-addressability and DRAM-comparable access latency. A host of PM-based storage
systems and applications that store and access data directly in PM have been inspired by such amazing features.
Sorting is an important function for many systems, but how to optimize sorting for PM-based systems has
not been systematically studied. In this paper, we conduct extensive experiments for many existing sorting
methods, including both conventional sorting algorithms adapted for PM and recently-proposed PM-friendly
sorting techniques, on a DRAM and real PM hybrid platform. The results indicate that these sorting methods
all have drawbacks for various workloads. Some of the results are even counterintuitive compared to running
on a DRAM-simulated platform in their papers. To the best of our knowledge, we are the first to perform
a systematic study on the sorting issue for persistent memory. Based on our study, we summarize principles
on selecting the optimal algorithms and propose an adaptive sorting engine called PMSort to perform the
selecting operation and reduce failure recovery overhead in PM. We conduct extensive experiments and show
that PMSort can select the best sorting algorithm in a variety of cases.
1. Introduction

With the emergence of a new type of non-volatile storage device
called persistent memory (PM), many unique features including byte-
addressability, DRAM-comparable read and write latency have been
explored by a host of researches such as memory management sys-
tems [1–3], file systems [4–6], KV-Stores [7–9] and DBMSs [10–12]
on redesigning persistent storage systems. Unlike traditional SSD, HDD
or Flash, PM technologies such as STT-RAM [13], PCM [14] and
3DXPoint [15] enable applications to access data in PM with simple
load/store instructions.

Sorting is one of the most commonly-used functions in many storage
systems. For instance, the ‘ORDER BY’ SQL command will automatically
call the embedded sorting engine in a DBMS. The sorting component
will sort the records in a table by a specified key.1 While many PM-
optimized storage systems have been proposed, only a few works
discuss how to optimize sorting for PM. An intuitive thinking is simply
to apply conventional sorting algorithms in PM-based systems. How-
ever, such a naive migration has many limitations for traditional sorting
methods.

For internal sorting algorithms, first, since PM has the limited write
endurance [16–18], simply migrating traditional sorting algorithms
from DRAM to PM causes heavy write traffic to PM, which will reduce
the lifespan of PM. This is mainly caused by the allocated PM space

∗ Corresponding author.
E-mail address: huang-lp@sjtu.edu.cn (L. Huang).

1 In this paper, we call the attribute for sorting in a record as key and the other attributes as value.

for large-size records and their swap during sorting. Second, long time
consumption exists during record swap for large values. For instance,
fixing the keys to be 8-byte in size and record number to be one million,
sorting the records with 4 KB values will spend 26.1 s using quick sort
while the records with 8-byte values only cost 224 ms. Large values
also make it hard to exploit cache locality. Third, employing sorting
methods directly in PM costs more time than with the assistance of
DRAM in some cases (see more details in Section 3).

For external sorting algorithms, data loaded from PM to DRAM for
sorting as performed in DRAM-Disk architecture not only consumes
large DRAM space, but also takes many runs in the merging phase.
First, external sort is heavily dependent on DRAM resource. When
the available DRAM space is scarce, it may suffer from frequent data
migration between DRAM and PM, which leads to the read/write
amplification problem. Second, since disk/SSD is block addressable,
sorting records using external sort can only load block-size data from
disk to DRAM, which induces heavy time overhead in both loading and
sorting phases.

Since it is reported that PM should have much higher write latency
than read latency, and PM may suffer from the limited write endurance
issue (e.g., PCM is reported to be worn out after 106−−108 writes) [16–
18], a few researchers have proposed PM-friendly sorting methods [19–
21] to decrease PM writes. For example, segment sort [20] intends to
vailable online 20 September 2021
383-7621/© 2021 Published by Elsevier B.V.

https://doi.org/10.1016/j.sysarc.2021.102279
Received 27 April 2021; Received in revised form 29 August 2021; Accepted 11 Se
ptember 2021

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:huang-lp@sjtu.edu.cn
https://doi.org/10.1016/j.sysarc.2021.102279
https://doi.org/10.1016/j.sysarc.2021.102279
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2021.102279&domain=pdf


Journal of Systems Architecture 120 (2021) 102279Y. Hua et al.

a
a

d
a
o
e
d

a
r

r
e
w
p
o
o

i
S
a
i
S
S

2

2

P
n
1
m
s
M
p
a
r
c
m
r
f

trade off fewer writes for additional reads and allows a tunable combi-
nation of external sort and selection sort. The reason is that although
the read complexity of selection sort is 𝑂(𝑁2), its write complexity is
merely 𝑂(𝑁). Another work B*-sort [19] develops a binary tree-based
structure for sorting records in PM, which has 𝑂(𝑁) complexity for
writes and 𝑂(𝑁𝑙𝑜𝑔𝑁) complexity for reads. Luo et al. [21] utilize a
heap structure and observe that if a node is close to the heap root,
it is more likely to be read and written frequently. Thus, in order to
reduce the average writes to PM, nodes close to the root are placed
into DRAM while those close to the leaves are placed into PM. All
these methods are evaluated on a DRAM-simulated platform and show
good experimental results. However, when we run them on the real
PM hardware (i.e., Optane platform), their performance is far from
the expected result (e.g., much worse than the simple quick sort, a
conventional sorting algorithm; see more details in Section 3).

We believe that there are at least three reasons. First, these three
PM-friendly sorting methods heavily rely on the assumption that the
latency of PM read should be much better than PM write. However,
this is not the case for Optane. A recently-published paper [22] shows
that Optane’s write latency is comparable to DRAM but its read latency
is 2x-3x worse than DRAM. Second, they cannot exert the full potential
of cache locality, which makes them worse than quick sort in actual
execution. For instance, the selection sort used in segment sort has to
scan the entire portion each turn. As for B*-sort, it links records with
left-child and right-child pointers, and hence all reads and writes are
made to be random. For NVMSort, the node swap in the heapify process
has to search nodes in both PM and DRAM. Third, they introduce
extra PM read and write overhead despite of the relatively lower time
complexity. For example, B*-sort allocates PM for all the left-child and
right-child pointers, extra tunnel lists and metadata, leading to heavy
additional overhead.

The limitations that exist in both conventional sorting methods
and PM-friendly sorting methods inspire us to rethink the design of
sorting in persistent memory. We first notice that the byte-addressable
feature of PM allows us to index records with simple pointers (i.e., data
addresses), which is quite different from the DRAM-Disk storage archi-
tecture. Based on the unique byte-addressable characteristics of PM,
we propose a pointer-indirect mechanism in this paper to speed up the
sorting performance for large-size records.

In addition, we have conducted a careful analysis on the trade-
offs for possible applied algorithms from various aspects, including
redundant metadata overhead, time complexity of algorithms, wear-
leveling performance, cache locality utilization, asymmetry read/write
latency characteristics of Optane, whether or not using pointer-indirect
mechanisms, large or small value size, requirements of user, etc., as
well as experiments to show their performance under these different
conditions. Based on the specific study conducted for these commonly-
used sorting algorithms, we find that no single sorting method can be
the best-level fit (i.e., both time-efficient and memory space-efficient)
for different workloads and situations. For instance, although quick sort
in PM performs well for many cases, it is worse than external sort for
large-size records when the DRAM space is sufficient in a DRAM-PM
hybrid memory architecture.2 External sort, on the contrary, has worse
performance when the DRAM size is very small. We have verified these
bottlenecks by conducting multiple experiments on a DRAM and the
Intel Optane DC Persistent Memory (Optane) hybrid platform (see more
details in Section 3).

Based on the analysis that no single sorting method is the best fit
for different conditions, we then design and implement an adaptive
sorting engine for persistent memory, namely PMSort. PMSort can get
complicated users’ demands and hardware settings, then automatically

2 In this paper, we assume that PM is always large enough to accommodate
ll records and unsorted records are initially stored in PM while DRAM is not
lways sufficient relative to PM.
2

make decisions to pick the best-suited embedded sorting method in
an ad-hoc style. Compared with single sorting method, PMSort can
get benefit from both space and time efficiency. Moreover, we have
applied the pointer-indirect mechanism in PMSort algorithm library,
which can reduce the write traffic to PM as well as sorting latency.
Notice that the pointer indirection in this paper is a user-transparent
procedure for speeding up sorting and no matter using pointer-indirect
or non-pointer-indirect methods, the result will be finally output as
<key, value> (not <key, pointer>) to the user buffer in order, which
does not change the sorting library syntax. Moreover, we have care-
fully analyzed the tradeoff between reshuffle and no-reshuffle when
adopting pointer-indirect methods.

In order to eliminate the inconsistency problem and reduce recovery
overhead for system crash or power failure, we have carefully designed
appropriate recovery methods for all sorting algorithms in PMSort
library. Note that the recovery mechanism we design can ensure data
consistency for both key and value larger than 8B. The experiments
prove the effectiveness of our recovery mechanism for existing sorting
methods. Our contributions are summarized as follows.

∙ To the best of our knowledge, we are the first to make a systematic
study for sorting methods in DRAM-PM hybrid architecture. We care-
fully analyze the tradeoffs of using different sorting algorithms from
various aspects on the real PM platform and demonstrate that existing
sorting methods have non-negligible limitations.

∙ Combined with the advantages of various sorting methods, we
etail how to choose the best PM sorting algorithms. Based on our
nalysis on existing sorting algorithms, we summarize some principles
n selecting the optimal algorithms and develop an adaptive sorting
ngine called PMSort to perform the selecting operation in PM for
ifferent conditions.
∙ We have devised proper recovery mechanisms for all sorting

lgorithms in PMSort algorithm library to ensure data consistency and
educe the reordering overhead for failure recovery.

∙ We conduct extensive experiments on the Optane platform and the
esults show that the pointer-indirect mechanism in PMSort reduces the
xecution time by 56% ∼ 92% compared to its non-pointer counterpart,
ith orders of magnitude less writes in PM as well; PMSort can always
ick the most suitable algorithms for various workloads and situations;
ur proposed failure recovery method greatly mitigates the reordering
verhead.

The rest of this paper is organized as follows. Sections 2 and 3
ntroduce the background and motivation of our work, respectively.
ection 4 presents our proposed pointer-indirect sort mechanism and
daptive sorting engine, namely PMSort, in detail. We evaluate PMSort
n Section 5 and discuss some extensions of PMSort in Section 6. In
ection 7, we present related work and finally conclude this paper in
ection 8.

. Background

.1. Persistent Memory

Persistent Memory (PM) such as PCM [14], STT-RAM [13] and 3DX-
oint [15] is a new type of memory technology that has large capacity,
on-volatility, byte-addressability, and limited write endurance [16,
8]. Attaching PM to the main memory bus provides a raw storage
edium that can be orders of magnitude faster than modern persistent

torage medium such as disk and SSD [4]. Intel Optane DC Persistent
emory (Optane for short) is the first commercially-available PM

roduct [23]. The read and write bandwidth of Optane are 6.6 GB/s
nd 2.3 GB/s, respectively. Contrast to the bandwidth, the latency of
ead for Optane is quite larger than write, which is different from the
ommonly-believed read/write asymmetry feature (i.e., write latency is
uch higher than read latency). Read sequential and random latency

each 169 ns and 305 ns while write latency are merely 90 ns and 62 ns
or ntstore and clwb operations. For parallel I/O, the performance of



Journal of Systems Architecture 120 (2021) 102279Y. Hua et al.

2

d
s
r
i
s
b
i
P
o

2
t
l
f
a
c
a
a
t
o
t
s

Table 1
Average time and space complexity of traditional sorting algorithms.

Read time complexity Write time complexity Space complexity

Insertion Sort 𝑂(𝑁2) 𝑂(𝑁2) 𝑂(1)
Selection Sort 𝑂(𝑁2) 𝑂(𝑁) 𝑂(1)
Quick Sort 𝑂(𝑁𝑙𝑜𝑔𝑁) 𝑂(𝑁𝑙𝑜𝑔𝑁) 𝑂(𝑙𝑜𝑔𝑁)
Merge Sort 𝑂(𝑁𝑙𝑜𝑔𝑁) 𝑂(𝑁𝑙𝑜𝑔𝑁) 𝑂(𝑁)
Heap Sort 𝑂(𝑁𝑙𝑜𝑔𝑁) 𝑂(𝑁𝑙𝑜𝑔𝑁) 𝑂(1)

Optane is non-monotonic with increasing thread count. For the non-
interleaved (i.e., single-DIMM) cases, performance peaks at between
one and four threads and then tails off. Interleaving pushes the peak to
twelve threads for store+clwb. The WPQ (write pending queue) buffer
queues up to 256 B data issued from a single thread [22]. The DWPD
(Drive Writes Per Day) of Optane can reach 60 for 5 years lifetime,
which outperforms other persistent memory. The emergence of PM has
inspired a lot of researches for building persistent storage systems and
applications [1–3,5].

2.2. Review of conventional sorting methods

Sorting is one of the most important components in many storage
systems and indexing structures, such as DBMSs [10,11], KV-Stores [7,
8], and B+-Trees [24,25]. Traditional sorting algorithms can be divided
into two types: internal sort and external sort. Internal sort executes
the sorting procedure for all records directly in memory space. By
contrast, external sort is used for large data size that does not fit in
memory and depends on a two-phase sorting procedure: (1) divide all
the records into several chunks and each time load a single chunk into
memory from disk/SSD to perform an internal sort (e.g., quick sort)
on the chunk, then write out the sorted chunk to disk/SSD; (2) use
merge sort in memory to combine multiple sorted chunk records into
globally-sorted records. Table 1 provides the average time and space
complexity for some representative internal sorting algorithms. Clearly,
selection sort has the lowest write complexity while it suffers from high
read complexity. Insertion sort has both high read complexity and write
complexity. Other sorting algorithms, such as quick sort, merge sort and
heap sort, achieve more balanced read and write complexity (i.e., both
are 𝑂(𝑁𝑙𝑜𝑔𝑁)).

.3. Sorting in Persistent Memory

Although there are a lot of researches on both PM-based system
esign and in-memory data sorting optimizations, few open discus-
ions have been made on combining these two points together and
edesigning the sorting engine in persistent memory. An intuitive idea
s to apply conventional sorting algorithms, such as quick sort [26],
election sort [27], merge sort [28], and external sort [29] for PM-
ased systems. However, such a naive migration for sorting methods
n PM can lead to huge writes, which could reduce the lifespan of
M. In addition, sorting records directly in PM will lead to heavy time
verhead with an increasing record size.

A few researchers have proposed PM-friendly sorting methods [19–
1] by exploiting the unique features of persistent memory device. Due
o the commonly-believed read/write asymmetry feature (i.e., write
atency is much higher than read latency), they seek to trade off
ewer writes for additional reads or minimize the write complexity
ssisted with special data structures. Segment sort [20] allows a tunable
ombination of external sort and selection sort. That is, 𝛼 (0 ≤ 𝛼 ≤ 1) of
ll records are sorted by external sort and the remained (1− 𝛼) portion
re sorted by selection sort. These two portions are then merged into
he final sorted records. The reason is that although the read complexity
f selection sort is 𝑂(𝑁2), its write complexity is merely 𝑂(𝑁). Given
hat PM’s read latency is much lower than write latency, segment
ort is supposed to achieve better performance than simple external
3

sort or selection sort with a proper 𝛼 setting. B*-sort [19] develops a
binary tree-based structure for sorting records in PM, which has 𝑂(𝑁)
complexity for writes and 𝑂(𝑁𝑙𝑜𝑔𝑁) complexity for reads. B*-sort also
uses extra tunnel lists and register metadata to optimize the worst-
case read complexity. Luo et al. [21] improve traditional heap sort by
placing nodes near the heap root in DRAM and those near the leaves in
PM to reduce writes in PM based on the observation that nodes close
to the root are more likely to be accessed.

2.4. Inconsistency issue in Persistent Memory

Inconsistency is a significant problem for power failure or system
crash in persistent memory, mainly including partial update and re-
ordering write. In case of the data inconsistency problem due to system
failure, many mechanisms such as logging (undo/redo), copy-on-write,
checksum and persistence primitives are widely applied in PM-based
systems [5,30,31] and data structures [24,32,33]. NOVA [5] relies
on three write ordering rules to ensure consistency. First, it commits
data and log entries to PM before updating the log tail. After that,
journal data is promised to be stored into PM before propagating the
updates. Finally, new versions of data pages are committed to PM
before recycling the stale versions. Besides, Nova also employs clwb
and PCOMMIT to ensure entries committed to PM and fence to order
subsequent PCOMMIT and store operations. To ensure consistency,
ZoFS [30] issues atomic instructions with proactive cache line flushes to
provide atomic metadata updates and each metadata update is divided
into multiple steps. ZoFS follows a carefully-decided order of these
steps, so that after crashes, partially processed metadata updates can
be roll-backed by the recovery code. ZoFS’s consistency relies on an
offline recovery phase. For recovery, ZoFS first scans all coffers in the
whole file system and then recovers in-coffer metadata for each coffer.
Concretely, it starts with the coffer root page to traverse the whole
coffer and records in-use PM pages as well as cross-coffer metadata.
When a corrupted file or dentry is found during the traversal, ZoFS tries
to recognize and recover it. If the recovery is not possible, ZoFS skips
the corrupted content. At the end of traversal, ZoFS sends all in-use
pages in the coffer to KernFS, which will reclaim the rest of the pages.
After all in-coffer metadata are checked, ZoFS continues to validate
cross-coffer metadata according to the information recorded during
coffer traversals. To address the consistency issue from unanticipated
cache line eviction without page cache and cache flush operations,
SoupFS [31] adopts dual views, a latest view and a consistent view,
which is used in soft updates for file system metadata. All metadata in
the consistent view is always persisted and consistent, while metadata
in the latest view is always up-to-date and might be volatile. With-
out caring about the cache line eviction, a syscall handler operates
directly in the latest view and tracks the dependencies of modifications.
Unanticipated cache line eviction in the latest view can never affect
the persisted metadata in the consistent view by design. Background
persisters are responsible for asynchronously persisting metadata from
the latest view to the consistent view according to the tracked de-
pendencies. By using clflush/clflushopt+sfence operations, background
persisters enforce the update dependencies without affecting the syscall
latency. In addition, to implement dual views efficiently, SoupFS also
proposes pointer-based dual views, in which most structures are shared
by both views and different views are observed by following different
pointers. SoupFS can avoid almost all synchronous cache flushes in the
critical path, and the consistent view can be immediately used without
performing file system checking or recovery after crashes.

NV-Tree [32] only enforces consistency on leaf nodes without log-
ging or versioning and reconstructs internal nodes during failure re-
covery. CDDS-Tree [33] uses FLUSH to enforce consistency on all the
tree nodes. In order to keep entries sorted, all the entries on the right
side of the insertion position need to be shifted when an entry is
inserted to a node. The consistency cost in CDDS-Tree is significant



Journal of Systems Architecture 120 (2021) 102279Y. Hua et al.

t
I
P
4
c
r

3

d
D
c
i
R
c
w
v
a
t
c
i
c
(
b
u

d
p
r
c
f
t
t
s
P
N
w

3

r
m
p
r

a
s
l
m
a
c
r
r

Table 2
Execution time (ms) of typical traditional sorting algorithms.

10K 100K 1M 10M 100M 1B

Selection sort 123 12195 1232723 > 1 h > 1 h > 1 h
Insertion Sort 186 18376 1911156 > 1 h > 1 h > 1 h
Quick Sort 3.7 23 199.1 2581 24291 296782
Merge Sort 4.6 28.4 343.2 4271 43871 569731
Heap Sort 5.8 33.5 416.6 7975 78128 1526177

because it performs FLUSH for each entry shift. In addition, the entry-
level versioning method is also applied to all tree operations to ensure
consistency. Chen and Jin [24] propose the write atomic B+-Trees
(wB+-Trees), a new type of main-memory B+-Trees, that aims to reduce
overhead to promise consistency as much as possible. Each wB+-Tree
node employs a small indirect slot array and a bitmap so that most
insertions and deletions do not require the movement of index entries.
In this way, wB+- Trees can achieve node consistency either through
atomic writes in the nodes or by redo-only logging.

3. Motivation

Although the adapted conventional sorting algorithms and recently-
proposed PM-friendly sorting techniques can be applied for persistent
memory scenarios, we claim that both types of sorting methods have
non-negligible limitations, such as high read/write complexity, severe
write overhead due to large value size, and remarkable performance de-
crease caused by limited DRAM resource. To observe the bottlenecks of
existing sorting methods for PM, we conduct a series of experiments on
randomly-generated records, each of which only contains a key (fixed
8-byte in size) and a value (varied-size). The detailed configuration of
our experimental platform is provided in Section 5.1.

3.1. Comparison of typical traditional sorting algorithms

Table 2 shows the time consumption of typical traditional sorting
algorithms to sort records with 8-byte values from 10 thousand to
1 billion. We have two observations. First, selection sort has better
performance among the algorithms with 𝑂(𝑁2) time complexity. It has
1/3 less time consumption compared to insertion sort. Second, quick
sort achieves the best time efficiency among all the compared sorting
algorithms. Although merge sort and heap sort have the same read
and write complexity as quick sort, they have lower performance in
practical running. We infer that it is because quick sort can better utilize
memory cache locality while merge sort always writes its temporary
sorted results to new memory space and heap sort has more non-
adjacent elements comparison. On one hand, for sorting an array that
fits into cache, quick sort requires fewer memory accesses while merge
sort needs to allocate an additional array in the memory space. On the
other hand, for sorting an array that does not fit into cache, both quick
sort and merge sort recurse to sort smaller sections, and quick sort still
outperforms merge sort by the former argument. The drawback of quick
sort, however, is that it has more writes than selection sort.

3.2. The impact of value size

Table 3 shows the execution time of three traditional sorting algo-
rithms (i.e. selection sort, insertion sort and quick sort) for sorting 100
thousand records with the value size growing. The In-PM mechanism
means that the sorting procedure is directly executed in PM, which
is likely to be applied in a scenario with scarce DRAM; the In-DRAM
mechanism indicates that the records are loaded into and sorted in
DRAM (but not stored back to PM), which is often adopted by users
when there is no need to save the sorted result; the PM-DRAM mecha-
4

nism represents that the records are loaded into and sorted in DRAM,
and finally stored back to PM. Note that the write-back overhead can
be calculated by the PM-DRAM latency minus the In-DRAM latency.

From Table 3, we have three main observations. First, with the
value size growing, the time consumption of sorting algorithms can
increase remarkably. For instance, insertion sort and quick sort incur
7.1x and 4.7x time overhead in PM, respectively, when the value size
increases from 8B to 512B. This is because more reads and writes are
performed during the sorting procedure. Second, for both selection sort
and insertion sort, the In-PM time consumption is similar to that of In-
DRAM and PM-DRAM. This indicates that their time consumption for
sorting is too heavy due to 𝑂(𝑁2) time complexity. Third, for quick sort,
he PM write overhead plays an important role in the final performance.
t can be seen that In-DRAM and PM-DRAM quick sort outperform In-
M quick sort by 2.3x and 1.79x respectively, when the value size is
KB. Notice that compared to In-PM quick sort, PM-DRAM quick sort

an also reduce writes to PM (i.e., merely N writes for storing sorted
ecords), and hence alleviate the risk of PM wear out.

.3. The impact of DRAM capacity

In conventional storage architecture, data is first loaded from
isk/SSD to DRAM, and the actual sorting procedure is executed in
RAM. However, compared to the durable storage device, DRAM space
an be relatively more scarce, and hence it cannot store all the records
n some cases. To address this problem, external sort is employed.
ecords in disk/SSD are divided into multiple chunks, each of which
an be fitted in DRAM space and sorted. Each sorted chunk will be
ritten back to disk/SSD and they will be merged as a final sorted file
ia properly using the limited DRAM resource. In a DRAM-PM hybrid
rchitecture, external sort can still work in the similar way. Fig. 1 shows
he performance effect on external sort with different relative DRAM
apacity. The number of records is ten million and the In-PM quick sort
s considered as a baseline. The PM size taken up by all records can be
alculated by the total number of records multiplying the record size
i.e., key size plus value size). Moreover, the DRAM size taken up can
e calculated by the ratio shown in Fig. 1 multiplying the PM capacity
sed.

From Fig. 1, we can observe that the performance of external sort
ecreases with the relative DRAM size being smaller, but the sharp
erformance drop is mainly in the shift from full record size to 1/2
ecord size. For instance, with 8-byte value size, the time consumption
limbs by 2.2x, when changing the DRAM size taken up by records
rom full record space to 1/2 record space. However, only 18% extra
ime is incurred when shifting the DRAM size from 1/2 record space
o 1/4 record space. Second, external sort is better than (In-PM) quick
ort in performance with sufficient DRAM space and worse than (In-
M) quick sort if the DRAM size is smaller than the total record size.
otice that compared to In-PM quick sort, external sort has much better
ear-leveling capability because it requires only 𝑂(𝑁) PM writes.

.4. Performance study of PM-friendly sorting methods

Segment sort [20], B*-sort [19] and NVMSort [21] are three
ecently-proposed PM-friendly sorting methods that show good perfor-
ance on a DRAM-simulated platform. Currently, since the real PM
roduct is available, it should be interesting and useful to study their
eal performance.

Segment sort is a combination of external sort and selection sort,
nd its main idea is to trade off fewer writes for additional reads
ince PM is expected to have much higher write latency than read
atency. Viglas et al. [20] believe that there will be an optimal ratio to
ake segment sort reach the best performance. However, we observe
different result on Optane-based platform. Fig. 2(a) shows the time

onsumption of segment sort with different ratio to sort 100 thousand
ecords. For simplicity while maintaining the spirit of segment sort, we
eplace the external sort with In-PM quick sort, which has higher write



Journal of Systems Architecture 120 (2021) 102279Y. Hua et al.
Table 3
Execution time (s) with different value size.

In-PM In-DRAM PM-DRAM

8B 64B 512B 4KB 8B 64B 512B 4KB 8B 64B 512B 4KB

Selection Sort 12.2 13.5 18.3 30.6 12.2 13.5 18.2 30.2 12.2 13.5 18.2 30.3
Insertion Sort 18.4 27.9 130.2 > 1 h 18.4 27.6 127.9 > 1 h 18.4 27.6 127.9 > 1 h
Quick Sort 0.02 0.04 0.14 0.95 0.02 0.03 0.07 0.41 0.02 0.03 0.09 0.53
Fig. 1. The impact of relative DRAM size on external sort for sorting ten million records (In-PM quick sort as a baseline).
complexity but lower read complexity than selection sort to illustrate
the performance of segment sort’s main idea on Optane (IN-PM quick
sort has more PM writes while does not have a negative impact than
external sort on the overall performance as shown in Fig. 1). The
merging phase is kept as the previous design.

In Fig. 2(a), 𝛼=0 means that segment sort only uses selection sort;
by contrast, 𝛼=1 indicates that segment sort only utilizes quick sort. We
can learn from Fig. 2(a) that as 𝛼 decreases, the time overhead grows as
well. In other words, the larger the ratio of quick sort is employed, the
better the performance of segment sort is achieved. Segment sort can
gain no time profits from selection sort by trading off fewer writes for
additional reads. We believe that there are two reasons for it. First, the
read latency is not better than write latency. A recent study on Optane’s
performance [22] shows that the random 8-byte read (i.e., load) latency
can be 300 ns while the random 8-byte write (i.e., store) latency can
be merely 100 ns. Optane’s write can be faster than its read in terms
of latency. While the read bandwidth of Optane is higher than write,
we infer that the bottleneck for sorting is not bandwidth based on
several experiments. For example, for sorting ten million records with
8B key and 4 KB value, quick sort takes 224.7s while random write
takes merely 50.33s. Thus, for Optane, segment sort just trades off
faster writes for slower reads. Second, selection sort is not as efficient
as quick sort in utilizing cache locality, and the portion of records using
selection sort becomes the bottleneck in the entire sorting procedure. In
conclusion, segment sort is worse than the simple quick sort algorithm.

B*-sort [19] adopts a binary search tree structure to reduce the
complexity of PM writes to 𝑂(𝑁) and limit the average complexity
of PM reads to 𝑂(𝑁𝑙𝑜𝑔𝑁). To avoid the worst case for reads, it also
utilizes additional tunnel lists and register metadata. NVMSort trades
off part of PM writes for DRAM writes. While the theoretic complexity
of B*-sort and NVMSort is much better than quick sort, the performance
results on Optane-based platform are much worse. Fig. 2(b) compares
the time consumption among B*-sort, NVMSort, (In-PM) quick sort,
(In-PM) merge sort and external sort for one million records when
DRAM capacity is 1/2 the total record size. We can draw two takeaways
from Fig. 2(b). First, for small-size values, B*-sort and NVMSort have
much higher time overhead than quick sort. For instance, the time
consumption of B*-sort is 6.1x and 5.5x higher than quick sort with
the value size of 8B and 64B, respectively. There are two reasons for
this: (1) B*-sort is a pointer-based data structure and hence incurs a lot
of random reads and writes during sorting. NVMSort is a heap-based
structure and the index range of data swap in the record sequence
is larger than that of quick sort for recursion. They not only fail to
utilize cache locality but also incur severe time overhead [15,23]. The
impact of cache invalidation overhead vs write-once property benefit
5

can be evaluated via the Valgrind tool [34]. Taking the 8B value size
for B*-sort and quick sort in Fig. 2(b) as an example, the D1 and LLd
miss rate are 3.3% and 0.4% for B*-sort and 1.2% and 0.2% for quick
sort. Although B*-sort has the write-once property, the cache locality
is worse than that of quick sort, which incurs heavier overhead; (2) the
additional tunnel lists and register metadata in B*-sort add more PM-
allocated overhead in the critical path. Second, for larger-size values,
B*-sort can be comparable to quick sort. It is observed that with 4 KB
value size, B*-sort is much better than NVMSort and merge sort while
obtains merely less than 15% time consumption compared to quick sort.
This is because each tree node access can benefit from sequential reads
and writes. In conclusion, B*-sort is worse than the simple quick sort
algorithm in performance but better for the wear-leveling goal.

4. PMSort

As Section 3 demonstrates, both traditional sorting algorithms and
recently-proposed PM-friendly sorting methods have limitations, which
include (1) performance issue caused by large value size, limited DRAM
capacity, and random PM read/write overhead; (2) wear-out concern
caused by PM writes during sorting. Furthermore, no single sorting
method can beat others in all cases. For instance, while quick sort is
better in time efficiency than selection sort and B*-sort, it is not better
in wear-leveling. While PM-DRAM quick sort can be better than In-
PM quick sort, it heavily depends on the space consumption of DRAM
and when the available DRAM capacity is limited, it will transform to
external sort and the performance can drop sharply.

Based on these key observations and conclusions, we claim that it is
necessary to redesign the sorting engine for persistent memory. In this
paper, we propose an adaptive sorting engine, which is named PMSort,
to address the challenges we mentioned. In this section, we first present
the overall structure of PMSort, then introduce the PM-enabled pointer-
indirect sort mechanism, and finally provide the details of how PMSort
works.

4.1. Overview

PMSort is an adaptive sorting engine that targets at providing the
appropriate sorting technique for each workload according to the work-
load features and other significant related conditions. Fig. 3 shows the
architecture of PMSort. PMSort is composed of four core components:
Sensor (SS), Decision Engine (DE), Sorting Algorithm Library (SAL) and
Execution Engine (EE). Among these components, SS is designed for
extracting the useful information from unsorted records, requirements
of users, workloads and the hardware in system (shown in 1⃝), and



Journal of Systems Architecture 120 (2021) 102279Y. Hua et al.
Fig. 2. Performance study for PM-friendly sorting methods.
Fig. 3. Architecture of PMSort.
conveying the information to DE (shown in 2⃝). The information in-
cludes four aspects: (1) information of unsorted records, such as the
size of total records, the number of total records, and the value size
of records; (2) requirement information of users, such as the wear-
leveling requirement of application and the persistence requirement of
the sorted results; (3) workload information, such as the limited write
size of PM and limited sorting time; (4) hardware information, such
as the available DRAM capacity and the PM write endurance. Based
on the above collected information, DE is responsible for selecting the
appropriate sorting technique from SAL (shown in 3⃝). SAL is a suite of
sorting techniques, including adapted conventional sorting algorithms,
existing PM-friendly sorting techniques and pointer-indirect-optimized
sorting methods (see Section 4.2 for more details). After that, the
selected sorting method will be transmitted to EE, and EE performs it
on the unsorted records (shown in 4⃝). Finally, the sorted results are
generated as output (shown in 5⃝). They may be either persisted in PM
or simply copied to the user buffer. Note that the sensors can collect
more inputs if user demands and more future sorting methods can be
integrated in the sorting algorithm library.

4.2. PM-enabled pointer-indirect sort

For traditional DRAM-Disk storage architecture, records should be
first loaded into DRAM for sorting, with internal or external sorting
algorithms. The loading procedure is performed in a block-based style.
That is, blocks containing the full record information (i.e., keys and
values stored compactly) are loaded into DRAM. The main bottleneck
is the I/O overhead. Now, with PM, the records can be stored in PM
directly for storage systems and applications, and the sorting procedure
can be executed in PM as well. But as we point out in Section 3,
the sorting performance drops remarkably with the growth of value
size, which incurs more PM reads and writes. Some main memory
database systems enable to use pointers for data indexing [35], which
6

reduces the movement for the actual large-size value during scan or
some other operations. Inspired by this, we devise the pointer-indirect
sort mechanism to speed up the sorting performance for PM-resided
records which have large-size values. Note that one more hop to access
data and pointer mapping overhead caused by the pointer-indirect
mechanism is quite small compared to normal sorting process, as shown
in Sections 5.3 and 5.4. In addition, the pointer-indirect mechanism
is very suitable for software such as TikTok and YouTube [36]. These
software has range query functions where sort is the major operation.
For example, we can search the most popular videos in order in a week.
With the rapid growth of data, PM is gradually applied in these systems.

The key step of the pointer-indirect sort mechanism is building the
mapping <key, pointer> records, based on the original <key, value >
records, as Fig. 4(a) illustrates. Concretely, a new region (in DRAM for
IN-DRAM and PM-DRAM sorting methods, and in PM for IN-PM sorting
methods) is created, and each <key, value > record is transformed to a
much smaller <key, pointer> record, where the pointer is an indirection
(i.e., address) to the original <key, value > record. Suppose that the key
is fixed-size with 8B, then we can limit the <key, pointer> record to
be merely 16B. Due to the space-efficiency of <key, pointer> records,
with a given DRAM capacity, a much larger number of records may be
loaded into DRAM for sorting when it is compared to traditional full-
record loading mechanism. Therefore, it is possible to transform the
heavyweight external sort to the much simpler In-DRAM quick sort.

As provided in Fig. 4(b), instead of directly conducting a sorting
algorithm on large-size records, the pointer-indirect sort mechanism
enables to sort the much smaller-size <key, pointer> records, and hence
reduces a lot of PM reads and writes. It is also easy to read out sorted
records via the sorted pointers. We have studied the result reading
overhead in Section 5, which is very lightweight compared to the actual
sorting overhead.

In conclusion, the pointer-indirect sort mechanism is beneficial to
both sorting performance and PM wear-leveling for large value size.



Journal of Systems Architecture 120 (2021) 102279Y. Hua et al.
Fig. 4. An example of pointer-indirect sort mechanism.
Notice that the pointer-indirect mechanism is not limited to the use
of a single sorting method. It can be combined with all existing sorting
algorithms and techniques, such as quick sort, external sort and B*-sort.
As shown in Fig. 3, pointer-indirect sort is a core mechanism of the SAL
component. Moreover, notice that the pointer indirection in this paper
is a user-transparent procedure for speeding up sorting and no matter
PMSort adopting pointer-indirect or non-pointer-indirect methods, the
result will be finally output as <key, value> (not <key, pointer>) to the
user buffer in order, which does not change the sorting library syntax.

4.3. PMSort design and sorting selection principles

To achieve the best sorting performance with PMSort (i.e., both I/O
performance and weal-leveling according to different users’ demands
and hardware settings), we should (1) clearly distinguish different
workloads and situations as different conditions, and (2) select the
most-suitable sorting method for the corresponding condition.

We study a variety of sorting conditions and provide the most
appropriate sorting method for each condition in Table 4. We consider
the value size to be small if it is smaller or equal to 8 bytes, otherwise
it is marked as large. The DRAM capacity is considered to be sufficient
if DRAM can store all the <key, value > records or the correspond-
ing <key, pointer> records using the pointer-indirect mechanism. The
wear-leveling requirement indicates if the writes should be shorten to
𝑂(𝑁) times and the persistence requirement tells if the sorted results
should be stored as a persistent object.

As we point in Section 4.2, adopting pointer-indirect mechanism
can reduce great overhead for large size value while bring extra little
pointer mapping overhead and one more hop to read results for small
size value (evaluations are shown in Section 5.3 and Section 5.4).
Thus, pointer-indirect mechanism is more suitable for records with
large value size and there is no need to adopt it when the value size is
small. Moreover, sufficient DRAM enables sorting to be performed in
DRAM, which leads to both better performance and fewer PM writes.
Therefore, DRAM utilization should be considered for sufficient DRAM
conditions while sorting ought to be performed in PM or external sort
should be used when DRAM resource is scarce. Wear-leveling is a com-
mon issue for PM, which may reduce PM lifespan. If users require for
better wear-leveling performance, sorting can be performed in DRAM
directly under sufficient DRAM condition, and B*-sort or external sort
are more appropriate under insufficient DRAM condition compared
with quick sort since B*-sort has write-once characteristic and external
sort uses DRAM to reduce PM writes. If wear-leveling is not very con-
cerned, quick sort is more suitable for less sorting time consumption. In
addition, whether or not to persist sorting results in PM also affects the
selection decision. For sorting process in PM, sorted results are stored
in PM as well. For sorting process in DRAM, if there is no need to persist
sorted results, results will be read to the user buffer directly, which can
save both write-back time cost and write traffic to PM.
7

The corresponding best-suited sorting method is carefully selected
based on our analysis on existing sorting algorithms under different
settings and evaluated by experiments. Fig. 5(a) shows the time con-
sumption for eight candidate sorting methods to sort ten million records
when DRAM capacity is sufficient. We can observe that the perfor-
mance of QuickSort-PMPtr (i.e., pointer-indirect In-PM quick sort) is
much higher than QuickSort-PM (i.e., pure In-PM quick sort) when
the value size varies from 64B to 4 KB (e.g., 2.2x, 6.9x and 36.8x for
64B, 512B and 4 KB values, respectively). However, when the value
size is small (i.e., 8B), there is no need to employ the pointer-indirect
mechanism because their performance is nearly equal.

From Fig. 5(a), we can also observe that using DRAM can bring ben-
efits to the sorting performance. For instance, QuickSort-PM-DRAMPtr
(i.e., pointer-indirect PM-DRAM quick sort, whose key-pointer map is
in DRAM) outperforms QuickSort-PMPtr (i.e., pointer-indirect In-PM
quick sort, whose key-pointer map is in PM) by up to 1.4x when the
value size is 4 KB. In addition, sorting in DRAM will reduce writes in PM
a lot. Therefore, when wear-leveling is required, PMSort should utilize
DRAM for sorting. Concretely, when persistence for sorted results is
required, it should utilize PM-DRAM quick sort; otherwise, it should
use In-DRAM quick sort. By contrast, if wear-leveling is not a critical
concern, PMSort can simply choose In-PM quick sort and In-DRAM
quick sort according to different persistence requirements.

When DRAM capacity is not sufficient, and if there is no restriction
on wear-leveling, then it could be very straightforward to select the
In-PM quick sort due to its efficiency. However, if wear-leveling is set
as a target, then PMSort should shift the sorting method. Notice that
both external sort and B*-sort have the PM write complexity of 𝑂(𝑁),
which should be the candidate sorting methods for this case. But which
one is better? To answer this question, we conduct another experiment
to compare the performance of B*-sort with external sort for different
relative DRAM capacity. Fig. 5(b) shows the results for sorting ten
million records and QuickSort-PMPtr (i.e., pointer-indirect In-PM quick
sort) is used as performance baseline. It can be observed that when
the relative DRAM space is larger than or equal to 1/16, ExternalSort-
Ptr (i.e., pointer-indirect external sort) is better than B*-Sort-PMPtr
(i.e., pointer-indirect In-PM B*-sort). When the relative DRAM capacity
gets even smaller, B*-Sort-PMPtr starts to outperform ExternalSort-Ptr.
Although NVMSort-Ptr (i.e., pointer-indirect NVMSort) performs better
than ExternalSort-Ptr and B*-Sort-PMPtr when the relative DRAM space
is smaller than or equal to 1/16 in Fig. 5(b), its PM write size is
comparable to that of QuickSort-PMPtr in that case as Fig. 6 shows.
Thus, NVMSort-Ptr is not a suitable choice when wear-leveling is
required. In our current implementation, we set the (relative DRAM
capacity) switch boundary between external sort and B*-sort as 1/16.
Compared with the baseline, PMSort has a limited boundary of extra
time overhead (i.e., 4.5x) to guarantee wear-leveling, which should be
acceptable in practical use.

Based on the experiments and analysis above, we have demon-
strated that each employed sorting technique in PMSort is the best-
suited one for the corresponding condition. We outline evaluation



Journal of Systems Architecture 120 (2021) 102279Y. Hua et al.
Table 4
Complicated sorting conditions and corresponding sorting methods.

Value size Sufficient DRAM Wear-leveling Persistence Best-suited sorting method

Small (large)

Yes Yes Yes (pointer-indirect) PM-DRAM quick sort
Yes Yes No (pointer-indirect) In-DRAM quick sort
Yes No Yes (pointer-indirect) In-PM quick sort
Yes No No (pointer-indirect) In-DRAM quick sort
No Yes Yes (pointer-indirect) external sort
No Yes No (pointer-indirect) In-PM B*-sort
No No Yes (pointer-indirect) In-PM quick sortNo No No
Fig. 5. Comparison of the execution time for different sorting methods.
Fig. 6. Write size in PM for different pointer-indirect sorting algorithms.
results and summarize principles on selecting the optimal algorithms
here. The pointer-indirect mechanism is quite effective for large size
value and the suitable utilization of DRAM can both improve sorting
performance and reduce write traffic to PM. Different sorting algo-
rithms have different characteristics such as time complexity, cache
locality utilization, write traffic to PM, memory capacity occupation,
etc. For different settings and user requirement, all algorithms should
be studied carefully. For storage with wear-leveling concerns such as
PM, it is more suitable to choose algorithms producing fewer writes to
storage or better utilize other storage such as DRAM which has longer
writing lifespan. Algorithms with lower time complexity do not mean
that they consume less execution time. Some factors such as cache
miss rate and metadata overhead of an algorithm should be evaluated
and experiments should be performed on a real PM platform to study
the real performance of an algorithm. For designing a better PM-based
sorting algorithm, the read and write characteristics of PM also should
be taken into consideration, which is quite different from those of
DRAM.

4.4. Recovery methods in PMSort for power/system failure

Sorting a large number of records always consumes huge amount
of time, which accounts for non-negligible overhead in database sys-
tems. Since power failure or system crash may interrupt the sorting
8

process, some inconsistent states may occur and still exist in PM after
recovery. Fig. 7 illustrates three possible inconsistent states for data
swap in PM. The initial state shows that two <key, pointer> records
(i.e., <key1, pointer1> and <key2, pointer2>) need to be swapped with
the assistance of a temporal <key, pointer> record space (i.e., <Tkey,
Tpointer>). <key2, pointer2> record is moved to the temporal area
first. After that, <key1, pointer1> record is copied to the original
<key2, pointer2> record area and finally the <key2, pointer2> record
is sent back to its target space. State 1 and state 2 occur when the power
offs or system crashes in step 2, which means the <key1, pointer1>
record only has been copied partially and the <key2, pointer2> record
has not been moved respectively. The state 3 mainly attributes to
the system failure in step 3. The 8-byte key2 has been duplicated
atomically while the pointer2 still exists in the temporal space. Similar
with inconsistency problems in pointer-indirect sorting methods, three
inconsistent cases as Fig. 7 shows may also occur in non-pointer sorting
algorithms performed directly on <key, value > records. From the same
start state, the above three cases lead to three different inconsistent
states. Similarly, it is easy to show that the same inconsistent state
can be derived from multiple start states with different failure cases.
Consequently, using the information of an inconsistent state alone is
impossible to recover from the failure because there is no way to tell
which start state is the correct one.



Journal of Systems Architecture 120 (2021) 102279Y. Hua et al.
Fig. 7. Probable inconsistent states for sorting in PM.
In case of the data inconsistency problem during failure recovery,
many file systems [5,30] and KV-Stores [24,32] are designed for per-
sistent memory. For sorting in PM, consistency is non-trivial as well.
However, few open discussions have been made on how to eliminate
inconsistency for sorting. To avoid these inconsistent states mentioned
above, more specific mechanisms are designed for sorting algorithms
in SAL in our PMSort engine.

B*-sort is a non-swap sorting method. Keys are inserted into a tree
structure in sequence. There is no inconsistency problems since the
B-tree can be rebuilt based on the original <key, value > records in
PM. However, the reordering overhead sometimes becomes intolerable
for database users. In order to reduce the reordering overhead, an
intuitive thinking is simply to enable the sorting process recover from
the breakpoint and introduce extra overhead as low as possible. Since
all keys are inserted in the modified B-tree in order, we can simply use
a variable to record the current inserted key, which is considered as the
beginning for failure recovery.

Pointer-indirect, In-DRAM and PM-DRAM sorting methods can be
recovered from the original <key, value > record sequence in PM.
Pointer-indirect sorting process is performed on the pointers, not real
<key, value > records. As a result, PMSort can simply create new
pointers by mapping original <key, value > records and reorder these
new pointers. In-DRAM and PM-DRAM sorting algorithms first load
keys into DRAM and then perform sort in DRAM. After failure occurs,
since DRAM is volatile, inconsistent cases will disappear and PMSort
can simply reload records to DRAM and carry out reordering in DRAM.

In-PM quick sort has to swap keys in persistent memory during
sorting process and inconsistent states in Fig. 7 may occur. Sorting
needs to be performed on a replication of the original record sequence
and during the failure recovery, PMSort makes another copy of the
record sequence and reorders these copied records once more.

External sort first divides records into chunks, then sorts each chunk
and finally merges all sorted chunks when DRAM is insufficient. Incon-
sistency may occur when PMSort only copy part of a record from DRAM
to PM. Thus, consistency still needs to be ensured and the recovery
overhead ought to be reduced as much as possible for both external
sort and pointer-indirect external sort. Concretely, if failure interrupts
the dividing procedure, PMSort can simply record the chunk number at
the breakpoint and perform quick sort for each unsorted chunk during
recovery process. Similarly, PMSort may label the to-be-merged record
in each chunk before power/system failure and continue the merging
process after power/system restoration. If DRAM is sufficient, external
sort can be transformed to In-DRAM quick sort and PMSort can simply
adopt the recovery mechanism for In-DRAM sorting methods.

In addition, if the key size is larger than 8B, the sorting process may
also lead to an inconsistent state, namely partial write inconsistency.
That means the key may be written incompletely when the power fails.
9

In this case, our recovery mechanism mentioned above can still address
this problem to ensure data consistency, including B*-sort, external
sort, pointer-indirect, In-DRAM, PM-DRAM and In-PM sorting methods.

To sum up, based on our designs, PMSort can ensure the consistency
of all sorting algorithms in SAL and greatly reduce the reordering
overhead in the event of power or system failure. Experiments for the
effectiveness of our recovery designs are shown in Section 5.5.

4.5. Reshuffle and no-reshuffle tradeoff

Since we have applied the pointer-indirect mechanism in PMSort,
on one hand, we can simply read values through sorted <key, pointer>
records after sorting process. On the other hand, reshuffling the original
<key, value> record sequence in PM and then accessing the sorted
values is another appropriate choice. It seems that sequential access
will need one more PM read to get the next value if PMSort adopts
the former method. Worse still, the sequential access to the key–value
becomes random access into the value map. However, the reshuffling
process and corresponding redundant PM write exert extra overhead
to the system. In this section, we conduct several experiments to show
these tradeoffs.

Fig. 8 illustrates the time overhead for reshuffle and no-reshuffle
methods sorting one million and ten million records. Reshuffle takes
2x ∼ 5x more time than no-reshuffle method for sorting one million
and ten million records. Furthermore, the reshuffle process will allocate
a new space in PM to copy all <key, value> records and make them
ordered according to the sorted pointers. The extra write overhead
caused to PM is the total size of all <key, value> records.

The sorted result may be used as an intermediate result in database
systems, not the final result according to the database demand, and the
sorted result will not be used again. Moreover, the user may not require
to persist the sorted results and PMSort will not write them back to PM
for a better wear-leveling and space efficiency goal. In these cases, the
sorted result will not be read multiple times and PMSort prefer not to
reshuffle the original <key, value> records. In addition, if the extra
write overhead caused by the reshuffle process cannot be accepted by
users for a very large size of dataset, PMSort will not perform reshuffle
either. On the contrary, the original <key, value> record sequence in
PM ought to be reshuffled for future read.

5. Experimental evaluation

5.1. Experimental setup

We implement PMSort using C++ on a Linux server (CentOS 7.8)
with 2.60 GHz Intel(R) Xeon(R) Gold 6240 CPU. This CPU has 36
physical cores, with a 24 MB L3 cache. We use 600 GB of overall Optane



Journal of Systems Architecture 120 (2021) 102279Y. Hua et al.
Fig. 8. Reshuffle and no-reshuffle tradeoff.
Fig. 9. The execution time for different sorting algorithms.
DIMM space in the maximum to ensure all records accommodated in
this paper. The total DRAM capacity in our machine is 192GB and
DRAM size used in Sections 3 and 4 varies according to the record num-
ber, value size and relative ratio to PM, as detailed in each figure. In
Section 5, DRAM size is fixed as 4GB (large enough to store all records
or pointers), 64MB (nearly 1/3 of the total pointer size) and 4MB (1/40
of the total pointer size). Throughout our experiments, the key size is
fixed as 8B by default (i.e., keys are randomly-generated integers), and
the value size is allowed to vary from 8B to 4 KB. To guarantee data
persistence and consistency in PM, similar to many prior works [2,5],
we properly utilize clwb+sfence instructions to force flushing out the
records from caches. We use the standard benchmarks [37] to evaluate
the sorting performance of PMSort. Since the source code of B*-sort
and NVMSort is not available in public, we implement them faithfully
according to their papers. To demonstrate the benefit of PMSort, we
compare PMSort with six traditional sorting algorithms (i.e., selection
sort, insertion sort, external sort, quick sort, merge sort, heap sort)
and three PM-friendly sorting techniques (i.e., segment sort, B*-sort,
NVMSort).

5.2. Sorting performance for different workloads

Fig. 9 compares the execution time for sorting ten million records
between PMSort and other sorting methods. The DRAM capacity in
Fig. 9(a) and Fig. 9(b) is 64MB (i.e., insufficient DRAM space) and
4GB (sufficient DRAM space), respectively. For 64MB DRAM capacity,
PMSort will adaptively select quick sort for 8-byte value size (about
0.1s less than pointer-indirect methods) and pointer-indirect quick sort
in PM for larger value size when wear-leveling is not a restricted factor.
For 4GB DRAM capacity, since 4GB DRAM can accommodate all pointer
mapping, sorting process can be performed in DRAM rather than PM.
PMSort will adaptively select PM-DRAM quick sort and pointer-indirect
PM-DRAM quick sort (or In-DRAM quick sort and pointer-indirect In-
DRAM quick sort if there is no need to persist the sorted results) for
8-byte and larger value size respectively.

Fig. 10 shows the maximum number of records that can be sorted in
one minute by different sorting methods. We set the DRAM capacity as
10
Fig. 10. Sorted record number in 1 min.

64MB, which is insufficient to contain all records. In this case, PMSort
prefers In-PM quick sort for a small value size and pointer-indirect In-
PM quick sort for a large value size. Insertion sort and selection sort
complete the fewest records due to their 𝑂(𝑁2) time complexity.

PMSort also aims to achieve good wear-leveling performance. For
sufficient DRAM capacity, sorting process can be performed in DRAM,
which contributes to good wear-leveling performance. For insufficient
DRAM capacity, external sort and B*-sort show better wear-leveling
performance than quick sort in PM since external sort utilizes DRAM
and B*-sort has write-once characteristic. Fig. 11 shows the total PM
write size (in bytes) of sorting ten million records for the compared
methods when DRAM is 64MB and 4GB. For 64MB DRAM capacity,
PMSort will adaptively select pointer-indirect external sort. For 4GB
DRAM capacity, PMSort will adaptively select pointer-indirect PM-
DRAM quick sort (or In-DRAM quick sort if there is no need to persist
the sorted results). The extra overhead introduced by PMSort is the
information collecting overhead and decision making overhead. Both
PM write size and latency of these two types of overhead are less than
1% compared with those of the sorting overhead, and the measurement
for these two types of overhead has been included in Figs. 9, 10 and
11.



Journal of Systems Architecture 120 (2021) 102279Y. Hua et al.
Fig. 11. Write size in PM.

Given ten million records, Fig. 12 provides the upper bound and
lower bound of PMSort for both time consumption and PM writes with
different DRAM configurations when sorted results need to be persisted.
With the decrease of DRAM capacity, the upper bound of PMSort’s time
consumption gradually increases due to the use of (pointer-indirect)
external sort and B*-sort. While the gap between the worst-case time
consumption and the best-case time consumption varies remarkably
under different conditions, the gap between the worst-case PM writes
and the best-case PM writes is stable, which can be represented by
𝑂(𝑁𝑙𝑜𝑔𝑁)∕𝑂(𝑁).

There will be extra metadata overhead if PMSort selects B*-sort
(i.e., tunnel lists and register metadata, which is one of the reasons that
B*-sort consumes more time than quick sort as shown in Fig. 9). The
longest length of a tunnel list is ⌈

√

𝑛⌉ (n is the total number of records
to be sorted) because the maximum length of a sub-BST (i.e., sub binary
search tree) structure is ⌊

√

𝑛⌋+1. Since the longest length of a tunnel list
is ⌈

√

𝑛⌉, the amount of write traffic produced by tunnel list creation can
be bounded by O(

√

𝑛). The read performance of the tunnel list in B*-
sort can be bounded by O(𝑛

√

𝑛) since each record reads at most ⌈
√

𝑛⌉
entries for insertion. The registers only record four variables (length,
ceiling, floor and root, each is 8B) for helping create a tunnel entry.
11
5.3. Reading sorted records impact on total time overhead

In addition to the sorting time cost, the overhead of reading sorted
records (i.e., load all the sorted records to the user buffer) should be
also studied since it may be in the critical path of an application request
(e.g., SELECT command in DBMSs). Fig. 13 compares the time overhead
between PMSort and the non-pointer-indirect sorting algorithm.

It can be observed that when the value size is larger than 8 bytes,
it is slower to read out the records that are sorted by PMSort. There
are two reasons. First, the pointer-indirect mechanism employed by
PMSort requires an additional PM load operation for each record read.
Second, the reads into the actual records cannot exploit the cache
locality since only the pointer records are sorted. It can also be observed
that with the value size getting larger, the performance gap becomes
smaller. Concretely, when the value size is 512B, the pointer-indirect
sort mechanism generates 2.48x time overhead compared with normal
quick sort, for reading ten million sorted records. When the value size
increases to 4 KB, the relative time overhead caused by pointer-indirect
sort is merely 1.46x. Although PMSort requires more time to read sorted
results from PM to the user buffer for large-size records, the reading
overhead is much smaller than that of sorting (i.e., only 10.7% of
quick sort for ten million records with 4 KB values), and the sorting
performance is improved by 12.3x. Since the reshuffle overhead for
PMSort is no more than 10x that of no-reshuffle (see more details in
Section 4.5), the sorting performance can still be improved by orders of
magnitude. Therefore, the overall request overhead can be remarkably
reduced by PMSort.

5.4. Building <key, pointer> mapping impact on total time overhead

Since many pointer-indirect sorting algorithms proposed in this
paper transform <key, value> into <key, pointer> in the hybrid ar-
chitecture of PM and DRAM, the time overhead of converting <key,
value> into <key, pointer> (i.e., the mapping process) as an extra
cost should be studied. Fig. 14 compares the mapping overhead for
10 million records with PMSort_SP (i.e., sorting process in PMSort)
overhead and QuickSort-PM_SP (i.e., sorting process in In-PM quick
sort) overhead. The DRAM capacity in Fig. 14(a) and Fig. 14(b) are
64MB (i.e., insufficient DRAM space) and 4GB (sufficient DRAM space),
respectively. We can get three conclusions. First, with the value size
Fig. 12. The best and worst performance to persist sorted result.
Fig. 13. Time overhead of reading sorted records for different value size.



Journal of Systems Architecture 120 (2021) 102279Y. Hua et al.
Fig. 14. Mapping overhead for different value size.
Fig. 15. Recovery for B*-sort.

growing, the mapping overhead increases when the value size is small
while saturates when the value size is large. The mapping overhead
includes two part. The first part is to produce pointers for the records.
The second part is the overhead to copy the keys since we need to
use keys for sorting. The former overhead caused by addressing the
memory address is stable with the value size growing while the latter
part increases when the value size is smaller than 256B. This is because
the internal block size in Optane is 256B and if the 256B buffer contains
multiple keys, the load overhead to the buffer can be amortized by
these keys. Second, the time cost for pointer conversion with 4GB
DRAM (i.e., sufficient DRAM) is lower than that with 64 MB DRAM
(i.e., insufficient DRAM), which mainly attributes to the performance
gap between PM and DRAM. Third, the mapping time to generate <key,
pointer> is far less than the execution time of non-pointer-indirect
methods, taking QuickSort-PM (i.e., In-PM quick sort) as an example.
Thus, pointer-indirect sorting methods in PMSort can still get benefits
from using pointers.

5.5. Effectiveness of failure recovery methods in PMSort

In this section, we will show the effectiveness of our recovery
methods designed for persistent memory in PMSort while maintain-
ing consistency during sorting procedure. Fig. 15 illustrates the time
consumption for B*-sort (non-pointer for 8-byte value size and pointer-
indirect for other value size) in PMSort algorithm library to sort 10
million records (value size varying from 8B to 4 KB) when B*-sort
completes different ratio (i.e., 20%, 40%, 60%, 80%, respectively) for
sorting records before power/system failure. Since B*-sort is a tree
structure sorting method, recovery from the breakpoint consumes ap-
proximately the sorting time cost by the left portion of records, merely
with extra overhead for identifying the breakpoint. For non-pointer
IN-PM sorting algorithms, to ensure consistency in sorting process,
making a replication of original record sequence is indispensable, as
12
Fig. 16. Overhead for copying records.

Section 4.4 elaborates. Fig. 16 gives the execution time for copying 1
million and 10 million records, with value size varying from 8B to 4 KB.
Time cost is acceptable when the value size is small while it increases
sharply with the value size growing, as Fig. 16 shows. Thus, for larger
value size, PMSort takes pointer-indirect IN-PM sorting methods to
avoid the tremendous overhead caused by sorting and producing a
copy of original records. For 8-byte value size, replicating overhead is
acceptable, which is less than 0.2 s.

Extensive experiments are also conducted to show the benefits of
our recovery design for external sort. We give the time cost for break-
points occurring both in dividing and merging process, with different
ratio of fulfillment before power/system failure, as Fig. 17 (64MB
DRAM capacity) and Fig. 18 (4MB DRAM capacity) illustrate. PMSort
selects non-pointer method for 8-byte value size and pointer-indirect
for larger value size adaptively. Since Fig. 18 restricts DRAM capacity
more severely, records will be divided into more chunks and the record
number in each chunk is smaller than that in Fig. 17. Due to more
records in a chunk, dividing and sorting each chunk in dividing process
take up more time for a larger DRAM capacity. By contrast, merging
becomes the critical overhead for a more scarce DRAM capacity since
more chunks need to be merged in external sort. Thus, dividing process
in Fig. 17(a) has a sharper drop than merging phase in Fig. 17(b)
with a growing completed ratio while merging procedure in Fig. 18(b)
declines dramatically compared with the dividing portion in external
sort as Fig. 18(a) shows. Although the time cost for reordering the
remaining records after failure recovery can be reduced in various
degree, Figs. 17 and 18 prove that our mechanism designed for crash
recovery is efficient employed by (pointer-indirect) external sort.



Journal of Systems Architecture 120 (2021) 102279Y. Hua et al.
Fig. 17. Failure occurs with 64MB DRAM for external sort.
Fig. 18. Failure occurs with 4MB DRAM for external sort.
Fig. 19. Swap and non-swap selection sort.

6. Discussion

6.1. Comparison of swap and non-swap sorting methods

Swap and non-swap are two common categories in sorting algo-
rithms and their impacts in PM are interesting to be discussed. As
Fig. 19 shows, in-place update is a common method for data swap in
a sequence while non-swap mechanism do not perform data exchange
on the original records, but copy sorted records to an extra place. Some
traditional sorting algorithms such as selection sort, generally choose
in-place update to exchange the positions of two records. The in-place
update method leads to a better data locality, but swapping a pair of
records requires two writes in PM while inserting one selected record
into the newly allocated PM space only costs one write in PM. In ad-
dition, in-place update contributes to more local writes, leading to bad
13
Fig. 20. Performance gap between swap and non-swap.

wear-leveling and reducing the lifetime for PM. Therefore, in addition

to some traditional sorting algorithms in swap, performance of sorts

without swap are also need to be studied. Here, we use selection sort

as an example to compare the difference between swap and non-swap.

Fig. 19 shows the difference between swap and non-swap selection sort

and Fig. 20 illustrates the performance gap between these two methods.

Obviously, for the same sequence to be sorted, the execution time of

non-swap is about 3–4 times that of swap. For an adaptive sorting

engine, swap sorting method is more preferred when wear-leveling is

not crucial. By contrast, PMSort can simply take non-swap approaches.



Journal of Systems Architecture 120 (2021) 102279Y. Hua et al.
6.2. Multi-thread sorting

With the rapid growth of data set size, multi-thread processing
method is widely applied into many systems and applications. Different
from some state-of-the-art KV-Stores designed for persistent memory,
there is no delete operation in these sorting methods since all records
are inserted in order. Thus, multithreading seems simpler for sorting
engine design. For tree-based structure sorting methods such as B*-sort
and B+-tree (B+-tree internally sorts the records within one B+-Tree
node for each insert operation), multiple threads can cooperate to
construct the same tree. For B+-tree, lock should be employed when
internal nodes or leaf nodes split and for B*-sort, PMSort only need
to lock the parent of the inserted node, to avoid insertion in the same
address concurrently.

For traditional sorting methods such as quick sort and external sort,
similar to MapReduce in spirit, partition and merging is an appropriate
solution for multiple threads to achieve concurrency and improve the
effectiveness of PMSort. Specifically, PMSort divide records into several
part and each thread is responsible for sorting one part. After that,
PMSort merges all records and outputs a sorted sequence in the end.
Note that the store latency would be higher for multiple threads than
that for single thread, which may change the choices of PMSort. We
leave detailed multi-thread design for future work.

7. Related work

Due to the interesting features of emerging persistent memory tech-
nologies, a few researches have been proposed to optimize the sorting
performance for PM. For example, segment sort [20] assumes that a
proper ratio between selection sort and external sort will lead to a
better performance in PM, by trading off slower write operations for
much faster read operations in PM. However, we have demonstrated
that segment sort is consistently worse than quick sort on the Optane-
based platform. B*-sort [19] utilizes the binary search tree structure
to restrict the write complexity to 𝑂(𝑁) (i.e., write-once property) and
maintains the average read complexity to 𝑂(𝑁𝑙𝑜𝑔𝑁). It also develops a
tunnel list structure and adds register metadata to optimize the worst-
case read complexity to 𝑂(𝑁𝑙𝑜𝑔𝑁) as well. Unfortunately, it is observed
that although B*-sort has better wear-leveling effect, it is slower than
the simple quick sort algorithm on the Optane-based platform. Based
on a heap structure, Luo et al. [21] place nodes near the heap root in
DRAM and those near the leaves in PM to reduce PM writes according
to the observation that nodes near the root are more likely to be read or
written. However, it runs on a DRAM-simulated platform and the write
latency it sets is far longer than real PM. On the Optane-based platform,
it performs worse than quick sort in our experiments. Compared to
these PM-friendly sorting technique proposals, PMSort provides a more
comprehensive solution for the best-level sorting performance under
different conditions.

Sorting is a significant function in many storage systems and index
structures. The representative is B+-Tree, which internally sorts the
records within one B+-Tree node for each insert operation. Some PM-
optimized B+-Trees [24,25,32] have developed efficient techniques to
minimize the sorting overhead. For instance, wB+-Tree [24] utilizes
the indirection slot array, which is similar to our pointer-indirect
mechanism in spirit, to avoid the actual sorting for records, and hence
reduces a lot of PM write overhead. The limitation of the indirection
array, however, is that the indirection number is limited (e.g., 8 or 16 in
wB+-Tree). NV-Tree [32] only sorts records for In-DRAM inner nodes
but leaves the records in In-PM leaf nodes out of order, thus totally
avoiding the sorting overhead in PM. Each insert operation in NV-Tree
just appends a new log to the last record (i.e., a log). The tradeoff is
the extra overhead of probing the entire node for each single read and
the garbage collection overhead for invalid log records. Compared to
the sorting techniques proposed in these B+-Trees, PMSort is a more
universal sorting engine, rather than being limited to sort only a small
14

number of records (e.g., only in a B+-Tree node).
8. Conclusion

In this paper, we make a systematic study on sorting in PM and
point out that existing sorting methods have limitations when using
the real PM product. We propose an adaptive sorting engine, PMSort,
which can dynamically adjust its internal sorting technique to the
corresponding condition to achieve the best-level performance. The
experimental evaluation demonstrates the merit of PMSort. We hope
that PMSort can inspire further researches in the area of PM sorting and
we believe that more intelligent decisions on proper sorting techniques
should be explored.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This work is supported by National Key Research & Development
Program of China (No. 2018YFB1003302) and Natural Science Foun-
dation of Shanghai (No. 21ZR1433600).

References

[1] Volos Haris, Andres Jaan Tack, Michael M. Swift, Mnemosyne: Lightweight
persistent memory, ACM SIGARCH Comput. Archit. News 39 (1) (2011) 91–104.

[2] K. Huang, S. Li, L. Huang, K. Tan, H. Mei, Lewat: A lightweight, efficient, and
wear-aware transactional persistent memory system, IEEE Trans. Parallel Distrib.
Syst. 32 (03) (2021) 649–664.

[3] J. Coburn, A. Caulfield, A. Akel, et al., NV-Heaps: Making persistent objects
fast and safe with next-generation, non-volatile memories, in: Proceedings of
the sixteenth international conference on Architectural support for programming
languages and operating systems, 2011, pp. 105-118.

[4] R. Dulloor Subramanya, et al., System software for persistent memory, in:
Proceedings of the Ninth European Conference on Computer Systems, 2014.

[5] J. Xu, S. Swanson, NOVA: A log-structured file system for hybrid volatile / non-
volatile main memories, in: Proceedings of the 14th USENIX Conference on File
and Storage Technologies, 2016, pp. 323-338.

[6] S. Zheng, M. Hoseinzadeh, S. Swanson, Ziggurat: A tiered file system for
non-volatile main memories and disks, in: Proceedings of the 17th USENIX
Conference on File and Storage Technologies, 2019, pp. 207-219.

[7] Xia Fei, et al., Hikv: A hybrid index key–value store for dram-nvm memory
systems, in: 2017 USENIX Annual Technical Conference, 2017.

[8] Y. Huang, et al., Closing the performance gap between volatile and persistent
key-value stores using cross-referencing logs, in: 2018 USENIX Annual Technical
Conference, 2018.

[9] J. Kim, S. Lee, J.S. Vetter, PapyrusKV: a high-performance parallel key–value
store for distributed NVM architectures, in: International Conference for High
Performance Computing, Networking, Storage, and Analysis, SC ’17, 2017, pp.
1–14.

[10] O. Kaiyrakhmet, S. Lee, B. Nam, S.H. Noh, Y. Choi, SLM-DB: Single-level
key-value store with persistent memory, in: Proceedings of the 17th USENIX
Conference on File and Storage Technologies, 2019, pp. 191–205.

[11] J. DeBrabant, J. Arulraj, et al., A prolegomenon on OLTP database systems for
non-volatile memory, in: Proceedings of the VLDB Endowment, vol. 7(14), 2014,
pp. 57-63.

[12] S. Kuznetsov, Towards a native architecture of In-NVM DBMS, on: 2019 Actual
Problems of Systems and Software Engineering (APSSE), Moscow, Russia, 2019,
pp. 77–89, 10.1109/APSSE47353.2019.00017.

[13] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, O. Mutlu, Evaluating STT-
RAM as an energy-efficient main memory alternative, in: IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), Austin,
TX, 2013, pp. 256–267, http://dx.doi.org/10.1109/ISPASS.2013.6557176.

[14] H.-S.P. Wong, S. Raoux, et al., Phase change memory, Proc. IEEE 98 (12) (2010)
2201–2227, http://dx.doi.org/10.1109/JPROC.2010.2070050.

[15] F.T. Hady, A. Foong, B. Veal, D. Williams, Platform storage performance with
3D xpoint technology, Proc. IEEE 105 (9) (2017) 1822–1833, http://dx.doi.org/
10.1109/JPROC.2017.2731776.

[16] K. Qureshi Moinuddin, et al., Enhancing lifetime and security of PCM-based
main memory with start-gap wear leveling, in: 2009 42nd Annual IEEE/ACM
international symposium on microarchitecture (MICRO), 2009.

http://refhub.elsevier.com/S1383-7621(21)00192-2/sb1
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb1
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb1
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb2
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb2
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb2
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb2
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb2
http://dx.doi.org/10.1109/ISPASS.2013.6557176
http://dx.doi.org/10.1109/JPROC.2010.2070050
http://dx.doi.org/10.1109/JPROC.2017.2731776
http://dx.doi.org/10.1109/JPROC.2017.2731776
http://dx.doi.org/10.1109/JPROC.2017.2731776


Journal of Systems Architecture 120 (2021) 102279Y. Hua et al.
[17] Psaropoulos Georgios, et al., Bridging the latency gap between NVM and DRAM
for latency-bound operations, in: Proceedings of the 15th International Workshop
on Data Management on New Hardware, 2019.

[18] Huang Kaixin, Yijie Mei, Linpeng Huang, Quail: Using NVM write monitor to
enable transparent wear-leveling, J. Syst. Archit. 102 (2020) 101658.

[19] Yu-Pei Liang, et al., B*-sort: Enabling write-once sorting for persistent memory,
IEEE Trans. Computer-Aided Design Integrated Circ. Syst. (99) (2020) 1.

[20] Stratis D. Viglas, Write-limited sorts and joins for persistent memory, in:
Proceedings of the VLDB Endowment, vol. 7(5), 2014, pp. 413-424.

[21] Y. Luo, Z. Chu, P. Jin, S. Wan, Efficient sorting and join on NVM-based
hybrid memory, in: Algorithms and Architectures for Parallel Processing, 20th
International Conference, ICA3PP 2020, New York City, NY, USA, October 2–4,
Proceedings, Part I, 2020, pp. 15–30.

[22] J. Yang, J. Kim, M. Hoseinzadeh, et al., An empirical guide to the behavior
and use of scalable persistent memory, in: Proceedings of the 18th USENIX
Conference on File and Storage Technologies, 2020, pp. 168-182.

[23] I.B. Peng, M.B. Gokhale, E.W. Green, System evaluation of the Intel optane byte-
addressable NVM, in: Proceedings of the International Symposium on Memory
Systems, 2019, pp. 304-315.

[24] S. Chen, Q. Jin, Persistent b+-trees in non-volatile main memory, PVLDB 8 (7)
(2015) 786–797.

[25] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, W. Lehner, Fptree: A hybrid scm-dram
persistent and concurrent b-tree for storage class memory, in: Proceedings of the
2016 International Conference on Management of Data, 2016, pp. 371–386.

[26] M. Woniak, Z. Marszałek, M. Gabryel, R.K. Nowicki, Preprocessing large data
sets by the use of quick sort algorithm, in: Skulimowski A. Kacprzyk J.
(Ed.), Knowledge, Information and Creativity Support Systems: Recent Trends,
Advances and Solutions, in: Advances in Intelligent Systems and Computing, vol.
364, Springer, Cham, 2016.

[27] J.B. Hayfron-Acquah, Obed. Appiah, K. Riverson, Improved selection sort
algorithm, Int. J. Comput. Appl. (0975–8887) 110 (5) (2015) 29–33.

[28] Z. Marszałek, Parallelization of modified merge sort algorithm, Symmetry 9 (9)
(2017) 176.

[29] E. Khorasani, B.D. Paulovicks, et al., Parallel implementation of external sort
and join operations on a multi-core network-optimized system on a chip, in:
Xiang Y. Cuzzocrea A. Hobbs M. Zhou W. (Ed.), Algorithms and Architectures
for Parallel Processing. ICA3PP 2011, in: Lecture Notes in Computer Science,
vol. 7016, Springer, Berlin, Heidelberg, 2011.

[30] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, Haibo Chen, Performance
and protection in the ZoFS user-space NVM file system, in: ACM SIGOPS 27th
Symposium on Operating Sys- Tems Principles (SOSP ’19), October (2019) 27–
30, Huntsville, on, Canada, ACM, New York, NY, USA, 2019, p. 16, http:
//dx.doi.org/10.1145/3341301.3359637.

[31] Mingkai Dong, Haibo Chen, Soft updates made simple and fast on non-volatile
memory, in: Proceedings of the 2017 USENIX Conference on Usenix Annual
Technical Conference (USENIX ATC ’17), USENIX Association, Berkeley, CA, USA,
2017, pp. 719–731.

[32] J. Yang, Q. Wei, C. Chen, C. Wang, K.L. Yong, B. He, NV-Tree: Reducing
consistency cost for NVM-based single level systems, in: Proceedings of the
13th USENIX Conference on File and Storage Technologies, FAST ’15, 2015,
pp. 167–181.

[33] S. Venkataraman, N. Tolia, et al., Consistent and durable data structures for non-
volatile byte-addressable memory, in: Proceedings of the 9th USENIX Conference
on File and Storage Technologies, FAST ’11, 2011, p. 5.

[34] Valgrind, https://www.valgrind.org.
15
[35] H. Garcia-Molina, K. Salem, Main memory database systems: an overview, IEEE
Trans. Knowl. Data Eng. 4 (6) (1992) 509–516, http://dx.doi.org/10.1109/69.
180602.

[36] Xu Cheng, Jiangchuan Liu, Haiyang Wang, Accelerating YouTube with video
correlation, in: Proceedings of the first SIGMM workshop on Social media (WSM
’09). Association for Computing Machinery, New York, NY, USA, 2009, pp.
49–56, 10.1145/1631144.1631156.

[37] Sort benchmark home page, 2020, http://sortbenchmark.org/ (Accessed 27
2020).

Yifan Hua is currently a Ph.D. student at Shanghai
Jiao Tong University, China. His research interests in-
clude non-volatile memory and high bandwidth memory
management.

Kaixin Huang is currently a Ph.D. student at Shanghai Jiao
Tong University, China. He received his bachelor degree
from University of Electronic Science and Technology of
China, in 2016. His research interests include non-volatile
memory management and distributed systems.

Shengan Zheng received his Ph.D. and B.S. degrees from
Shanghai Jiao Tong University in 2019 and 2014, respec-
tively. He is currently a postdoctoral researcher in the
Storage Research Group at Tsinghua University. His research
interests lie in the area of non-volatile memory and file
systems.

Linpeng Huang received his M.S. and Ph.D. degrees in
computer science from Shanghai Jiao Tong University in
1989 and 1992, respectively. He is a professor of computer
science in the department of computer science and engineer-
ing, Shanghai Jiao Tong University. His research interests
include distributed systems and service oriented computing.
He is a senior member of the IEEE.

http://refhub.elsevier.com/S1383-7621(21)00192-2/sb18
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb18
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb18
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb19
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb19
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb19
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb24
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb24
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb24
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb26
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb26
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb26
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb26
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb26
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb26
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb26
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb26
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb26
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb27
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb27
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb27
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb28
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb28
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb28
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb29
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb29
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb29
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb29
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb29
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb29
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb29
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb29
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb29
http://dx.doi.org/10.1145/3341301.3359637
http://dx.doi.org/10.1145/3341301.3359637
http://dx.doi.org/10.1145/3341301.3359637
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb31
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb31
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb31
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb31
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb31
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb31
http://refhub.elsevier.com/S1383-7621(21)00192-2/sb31
https://www.valgrind.org
http://dx.doi.org/10.1109/69.180602
http://dx.doi.org/10.1109/69.180602
http://dx.doi.org/10.1109/69.180602
http://sortbenchmark.org/

	PMSort: An adaptive sorting engine for persistent memory
	Introduction
	Background
	Persistent Memory
	Review of conventional sorting methods
	Sorting in Persistent Memory
	Inconsistency issue in Persistent Memory

	Motivation
	Comparison of typical traditional sorting algorithms
	The impact of value size
	The impact of DRAM capacity
	Performance study of PM-friendly sorting methods

	PMSort
	Overview
	PM-enabled pointer-indirect sort
	PMSort design and sorting selection principles
	Recovery methods in PMSort for power/system failure
	Reshuffle and no-reshuffle tradeoff

	Experimental evaluation
	Experimental setup
	Sorting performance for different workloads
	Reading sorted records impact on total time overhead
	Building <key, pointer> mapping impact on total time overhead
	Effectiveness of failure recovery methods in PMSort

	Discussion
	Comparison of swap and non-swap sorting methods
	Multi-thread sorting

	Related work
	Conclusion
	Declaration of competing interest
	Acknowledgment
	References


