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Abstract. Emerging persistent memory (PM, also termed as non-
volatile memory) technologies can promise large capacity, non-volatility,
byte-addressability and DRAM-comparable access latency. Such amazing
features have inspired a host of PM-based storage systems and applica-
tions that store and access data directly in PM. Sorting is an important
function for many systems, but how to optimize sorting for PM-based sys-
tems has not been systematically studied yet. In this paper, we conduct
extensive experiments for many existing sorting methods, including both
conventional sorting algorithms adapted for PM and recently-proposed
PM-friendly sorting techniques, on a real PM platform. The results indi-
cate that these sorting methods all have drawbacks for various workloads.
Some of the results are even counterintuitive compared to running on a
DRAM-simulated platform in their papers. To the best of our knowledge,
we are the first to perform a systematic study on the sorting issue for
persistent memory. Based on our study, we propose an adaptive sorting
engine, namely SmartSort, to optimize the sorting performance for dif-
ferent conditions. The experimental results demonstrate that SmartSort
remarkably outperforms existing sorting methods in a variety of cases.

Keywords: Persistent memory · Sorting algorithm · Pointer-indirect ·
Wear-leveling

1 Introduction

Emerging persistent memory (PM) is a new type of non-volatile storage device.
Unlike traditional SSD, HDD or Flash, PM technologies such as STT-RAM [1],
PCM [2] and 3DXPoint [3] can provide byte-addressability, DRAM-comparable
read and write latency. Applications can access data in PM with simple
load/store instructions. PM has inspired a host of researches on redesigning
persistent storage systems, such as memory management systems [9,28,29], file
systems [7,8,30], KV-Stores [31,34] and DBMSs [10,35].

For many storage systems, sorting is one of the most commonly-used func-
tions. For instance, the ‘ORDER BY’ SQL command will automatically call
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the embedded sorting engine in a DBMS. The sorting component will sort the
records in a table by a specified key1. While many PM-optimized storage sys-
tems have been proposed, only a few works discuss how to optimize sorting for
PM. An intuitive thinking is simply to apply conventional sorting algorithms in
PM-based systems.

However, such a naive migration has many limitations for traditional sorting
methods. For internal sorting algorithms, first, since PM has the limited write
endurance [5,6,32], simply migrating traditional sorting algorithms from DRAM
to PM causes heavy write traffic to PM, which will reduce the lifespan of PM.
This is mainly caused by the allocated PM space for large-size records and
their swap during sorting. Second, long time consumption exists during record
swap for large values. For instance, fixing the keys to be 8-byte in size and
record number to be one million, sorting the records with 4 KB values will spend
26.1 s using quick sort while the records with 8-byte values only cost 224 ms.
Large values also make it hard to exploit cache locality. Third, employing sorting
methods directly in PM costs more time than with the assistance of DRAM in
some cases (see more details in Sect. 3). For external sorting algorithms, data
loaded from PM to DRAM for sorting as performed in DRAM-Disk architecture
not only consumes large DRAM space, but also takes many runs in the merging
phase. First, external sort is heavily dependent on DRAM resource. When the
available DRAM space is scarce, it may suffer from frequent data migration
between DRAM and PM, which leads to the read/write amplification problem.
Second, since disk/SSD is block addressable, sorting records using external sort
can only load block-size data from disk to DRAM, which induces heavy time
overhead in both loading and sorting phases.

With a specific study for these commonly-used sorting algorithms, we find
that no single sorting method can be the best-level fit (i.e., both time-efficient
and memory space-efficient) for different workloads and situations. For instance,
although quick sort in PM performs well for many cases, it is worse than external
sort for large-size records when the DRAM space is sufficient in a DRAM-PM
hybrid memory architecture2. External sort, on the contrary, has worse perfor-
mance when the DRAM size is very small. We have verified these bottlenecks
by conducting multiple experiments on the Intel Optane DC Persistent Memory
(Optane) platform (see more details in Sect. 3).

Since it is reported that PM should have much higher write latency than
read latency, and PM may suffer from the limited write endurance issue (e.g.,
PCM is reported to be worn out after 106–108 writes) [5,6,32], a few researchers
have proposed PM-friendly sorting methods [12,13,36] to decrease PM writes.
For example, segment sort [12] intends to trade off fewer writes for additional
reads and allows a tunable combination of external sort and selection sort. The

1 In this paper, we call the attribute for sorting in a record as key and the other
attributes as value.

2 In this paper, we assume that PM is always large enough to accommodate all records
and unsorted records are initially stored in PM while DRAM is not always sufficient
relative to PM.
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reason is that although the read complexity of selection sort is O(N2), its write
complexity is merely O(N). Another work B*-sort [13] develops a binary tree-
based structure for sorting records in PM, which has O(N) complexity for writes
and O(NlogN) complexity for reads. Luo et al. [36] utilize a heap structure and
observe that if a node is close to the heap root, it is more likely to be read and
written frequently. Thus, in order to reduce the average writes to PM, nodes
close to the root are placed into DRAM while those close to the leaves are placed
into PM. All these methods are evaluated on a DRAM-simulated platform and
show good experimental results. However, when we run them on the real PM
hardware, their performance is far from the expected result (e.g., much worse
than the simple quick sort, a conventional sorting algorithm; see more details in
Sect. 3).

We believe that there are at least three reasons. First, these three PM-friendly
sorting methods heavily rely on the assumption that the latency of PM read
should be much better than PM write. However, this is not the case for Optane.
A recently-published paper [14] shows that Optane’s write latency is comparable
to DRAM but its read latency is 2x–3x worse than DRAM. Second, they cannot
exert the full potential of cache locality, which makes them worse than quick
sort in actual execution. For instance, the selection sort used in segment sort
has to scan the entire portion each turn. As for B*-sort, it links records with
left-child and right-child pointers, and hence all reads and writes are made to
be random. For NVMSort, the node swap in the heapify process has to search
nodes in both PM and DRAM. Third, they introduce extra PM read and write
overhead despite of the relatively lower time complexity. For example, B*-sort
allocates PM for all the left-child and right-child pointers, extra tunnel lists and
metadata, leading to heavy additional overhead.

The limitations that exist in both conventional sorting methods and PM-
friendly sorting methods inspire us to rethink the design of sorting in persistent
memory. We first notice that the byte-addressability feature of PM allows us to
index records with simple pointers (i.e., data addresses), which is quite different
from the DRAM-Disk storage architecture. We propose a pointer-indirect mech-
anism in this paper to speed up the sorting performance for large-size records.
Based on the analysis that no single sorting method is the best fit for different
conditions, we then design and implement an adaptive sorting engine, SmartSort.
SmartSort can automatically pick the best-suited embedded sorting method in
an ad-hoc style. Our contributions are summarized as follows.

• To the best of our knowledge, we are the first to make a systematic study for
sorting methods in PM. We demonstrate that existing sorting methods have
non-negligible limitations.

• Taking advantage of PM’s byte-addressability, we propose a pointer-indirect
sort mechanism, which not only reduces the PM read and write overhead, but
also does good to PM wear-leveling.

• Combined with the advantages of various sorting methods, we develop an
adaptive sorting engine, namely SmartSort, to minimize the sorting overhead
in PM for different conditions.
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• We conduct extensive experiments on the Optane platform and the results
show that SmartSort remarkably outperforms existing sorting methods for
various workloads and situations.

The rest of this paper is organized as follows. Section 2 and 3 introduce
the background and motivation of our work, respectively. Section 4 presents our
proposed pointer-indirect sort mechanism and adaptive sorting engine, namely
SmartSort, in detail. We evaluate SmartSort in Sect. 5 and discuss related work
in Sect. 6. In Sect. 7, we finally conclude this paper.

2 Background

2.1 Persistent Memory

Persistent Memory (PM) such as PCM [2], STT-RAM [1] and 3DXPoint [3] is
a new type of memory technology that has large capacity, non-volatility, byte-
addressability, and limited write endurance [5,6]. Attaching PM to the main
memory bus provides a raw storage medium that can be orders of magnitude
faster than modern persistent storage medium such as disk and SSD [30]. Intel
Optane DC Persistent Memory (Optane for short) is the first commercially-
available PM product [4]. The emergence of PM has inspired a lot of researches
for building persistent storage systems and applications [7,9,28,29].

2.2 Review of Conventional Sorting Methods

Sorting is one of the most important components in many storage systems
and indexing structures, such as DBMSs [10,35], KV-Stores [31,34], and B+-
Trees [19,20]. Traditional sorting algorithms can be divided into two types: inter-
nal sort and external sort. Internal sort executes the sorting procedure for all
records directly in memory space. By contrast, external sort is used for large
data size that does not fit in memory and depends on a two-phase sorting pro-
cedure: 1) divide all the records into several chunks and each time load a single
chunk into memory from disk/SSD to perform an internal sort (e.g., quick sort)
on the chunk, then write out the sorted chunk to disk/SSD; 2) use merge sort in
memory to combine multiple sorted chunk records into globally-sorted records.
Table 1 provides the average time and space complexity for some representative
internal sorting algorithms. Clearly, selection sort has the lowest write complex-
ity while it suffers from high read complexity. Insertion sort has both high read
complexity and write complexity. Other sorting algorithms, such as quick sort,
merge sort and heap sort, achieve more balanced read and write complexity (i.e.,
both are O(NlogN)).

2.3 Sorting in Persistent Memory

Although there are a lot of researches on both PM-based system design and
in-memory data sorting optimizations, few open discussions have been made
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Table 1. Average time and space complexity of traditional sorting algorithms.

Read time complexity Write time complexity Space complexity

Insertion sort O(N2) O(N2) O(1)

Selection sort O(N2) O(N) O(1)

Quick sort O(NlogN) O(NlogN) O(logN)

Merge sort O(NlogN) O(NlogN) O(N)

Heap sort O(NlogN) O(NlogN) O(1)

on combining these two points together and redesigning the sorting engine in
persistent memory. An intuitive idea is to apply conventional sorting algorithms,
such as quick sort [22], selection sort [23], merge sort [24], and external sort [25]
for PM-based systems. However, such a naive migration for sorting methods in
PM can lead to huge writes, which could reduce the lifespan of PM. In addition,
sorting records directly in PM will lead to heavy time overhead with an increasing
record size.

A few researchers have proposed PM-friendly sorting methods [12,13,36]
by exploiting the unique features of persistent memory device. Due to the
commonly-believed read/write asymmetry feature (i.e., write latency is much
higher than read latency), they seek to trade off fewer writes for additional
reads or minimize the write complexity assisted with special data structures.
Segment sort [12] allows a tunable combination of external sort and selection
sort. That is, α (0 ≤ α ≤ 1) of all records are sorted by external sort and
the remained (1 − α) portion are sorted by selection sort. These two portions
are then merged into the final sorted records. The reason is that although the
read complexity of selection sort is O(N2), its write complexity is merely O(N).
Given that PM’s read latency is much lower than write latency, segment sort is
supposed to achieve better performance than simple external sort or selection
sort with a proper α setting. B*-sort [13] develops a binary tree-based structure
for sorting records in PM, which has O(N) complexity for writes and O(NlogN)
complexity for reads. B*-sort also uses extra tunnel lists and register metadata
to optimize the worst-case read complexity. Luo et al. [36] improve traditional
heap sort by placing nodes near the heap root in DRAM and those near the
leaves in PM to reduce writes in PM based on the observation that nodes close
to the root are more likely to be accessed.

3 Motivation

Although the adapted conventional sorting algorithms and recently-proposed
PM-friendly sorting techniques can be applied for persistent memory scenarios,
we claim that both types of sorting methods have non-negligible limitations,
such as high read/write complexity, severe write overhead due to large value
size, and remarkable performance decrease caused by limited DRAM resource.
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To observe the bottlenecks of existing sorting methods for PM, we conduct a
series of experiments on randomly-generated records, each of which only contains
a key (fixed 8-byte in size) and a value (varied-size). The detailed configuration
of our experimental platform is provided in Sect. 5.1.

Table 2. Execution time (ms) of typical traditional sorting algorithms.

10K 100K 1M 10M 100M 1B

Selection sort 123 12195 1232723 Too long Too long Too long

Insertion sort 186 18376 1911156 Too long Too long Too long

Quick sort 3.7 23 199.1 2581 24291 296782

Merge sort 4.6 28.4 343.2 4271 43871 569731

Heap sort 5.8 33.5 416.6 7975 78128 1526177

Table 3. Execution time (s) with different value size.

In-PM In-DRAM PM-DRAM

8B 64B 512B 4KB 8B 64B 512B 4KB 8B 64B 512B ,KB

Selection sort 12.2 13.5 18.3 30.6 12.2 13.5 18.2 30.2 12.2 13.5 18.2 30.3

Insertion sort 18.4 27.9 130.2 Too long 18.4 27.6 127.9 Too long 18.4 27.6 127.9 Too long

Quick sort 0.02 0.04 0.14 0.95 0.02 0.03 0.07 0.41 0.02 0.03 0.09 0.53

3.1 Comparison of Typical Traditional Sorting Algorithms

Table 2 shows the time consumption of typical traditional sorting algorithms
to sort records with 8-byte values from 10 thousand to 1 billion. We have two
observations. First, selection sort has better performance among the algorithms
with O(N2) time complexity. It has 1/3 less time consumption compared to
insertion sort. Second, quick sort achieves the best time efficiency among all
the compared sorting algorithms. Although merge sort and heap sort have the
same read and write complexity as quick sort, they have lower performance in
practical running. We infer that it is because quick sort can better utilize memory
cache locality while merge sort always writes its temporary sorted results to new
memory space and heap sort has more non-adjacent elements comparison. The
drawback of quick sort, however, is that it has more writes than selection sort.

3.2 The Impact of Value Size

Table 3 shows the execution time of three traditional sorting algorithms (i.e.
selection sort, insertion sort and quick sort) for sorting 100 thousand records with
the value size growing. The In-PM mechanism means that the sorting procedure
is directly executed in PM; the In-DRAM mechanism indicates that the records
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are loaded into and sorted in DRAM (but not stored back to PM); the PM-
DRAM mechanism represents that the records are loaded into and sorted in
DRAM, and finally stored back to PM.

From Table 3, we have three main observations. First, with the value size
growing, the time consumption of sorting algorithms can increase remarkably.
For instance, insertion sort and quick sort incur 7.1x and 4.7x time overhead in
PM, respectively, when the value size increases from 8B to 512B. This is because
more reads and writes are performed during the sorting procedure. Second, for
both selection sort and insertion sort, the In-PM time consumption is similar to
that of In-DRAM and PM-DRAM. This indicates that their time consumption
for sorting is too heavy due to O(N2) time complexity. Third, for quick sort, the
PM write overhead plays an important role in the final performance. It can be
seen that In-DRAM and PM-DRAM quick sort outperform In-PM quick sort by
2.3x and 1.79x respectively, when the value size is 4 KB. Notice that compared
to In-PM quick sort, PM-DRAM quick sort can also reduce writes to PM (i.e.,
merely N writes for storing sorted records), and hence alleviate the risk of PM
wear out.

Fig. 1. The impact of available relative DRAM capacity on external sort.

3.3 The Impact of DRAM Capacity

In conventional storage architecture, data is first loaded from disk/SSD to
DRAM, and the actual sorting procedure is executed in DRAM. However, com-
pared to the durable storage device, DRAM space can be relatively more scarce,
and hence it cannot store all the records in some cases. To address this problem,
external sort is employed. Records in disk/SSD are divided into multiple chunks,
each of which can be fitted in DRAM space and sorted. Each sorted chunk will
be written back to disk/SSD and they will be merged as a final sorted file via
properly using the limited DRAM resource. In a DRAM-PM hybrid architecture,
external sort can still work in the similar way. Figure 1 shows the performance
effect on external sort with different relative DRAM capacity. The number of
records is ten million and the In-PM quick sort is considered as a baseline.

From Fig. 1, we can observe that the performance of external sort decreases
with the relative DRAM capacity being smaller, but the sharp performance
drop is mainly in the shift from full record capacity to 1/2 record capacity. For
instance, with 8-byte value size, the time consumption climbs by 2.2x, when
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changing the DRAM capacity from full record space to 1/2 record space. How-
ever, only 18% extra time is incurred when shifting the DRAM capacity form 1/2
record space to 1/4 record space. Second, external sort is better than (In-PM)
quick sort in performance with sufficient DRAM capacity and worse than (In-
PM) quick sort if the DRAM capacity is smaller than the total record size. Notice
that compared to In-PM quick sort, external sort has much better wear-leveling
capability because it requires only O(N) PM writes.

3.4 Performance Study of PM-Friendly Sorting Methods

Segment sort [12], B*-sort [13] and NVMSort [36] are three recently-proposed
PM-friendly sorting methods that show good performance on a DRAM-
simulated platform. Currently, since the real PM product is available, it should
be interesting and useful to study their real performance.

Segment sort is a combination of external sort and selection sort, and its
main idea is to trade off fewer writes for additional reads since PM is expected
to have much higher write latency than read latency. Viglas et al. [12] believe that
there will be an optimal ratio to make segment sort reach the best performance.
However, we observe a different result on Optane-based platform. Figure 2(a)
shows the time consumption of segment sort with different ratio to sort 100
thousand records. For simplicity while maintaining the spirit of segment sort,
we replace the external sort with In-PM quick sort, which has higher write
complexity but lower read complexity than selection sort. The merging phase is
kept as the previous design.

(a) Segment sort. (b) NVMSort and B*-sort.

Fig. 2. Performance study for PM-friendly sorting methods.

In Fig. 2(a), α = 0 means that segment sort only uses selection sort; by
contrast, α = 1 indicates that segment sort only utilizes quick sort. We can
learn from Fig. 2(a) that as α decreases, the time overhead grows as well. In other
words, the larger the ratio of quick sort is employed, the better the performance
of segment sort is achieved. Segment sort can gain no time profits from selection
sort by trading off fewer writes for additional reads. We believe that there are two
reasons for it. First, the read latency is not better than write latency. A recent
study on Optane’s performance [14] shows that the random 8-byte read (i.e.,
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load) latency can be 300 ns while the random 8-byte write (i.e., store) latency
can be merely 100 ns. Optane’s write can be faster than its read in terms of
latency. While the read bandwidth of Optane is higher than write, we infer that
the bottleneck for sorting is not bandwidth based on several experiments. For
example, for 10 million 16-byte records, quick sort takes 304.99 s while random
write takes merely 4.32 s. Thus, for Optane, segment sort just trades off faster
writes for slower reads. Second, selection sort is not as efficient as quick sort in
utilizing cache locality, and the portion of records using selection sort becomes
the bottleneck in the entire sorting procedure. In conclusion, segment sort is
worse than the simple quick sort algorithm.

B*-sort [13] adopts a binary search tree structure to reduce the complexity of
PM writes to O(N) and limit the average complexity of PM reads to O(NlogN).
To avoid the worst case for reads, it also utilizes additional tunnel lists and
register metadata. NVMSort trades off part of PM writes for DRAM writes.
While the theoretic complexity of B*-sort and NVMSort is much better than
quick sort, the performance results on Optane-based platform are much worse.
Figure 2(b) compares the time consumption among B*-sort, NVMSort, (In-PM)
quick sort, (In-PM) merge sort and external sort for one million records when
DRAM capacity is 1/2 the total record size. We can draw two takeaways from
Fig. 2(b). First, for small-size values, B*-sort and NVMSort have much higher
time overhead than quick sort. For instance, the time consumption of B*-sort
is 6.1x and 5.5x higher than quick sort with the value size of 8B and 64B,
respectively. There are two reasons for this: 1) B*-sort is a pointer-based data
structure and hence incurs a lot of random reads and writes during sorting.
NVMSort has a lot of non-adjacent data swap. They not only fail to utilize cache
locality but also incur severe time overhead [3,4]; 2) the additional tunnel lists
and register metadata in B*-sort add more PM-allocated overhead in the critical
path. Second, for larger-size values, B*-sort can be comparable to quick sort. It
is observed that with 4 KB value size, B*-sort is much better than NVMSort
and merge sort while obtains merely less than 15% time consumption compared
to quick sort. This is because each tree node access can benefit from sequential
reads and writes. In conclusion, B*-sort is worse than the simple quick sort
algorithm in performance but better for the wear-leveling goal.

4 SmartSort

As Sect. 3 demonstrates, both traditional sorting algorithms and recently-
proposed PM-friendly sorting methods have limitations, which include 1) perfor-
mance issue caused by large value size, limited DRAM capacity, and random PM
read/write overhead; 2) wear-out concern caused by PM writes during sorting.
Furthermore, no single sorting method can beat others in all cases. For instance,
while quick sort is better in time efficiency than selection sort and B*-sort, it
is not better in wear-leveling. While PM-DRAM quick sort can be better than
In-PM quick sort, it heavily depends on the space consumption of DRAM and
when the available DRAM capacity is limited, it will transform to external sort
and the performance can drop sharply.
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Based on these key observations and conclusions, we claim that it is nec-
essary to redesign the sorting engine for persistent memory. In this paper, we
propose an adaptive sorting engine, which is named SmartSort, to address the
challenges we mentioned. In this section, we first present the overall structure
of SmartSort, then introduce the PM-enabled pointer-indirect sort mechanism,
and finally provide the details of how SmartSort works.

Fig. 3. Architecture of SmartSort.

4.1 Overview

SmartSort is an adaptive sorting engine that targets at providing the appropri-
ate sorting technique for each workload according to the workload features and
other significant related conditions. Figure 3 shows the architecture of Smart-
Sort. SmartSort is composed of four core components: Sensor (SS), Decision
Engine (DE), Sorting Algorithm Library (SAL) and Execution Engine (EE).
Among these components, SS is designed for extracting the useful information
from unsorted records, requirements of users, workloads and the hardware in
system (shown in 1 ), and conveying the information to DE (shown in 2 ).
The information includes four aspects: 1) information of unsorted records, such
as the size of total records, the number of total records, and the value size of
records; 2) requirement information of users, such as the wear-leveling require-
ment of application and the persistence requirement of the sorted results; 3)
workload information, such as the limited write size of PM and limited sorting
time; 4) hardware information, such as the available DRAM capacity and the
PM write endurance. Based on the above collected information, DE is respon-
sible for selecting the appropriate sorting technique from SAL (shown in 3 ).
SAL is a suite of sorting techniques, including adapted conventional sorting algo-
rithms, existing PM-friendly sorting techniques and pointer-indirect-optimized
sorting methods (see Sect. 4.2 for more details). After that, the selected sorting
method will be transmitted to EE, and EE performs it on the unsorted records
(shown in 4 ). Finally, the sorted results are generated as output (shown in
5 ). They may be either persisted in PM or simply copied to the user buffer.
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4.2 PM-Enabled Pointer-Indirect Sort

For traditional DRAM-Disk storage architecture, records should be first loaded
into DRAM for sorting, with internal or external sorting algorithms. The loading
procedure is performed in a block-based style. That is, blocks containing the full
record information (i.e., keys and values) are loaded into DRAM. The main
bottleneck is the I/O overhead. Now, with PM, the records can be stored in PM
directly for storage systems and applications, and the sorting procedure can be
executed in PM as well. But as we point out in Sect. 3, the sorting performance
drops remarkably with the growth of value size, which incurs more PM reads
and writes. Some main memory database systems enable to use pointers for data
indexing [37], which reduces the movement for the actual large-size value during
scan or some other operations. Inspired by this, we devise the pointer-indirect
sort mechanism to speed up the sorting performance for PM-resided records
which have large-size values.

The key step of the the pointer-indirect sort mechanism is building the map-
ping <key, pointer> records, based on the original <key, value> records. Con-
cretely, a new region (either in DRAM or PM) is created, and each <key, value>
record is transformed to a much smaller <key, pointer> record, where the pointer
is an indirection (i.e., address) to the original <key, value> record. Suppose that
the key is fixed-size with 8B, then we can limit the <key, pointer> record to be
merely 16B. Due to the space-efficiency of <key, pointer> records, with a given
DRAM capacity, a much larger number of records may be loaded into DRAM
for sorting when it is compared to traditional full-record loading mechanism.

Instead of directly conducting a sorting algorithm on large-size records, the
pointer-indirect sort mechanism enables to sort the much smaller-size <key,
pointer> records, and hence reduces a lot of PM reads and writes. It is also
easy to read out sorted records via the sorted pointers. We have studied the
result reading overhead in Sect. 5, which is very lightweight compared to the
actual sorting overhead. In conclusion, the pointer-indirect sort mechanism is
beneficial to both sorting performance and PM wear-leveling. Notice that the
pointer-indirect mechanism is not limited to the use of a single sorting method.
It can be combined with all existing sorting algorithms and techniques, such as

Table 4. Complicated sorting conditions and corresponding sorting methods.

Value size Sufficient

DRAM

Wear-leveling Persistence Best-suited sorting method

small (large) Yes Yes Yes (pointer-indirect) PM-DRAM quick sort

Yes Yes No (pointer-indirect) In-DRAM quick sort

Yes No Yes (pointer-indirect) In-PM quick sort

Yes No No (pointer-indirect) In-DRAM quick sort

No Yes Yes (pointer-indirect) external sort

No Yes No (pointer-indirect) In-PM B*-sort

No No Yes (pointer-indirect) In-PM quick sort

No No No
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quick sort, external sort and B*-sort. As shown in Fig. 3, pointer-indirect sort is
a core mechanism of the SAL component.

4.3 Adaptive Sorting

To achieve the best sorting performance with SmartSort, we should 1) clearly
distinguish different workloads and situations as different conditions, and 2)
select the most-suitable sorting method for the corresponding condition.

We study a variety of sorting conditions and provide the most appropri-
ate sorting method for each condition in Table 4. We consider the value size
to be small if it is smaller than 8 bytes, otherwise it is marked as large. The
DRAM capacity is considered to be sufficient if DRAM can store all the <key,
value> records or the corresponding <key, pointer> records using the pointer-
indirect mechanism. The wear-leveling requirement indicates if the writes should
be shorten to O(N) times and the persistence requirement tells if the sorted
results should be stored as a persistent object.

(a) Sufficient DRAM space. (b) Insufficient DRAM space.

Fig. 4. Comparison of the execution time for different sorting methods.

The corresponding best-suited sorting method is carefully selected based on
our experimental observations. As we discuss in Sect. 4.2, the pointer-indirect
sort mechanism should gain many performance benefits when the value size
is large. Figure 4(a) shows the time consumption for eight candidate sorting
methods to sort ten million records when DRAM capacity is sufficient. We can
observe that the performance of QuickSort-PMPtr (i.e., pointer-indirect In-PM
quick sort) is much higher than QuickSort-PM (i.e., pure In-PM quick sort)
when the value size varies from 64B to 4KB (e.g., 2.2x, 6.9x and 36.8x for 64B,
512B and 4KB values, respectively). However, when the value size is small (i.e.,
8B), there is no need to employ the pointer-indirect mechanism because their
performance is nearly equal.

From Fig. 4(a), we can also observe that using DRAM can bring benefits to
the sorting performance. For instance, QuickSort-PM-DRAMPtr (i.e., pointer-
indirect PM-DRAM quick sort) outperforms QuickSort-PMPtr (i.e., pointer-
indirect In-PM quick sort) by up to 1.4x when the value size is 4KB. In addition,
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sorting in DRAM will reduce writes in PM a lot. Therefore, when wear-leveling
is required, SmartSort should utilize DRAM for sorting. Concretely, when per-
sistence for sorted results is required, it should utilize PM-DRAM quick sort;
otherwise, it should use In-DRAM quick sort. By contrast, if wear-leveling is not
a critical concern, SmartSort can simply choose In-PM quick sort and In-DRAM
quick sort according to different persistence requirements.

Fig. 5. Write size in PM for different pointer-indirect sorting algorithms.

When DRAM capacity is not sufficient, and if there is no restriction on wear-
leveling, then it could be very straightforward to select the In-PM quick sort due
to its efficiency. However, if wear-leveling is set as a target, then SmartSort should
shift the sorting method. Notice that both external sort and B*-sort have the
PM write complexity of O(N), which should be the candidate sorting methods
for this case. But which one is better? To answer this question, we conduct
another experiment to compare the performance of B*-sort with external sort
for different relative DRAM capacity. Figure 4(b) shows the results for sorting
ten million records and QuickSort-PMPtr (i.e., pointer-indirect In-PM quick
sort) is used as performance baseline. It can be observed that when the relative
DRAM space is larger than or equal to 1/16, ExternalSort-Ptr (i.e., pointer-
indirect external sort) is better than B*-Sort-PMPtr (i.e., pointer-indirect In-PM
B*-sort). When the relative DRAM capacity gets even smaller, B*-Sort-PMPtr
starts to outperform ExternalSort-Ptr. Although NVMSort-Ptr (i.e., pointer-
indirect NVMSort) performs better than ExternalSort-Ptr and B*-Sort-PMPtr
when the relative DRAM space is smaller than or equal to 1/16 in Fig. 4(b),
its PM write size is comparable to that of QuickSort-PMPtr in that case as
Fig. 5 shows. Thus, NVMSort-Ptr is not a suitable choice when wear-leveling is
required. In our current implementation, we set the (relative DRAM capacity)
switch boundary between external sort and B*-sort as 1/16. Compared with the
baseline, SmartSort has a limited boundary of extra time overhead (i.e., 4.5x)
to guarantee wear-leveling, which should be acceptable in practical use.

Based on the experiments and analysis above, we have demonstrated that
each employed sorting technique in SmartSort is the best-suited one for the cor-
responding condition. Notice that the selection for a sorting method in SmartSort
each time is not manually-configured. That is why we call SmartSort an adaptive
sorting engine.
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5 Experimental Evaluation

5.1 Experimental Setup

We implement SmartSort using C++ on a Linux server (CentOS 7.8) with
2.60 GHz Intel(R) Xeon(R) Gold 6240 CPU. This CPU has 36 physical cores,
with a 24 MB L3 cache. We use 600 GB of overall Optane DIMM space in
the maximum to ensure all records accommodated in this paper. DRAM size in
Sect. 3 and 4 varies according to the record number, value size and relative ratio
to PM as detailed in each picture. In Sect. 5, DRAM size is fixed as 4GB (large
enough to store all records or pointers), 64 MB (nearly 1/3 of the total pointer
size) and 4 MB (1/40 of the total pointer size). Throughout our experiments, the
key size is fixed as 8B by default (i.e., keys are randomly-generated integers),
and the value size is allowed to vary from 8B to 4KB. To guarantee data per-
sistence and consistency in PM, similar to many prior works [7,28], we properly
utilize clwb+sfence instructions to force flushing out the records from caches.
We use the standard benchmarks [27] to evaluate the sorting performance of
SmartSort. Since the source code of B*-sort and NVMSort is not available in
public, we implement them faithfully according to their papers. To demonstrate
the benefit of SmartSort, we compare SmartSort with six traditional sorting
algorithms (i.e., selection sort, insertion sort, external sort, quick sort, merge
sort, heap sort) and three PM-friendly sorting techniques (i.e., segment sort,
B*-sort, NVMSort).

(a) 64MB DRAM. (b) 4GB DRAM.

Fig. 6. The execution time for different sorting algorithms.

5.2 Sorting Performance for Different Workloads

Figure 6 compares the execution time for sorting ten million records between
SmartSort and other sorting methods. The DRAM capacity in Fig. 6(a) and
Fig. 6(b) is 64 MB (i.e., insufficient DRAM space) and 4 GB (sufficient DRAM
space), respectively. We can observe that SmartSort is remarkably better than
the other sorting methods and has good scalability with the value size growing.
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For 64 MB DRAM capacity, SmartSort will adaptively select quick sort for 8-
byte value size and pointer-indirect quick sort in PM for larger value size when
wear-leveling is not a restricted factor. For 4 GB DRAM capacity, SmartSort will
adaptively select PM-DRAM quick sort and pointer-indirect PM-DRAM quick
sort (or In-DRAM quick sort and pointer-indirect In-DRAM quick sort if there is
no need to persist the sorted results) for 8-byte and larger value size respectively.

Fig. 7. Sorted record number in 1 min. Fig. 8. Write size in PM.

Figure 7 shows the maximum number of records that can be sorted in one
minute by different sorting methods. We set the DRAM capacity as 64 MB,
which is insufficient to contain all records. In this case, SmartSort prefers In-PM
quick sort for a small value size and pointer-indirect In-PM quick sort for a large
value size. Insertion sort and selection sort complete the fewest records due to
their O(N2) time complexity. Figure 8 shows the total PM write size (in bytes)
of sorting ten million records for the compared methods when DRAM is 64 MB
and 4 GB. For 64 MB DRAM capacity, SmartSort will adaptively select pointer-
indirect external sort. For 4 GB DRAM capacity, SmartSort will adaptively select
pointer-indirect PM-DRAM quick sort (or In-DRAM quick sort if there is no
need to persist the sorted results).

(a) 4GB DRAM. (b) 64MB DRAM. (c) 4MB DRAM.

Fig. 9. The best and worst performance to persist sorted result.

Given ten million records, Fig. 9 provides the upper bound and lower bound
of SmartSort for both time consumption and PM writes with different DRAM
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configurations when sorted results need to be persisted. With the decrease of
DRAM capacity, the upper bound of SmartSort’s time consumption gradually
increases due to the use of (pointer-indirect) external sort and B*-sort. While the
gap between the worst-case time consumption and the best-case time consump-
tion varies remarkably under different conditions, the gap between the worst-case
PM writes and the best-case PM writes is stable, which can be represented by
O(NlogN)/O(N).

(a) 8B. (b) 64B. (c) 512B. (d) 4KB.

Fig. 10. Time overhead of reading sorted records for different value size.

5.3 Comparison of Time Overhead on Reading Sorted Records

In addition to the sorting time cost, the overhead of reading sorted records (i.e.,
load all the sorted records to the user buffer) should be also studied since it
may be in the critical path of an application request (e.g., SELECT command
in DBMSs). Figure 10 compares the time overhead between SmartSort and the
non-pointer-indirect sorting algorithm.

It can be observed that when the value size is larger than 8 bytes, it is
slower to read out the records that are sorted by SmartSort. There are two
reasons. First, the pointer-indirect mechanism employed by SmartSort requires
an additional PM load operation for each record read. Second, the reads into the
actual records cannot exploit the cache locality since only the pointer records
are sorted. It can also be observed that with the value size getting larger, the
performance gap becomes smaller. Concretely, when the value size is 512B, the
pointer-indirect sort mechanism generates 2.48x time overhead compared with
normal quick sort, for reading ten million sorted records. When the value size
increases to 4 KB, the relative time overhead caused by pointer-indirect sort is
merely 1.46x. Although SmartSort requires more time to read sorted results from
PM to the user buffer for large-size records, the reading overhead is much smaller
than that of sorting (i.e., only 10.7% of quick sort for ten million records with
4KB values), and the sorting performance is improved by 12.3x. Therefore, the
overall request overhead can be remarkably reduced by SmartSort.

6 Related Work

Due to the interesting features of emerging persistent memory technologies, a
few researches have been proposed to optimize the sorting performance for PM.
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For example, segment sort [12] assumes that a proper ratio between selection
sort and external sort will lead to a better performance in PM, by trading off
slower write operations for much faster read operations in PM. However, we
have demonstrated that segment sort is consistently worse than quick sort on
the Optane-based platform. B*-sort [13] utilizes the binary search tree structure
to restrict the write complexity to O(N) (i.e., write-once property) and main-
tains the average read complexity to O(NlogN). It also develops a tunnel list
structure and adds register metadata to optimize the worst-case read complex-
ity to O(NlogN) as well. Unfortunately, it is observed that although B*-sort
has better wear-leveling effect, it is slower than the simple quick sort algorithm
on the Optane-based platform. Based on a heap structure, Luo et al. [36] place
nodes near the heap root in DRAM and those near the leaves in PM to reduce
PM writes according to the observation that nodes near the root are more likely
to be read or written. However, it runs on a DRAM-simulated platform and the
write latency it sets is far longer than real PM. On the Optane-based platform,
it performs worse than quick sort in our experiments. Compared to these PM-
friendly sorting technique proposals, SmartSort provides a more comprehensive
solution for the best-level sorting performance under different conditions.

Sorting is a significant function in many storage systems and index structures.
The representative is B+-Tree, which internally sorts the records within one B+-
Tree node for each insert operation. Some PM-optimized B+-Trees [18–20] have
developed efficient techniques to minimize the sorting overhead. For instance,
wB+-Tree [19] utilizes the indirection slot array, which is similar to our pointer-
indirect mechanism in spirit, to avoid the actual sorting for records, and hence
reduces a lot of PM write overhead. The limitation of the indirection array,
however, is that the indirection number is limited (e.g., 8 or 16 in wB+-Tree).
NV-Tree [18] only sorts records for In-DRAM inner nodes but leaves the records
in In-PM leaf nodes out of order, thus totally avoiding the sorting overhead
in PM. Each insert operation in NV-Tree just appends a new log to the last
record (i.e., a log). The trade-off is the extra overhead of probing the entire node
for each single read and the garbage collection overhead for invalid log records.
Compared to the sorting techniques proposed in these B+-Trees, SmartSort is
a more universal sorting engine, rather than being limited to sort only a small
number of records (e.g., only in a B+-Tree node).

7 Conclusion

In this paper, we make a systematic study on sorting in PM and point out that
existing sorting methods have limitations when using the real PM product. We
propose an adaptive sorting engine, SmartSort, which can dynamically adjust its
internal sorting technique to the corresponding condition to achieve the best-level
performance. The experimental evaluation demonstrates the merit of SmartSort.
We hope that SmartSort can inspire further researches in the area of PM sorting
and we believe that more intelligent decisions on proper sorting techniques should
be explored.
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