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Abstract—Real-world e-commerce systems need large cache
capacities. Persistent memory (PM) can be employed to enlarge
JVMs’ cache capacities, meanwhile they incur heavy write slow-
downs and garbage collection overheads. This paper proposes
JPDheap, a JVM heap design for PM-DRAM memories. A
JPDheap is composed of a standard Java heap on DRAM and
another heap on PM. The core insight is to separate heap
objects and store them on DRAM or PM, allowing objects to
be accessed much more efficiently. Our evaluation shows that
JPDheap outperforms state-of-the-art heap designs by up to
115.96% in increasing applications’ throughput and by up to
87.03% in decreasing the average latency.

Index Terms—JVM Heap; Hybrid Memory; Persistent Mem-
ory

I. INTRODUCTION

Real-world e-commerce systems need large cache capac-
ities. For example, the transaction peak reached 540,000
transactions per second in the 2019 Alibaba’s shopping fes-
tival [18]. The performance of the e-commerce system needs
to be guaranteed for such an event, particularly during the
transaction peak period. The rapidly increasing data in recent
years requires JVMs to provide large cache capacities to
applications, aiming at achieving high cache hit rates for heavy
workloads. Conventional JVMs use DRAM as cache, which
suffers from its limited capacity, high power consumption, and
high cost. Meanwhile, DRAM is not scalable enough: a JVM’s
heap memory is constrained by the main memory, whose size
is eventually constrained by the memory DIMMs.

Some recent researches use persistent memory (PM) [2],
[11], [23] for enlarging JVMs’ cache capabilities and running
e-commerce systems [7]. PM has many advantages, such as
low cost, large capacity, and near-DRAM access latency. PM
also has the potentials of significantly reducing the monetary
and energy cost in large-scale data centers. By adopting PM
into the JVM, applications and their JVMs are able to obtain
much larger cache capacities and higher cache hit rates at
runtime.

Although it is promising to run JVMs on PM, the idea has
not yet been fully explored. One problem remaining unsolved
is:
Problem Description: How should a JVM’s heap be designed
such that it leverages PM to improve the application’s through-
put and as well reduce performance overheads they raised?
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Fig. 1. Performance of running SPECjbb 2015 on OpenJDK’s HotSpot VMs
(with/without PM).

In particular, running JVMs on PM incurs two types of
performance overheads:

Write slowdowns. PM has lower write bandwidth than DRAM,
and thus PM-based heaps are unfriendly to write-intensive ap-
plications. For instance, Intel’s Optane DC persistent memory
has higher latency (346 ns [12]) than DRAM but lower latency
than SSD. Unlike DRAM, its bandwidth is asymmetric: for a
single DIMM, the maximal read bandwidth is 2.9× of the
maximal write bandwidth, while DRAM has a smaller gap
(1.3×) between its read and write bandwidths [12].

A PM-based JVM heap [2], [14] also suffers from write
slowdowns. We run the SPECjbb 2015 benchmark suite on
OpenJDK’s HotSpot VMs with PM [14]. As Figure 1 shows,
the benchmarks’ critical- and the max-jOPS drop sharply,
compared to those running on HotSpot VMs with DRAM.
The results indicate that naively replacing DRAM cache with
PM leads to slowdowns to the applications. A JVM’s heap
should be redesigned for the unique characteristics of PM.

GC overheads. A standard Java heap can be paused shortly,
but frequently for garbage collection (GC) when running read-
intensive workloads. Meanwhile, collecting heap garbages in
PM can lead to significant performance overheads—many
write operations do exist during garbage collections, and thus
it is much slower to collect garbages in PM than in DRAM; a
PM can store many more heap objects than a DRAM, and thus
it spends much time in marking and sweeping heap garbages.
GC overheads need to be reduced for enhancing the JVMs’
performance.

To fully exploit the benefit of PM and address the above
issues, we propose JPDHeap, a JVM heap design for PM-
DRAM memories. A JPDHeap is composed of a JSH (a
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Fig. 2. An overview of JPDHeap.

standard Java heap on DRAM) and a PMHeap (a large capacity
heap on PM). The core insight is to separate heap objects and
store them on different heap regions—read-intensive objects
are mainly stored in the PMHeap regions and the other objects
in the JSH regions. It allows heap objects to be accessed much
more efficiently.

This paper makes the following contributions:

• Memory layout. JPDHeap is a JVM heap design for
PM-DRAM memories. It enlarges a JVM’s cache, signif-
icantly improving an application’s cache throughput. The
PMHeap, rather than the off-heap storage, stores read-
intensive objects, reducing serialization overheads.

• Memory management. We design an approach to man-
age heap at runtime. This approach divides objects into
read-intensive objects and the others, storing them into
PMHeap and JSH, respectively. This design reduces the
number of write operations on PM, and also reduces the
frequencies of runtime garbage collections.

• Implementation and evaluation. We evaluate JPDHeap
on the Intel’s Optane DC PM devices. The evaluation
clearly shows the strengths of JPDHeap: compared with
state-of-the-art heap designs, JPDHeap increases the ap-
plications’ throughput by 25.55∼115.96%, and decreases
the average latencies by 15.66∼87.03%. JPDHeap has
been deployed to real production environments; the CPU
consumption is reduced by 5%.

II. DESIGN

A. Overview

JPDHeap is designed as a JVM heap for PM-DRAM mem-
ories. It stands for Java PM-DRAM heap, a hybrid memory
combining a heap on PM and another on DRAM. As Figure 2
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Fig. 3. JPH. The heap resides on PM and the other parts reside on DRAM.
This design does not change the behavior of the JVM [2].

TABLE I
TYPICAL PMHEAP OPERATIONS.

TYPE OPERATION

Object-Related
1© void check(obj); //Check if obj is in PMHeap
2© void getSize(obj); //Calculate the size of a PMHeap

object obj
3© void move(obj); //Move obj from the JSH into the

PMHeap

Memory-Related 4© unsigned long freeMemory(); //Return the currently
available memory in PMHeap
5© void compact(); //Reclaim free memory if there is

no sufficient unused memory in PMHeap

shows, JPDHeap is composed of a JSH on DRAM and a
PMHeap on PM. It allows JPDHeap to hold two features.

1) Large capacity. JPDHeap extends the original JVM heap
with a managed, and usually large capacity heap residing
on PM. A PMHeap stores a number of Java objects,
which improves cache hit rate.

2) Low overhead. Heap objects are stored on differ-
ent memory regions: read-intensive objects are mainly
stored in the PMHeap and the other objects in the
JSH, which significantly reduces write slowdowns. Only
the objects in the JSH can be garbage collected, and
the PMHeap objects are free from garbage collections.
JPDHeap keeps all cached data, if possible, on-heap but
off-storage, reducing serialization overheads. The seri-
alization task is usually performed for moving objects
from the memory into the storage devices, saving the
memory space at runtime.

B. Memory Layout

The JPDHeap memory is split into two sets of fix-sized
regions on DRAM and PM, which are managed by JSH and
PMHeap, respectively. In particular,

• Each region of JPDHeap is a contiguous range of a
virtual memory, where the PMHeap is mapped to the low
address of the JPDHeap, and the JSH is allocated from
the high address space. Thus, the PMHeap and the JSH
are separated by their memory addresses.

• PMHeap is mapped into several regions. The DRAM
regions are still mapped into logical representations of
Eden, Survivor, Old, Free, and Humongous regions.

• PMHeap is exclusively used to store read-intensive or
long-lived Java objects. Each size of the region is set
during the JVM startup, ranging 1∼32MB.



1 private static void testJPDHeap() {
2 List<Object> lists = new ArrayList<>();
3 List<Object> test = new ArrayList<>();
4 for (int i = 0; i < 10000; i++) {
5 lists.add("test" + i);}
6 // Read-intensive objects
7 List<Object> sublists = lists.subList(500, 5000);
8 test = move(sublists);
9 }

Fig. 4. A code example. Objects are created in JSH, and the read-intensive
ones are then moved into PMHeap.
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Fig. 5. An example of migrating JPDHeap objects.

We compare JPDHeap against JPH, a state-of-the-art heap
design on DRAM-PM memories. As Figure 3 shows, JPH
is a heap running on PM, whose object allocations and
garbage collections are performed only on PM. Comparatively,
a JPDHeap is hybrid, containing a PMheap on PM and a Java
standard heap on DRAM.

C. Memory Management

JPDHeap extends the JVM’s memory management in man-
aging JSH objects and PMHeap ones. Two types of operations
(object- and memory-related operations), as Table I shows, are
defined to support memory allocation, object migration, and
memory compaction.

Memory allocation. A PMHeap region is still a heap region,
and can be normally accessed. JPDHeap employs the Garbage-
First (G1) Garbage Collector [8] to organize memory and
allocate heap regions on DRAM and PM. It employs G1 to
partition the heap into a set of equal-sized heap regions; G1
is also employed for performing a concurrent global marking
at runtime.

In JDPHeap, each region is divided into several 512-byte
cards. Each card has a one-byte entry in a global card table that
can be used to track which cards are modified by the mutator
threads. Subsets of these cards are tracked, and referred to as
Remembered Sets (RS) [8].

During the memory allocation phase, the allocated object
are allocated on a number of cards that are contiguous in their
physical addresses.

Object migration. JPDHeap allows programmers to move
Java objects from the JSH to the PMHeap. During this process,
the JVM creates and manages a ThreadLocal forwarding table
that keeps a list of forwarding pointers. Each value in the table
is the address of an object under migration.

A move operation needs to be invoked explicitly for mi-
grating objects. The migration of an object (obj) is typically
performed as follows:

• JPDHeap checks whether obj is in the PMHeap by
comparing obj’s address against the right boundary of

Algorithm 1 Compacting PMHeap
for pm region in PMHeap do

if sflag is INUSE then
if rflag is TRUE then

continue
end if
if liveness <threshold then

for obj in pm Rset do
Append copies of obj and all its reachable objects

into UNUSED pm region
Update the reference of obj
Delete obj and all its reachable objects

end for
end if
sflag ← UNUSED

end if
end for

the PMHeap. obj can be moved into the PMHeap only
when obj is outside the PMHeap.

• Object movement is performed during the non-GC phase.
The JVM localizes obj and traverses all of the reachable
objects of obj. The results are stored in the forwarding
table.

• The object move operation is performed for moving
(copying) obj from the JSH to the PMHeap. The for-
warding table is deleted when the object migration is
completed.

Figure 5 shows an example of migrating a JPDHeap object
B from JSH to PMHeap. Since there is no pointer from
PMHeap to JSH, all objects that are B-reachable must be
migrated to PMHeap after move(B) is called. Then, the JVM
creates B0 (a copy of B) and C0 (a copy of C) in the
PMHeap( 1 ). After that, the reference of the object A needs to
be updated such that it points to B0 ( 2 ). Thereafter, there are
five objects (A, B, C, B0, and C0) in the JPDHeap. Among
them, B and C are marked as garbage objects, and can be
reclaimed by G1. B and C are further replaced with B0 and
C0 in PMHeap, respectively ( 3 ). During migration, an object
may have two copies in the JSH and the PMHeap (e.g., B and
B0).

Memory compaction. GC on JSH is light-weight and highly
efficient, while it is not feasible for PMHeap because PMHeap
stores many more long-lived objects.

We implement compact-GC, an extension of G1 in Open-
JDK’s HotSpot. Compact-GC can compact the PMHeap re-
gions and reclaim the unused memory. When PMHeap does
not have enough memory for migrating objects, compact-GC
starts to compact it. If compact-GC fails, a full GC is needed.

Algorithm 1 shows the memory compaction algorithm of
compact-GC in PMHeap. We modified the region in PMHeap
by adding two 1-bit flags. sflag indicates whether the region is
empty; rflag indicates whether the region has forward pointer
from JSH. pm Rsets are per-region entries tracking whether
there are external references pointing to objects in a PMHeap
region. Each pm region has its own pm Rset. liveness
shows the ratio of live objects in a PMHeap region. The
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(a) Throughput for HashMap.
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(b) Throughput for ArrayList.
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(c) Throughput for HashTable.
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(d) Latency for HashMap.
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(e) Latency for ArrayList.
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(f) Latency for HashTable.

Fig. 6. Comparing JPDHeap with JSH and JPH.

threshold is adjusted by the Pause Prediction model [8] in G1
GC. We employ the STAB algorithm [9] to maintain a snapshot
for live objects during compact-GC. Consequently, once a
system crashes, PMHeap can be recovered to a consistent state.

III. EVALUATION

We have implemented JPDHeap on OpenJDK 8 and evalu-
ated it against some state-of-the-art heap designs. Our evalu-
ation is aimed at answering two questions:

• RQ1. How efficient is JPDHeap in storing and loading
Java objects?

• RQ2. How much overhead can be reduced by JPDHeap?

A. Setup

The evaluation is set up as follows:

Heap designs. We evaluated JPDHeap against a pure JSH
supported in JDK 8 (on DRAM), a Java heap on PM supported
in JDK 11 (JPH). We also evaluated JPDHeap against an off-
heap storage on an anonymous production platform. The size
of JPDHeap, JPH and JSH are set 32 GB; the ratio of PM and
DRAM in JPDHeap is set 3:1.

Some PM-based heap designs were not compared with
JPDHeap because they were not publicly available.

Metrics. Three metrics are used: (1) Throughput. It calculates
how many operations are executed per second. (2) Latency.
It measures how many seconds each benchmark spends in
running. (3) GCoverhead. It measures the average GC pause
time w.r.t. each benchmark.

Benchmarks. We have implemented three micro-benchmarks:
HashMap(size), ArrayList(size), and HashTable(size). In or-
der to emulate read-intensive workloads, we let the three
commonly-used data structures be equipped with fixed size
objects. The sizes are 104, 105, 106, and 107. Java Mi-
crobenchmark Harness (JMH) [16] is employed as the harness.

We also evaluated JPDHeap on SPECjbb2015, a popular
benchmark developed for measuring performance based on the
latest Java application features∗.

Configurations. We let the JVM with JPDHeap be run on
a server with six Optane DCPMM (256 GB per DIMM, 1.5
TB in total), 128 GB of DRAM memory, and two 2.5 GHz
Intel Xeon Platinum 8269CY CPUs (104 cores in total). The
DCPMMs are exposed to user-space applications via the DAX-
file system interface [21]. Correspondingly, an Ext4-DAX file
system on PM is mounted to support PM accesses using the
AppDirect mode.

B. Throughput and Latency

1) Running Single-Threaded Benchmarks: The evaluation
on the three micro-benchmarks clearly shows the strengths
of JPDHeap. JPDHeap outperforms JSH and JPH in that it
increases the applications’ throughputs and reduces the write
latencies. As Figure 6(a) shows, the HashMap’s throughput de-
creases when its size increases; JPDHeap outperforms JSH and
JPH by 25.55∼115.96% and 51.24∼521.36%, respectively.
JPDHeap decreases average latencies by 15.66∼87.03%, com-
pared with the other two designs. JPDHeap also outperforms
JSH and JPH on ArrayList and HashTable with different sizes
of objects. For example, for ArrayList(106), JPDHeap outper-
forms JPH by 31.40∼282.32% in the benchmark’s throughout,
and has an average latency close to JPH; for HashTable(105),
JPDHeap outperforms JSH and JPH by 27.14∼51.37% and
17.76∼407.18% in the throughput, respectively, and decreases
the average latency by 17.44∼80.13%.

2) Running Multi-Threaded Benchmarks: We also com-
pared the heap designs using multi-threaded benchmarks.
JPDHeap outperforms JSH when the number of threads in-
creases. Let HashMap(107) be chosen as an example. Let the
application be run with 1∼7 threads. As Figure 7 shows, along

∗ https://www.spec.org/jbb2015/
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Fig. 7. Performance of multi-threads on JPDHeap and JSH.
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Fig. 8. Running SPECjbb 2015 on JPDHeap, JSH and JPH.

with the increase of the number of threads, the benchmark’s
throughput increases when it is run on JPDHeap. Compar-
atively, when the benchmark is run on JSH, its throughput
decreases if the number of threads is greater than 4.

We compared JPDHeap with JSH and JPH on SPECjbb
2015. As Figure 8 shows, with two different sizes of heap,
the critical and the max jOPS of JPDHeap are greater than
JSH and JPH.

Therefore, we have the answer to RQ1:

Efficiency. For read-intensive workloads, JPDHeap out-
performs JSH & JPH in increasing applications’ through-
out and reducing the average latency. The benchmarks’
throughputs can be further enhanced when the heap
objects are accessed by multi-threads.

C. Overhead

1) Serialization Overhead: We employed DirectByteBuffer
as an off-heap memory [6], with six serialization frameworks
(JDK-Native, Burlap, Hessian2, Fastjson, Gson, and Jackson).

The micro-benchmark’s throughput on the off-heap memory
decrease sharply (see Figure 9). The HashMap(107)’s through-
put on the off-heap memory is 4.096 ops/s, and that on the
JPDHeap is 3.62×107 ops/s. As Figure 9 shows, the average
latency on JPDHeap is far less than that on state-of-the-art
Java serialization frameworks, and the speedup ranges from
101× to 962×.

2) GC Overhead: We perform a number of get operations
on HashMap on JPDHeap, JSH, and JPH. As Figure 10(a)
shows, the JVM’s GC time decreases when JPDHeap is
employed. The GC time is decreased by 6.50∼90.32%. With
the increase of the size of data-set, JSH and JPH must utilize
young-GC to traverse the live objects. which significantly
increases the GC time of JSH and JPH. Since JPDHeap
explicitly disbale young-GC on PMHeap, the GC time in
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Fig. 9. Comparing JPDHeap against Java serialization frameworks. The Y-
axis is exponential. The throughput and latency of JPDHeap increase linearly.

JPDHeap is decreased. We also use GCViewer [1] to parse
the GC logs. Latency spikes can be detected. In Figure 10(b),
the pauses spike is up to 0.2713 seconds. There are many green
spikes in Figure 10(b), indicating that the get operations on
HashMap(107) running on JSH lead to heavy GC overheads.

Therefore, we have the answer to RQ2:

Overhead reduction. JPDHeap significantly reduces se-
rialization overheads and the GC time.

IV. RELATED WORK

We discuss two strands of related work.

A. PM-Based Heap

As PM technology becomes mature, an increasing number
of systems start to use PM. Makalu [4] provides a crash-
consistent heap allocator for PM. Espresso [23] employs PM
to provide a general design called Persistent Java Heap (PJH)
for managing persistent objects. Intel proposes Java support for
PM [2]–The JVM uses new keywords to allocate all the Java
objects created by the application on the Java heap. JDK 10+
provides facilities for hosting Java heap on the Intel’s Optane
DC PM [14]—a JVM’s flag -XX:AllocateHeapAt directs
the allocation of the JVM’s heap on PM. Write Rationing
[3] is a GC technique that places highly mutated objects
in DRAM and mostly read objects in PM to increase PM’s
lifetime. AutoPersist [17] directly manages Java objects in
PM to improve the access performance, and GCPersist [22]
further extends it to support resilient applications with trivial
overheads. Some other efforts, such as RaPPs page access
profiling technique [15] and Zhous technique [24], are not
open sourced or rely on specific hardware environments,
making them not comparable with JPDHeap.
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Comparatively, JPDHeap is designed as a hybrid heap on
DRAM-PM memories. It is designed to use PM to improve
applications’ throughputs and eliminate their serialization
overheads; it also stores Java objects in different memory
regions, which guarantees the applications’ performance.

B. Framework and Language Facilities
Many studies have been conducted for boosting the perfor-

mance of persistence management of native code [10], [13].
However, how PM can be exploited by high-level program-
ming languages is less studied. Tian et al. [19], [20] prove that
the performance gap between persistent heap and persistent
storage mainly comes from serialization (and deserialization).
They propose a framework for unifying accesses to persistent
objects both in persistence storage and in temporary memory.
Java provides a POJO persistence model for object-relational
mapping called Java Persistence API (JPA) [5]. JPA transforms
persistent objects between Java applications and relational
database management systems (RDBMS). Some libraries pro-
vide engineers with supports (e.g., command-line options and
memory allocation statements) to build and run applications
on PM. For example, Persistent Collections for Java (PCJ) [11]
is a Java library allowing developers to design or retrofit their
applications around PM; it also implements a new persistent
type system on PM, managing heap objects using the Intel’s
PMDK (Persistent Memory Development Kit). Meanwhile,
PCJ does not eliminate the serialization overhead, since it
stores persistent data as native off-heap objects.

On the contrary, JPDHeap leverages the G1 garbage collec-
tor to manage the heap space. Allocating read-intensive objects
on JPDHeap also helps reduce the GC’s overhead as well.

V. CONCLUSION

JPDHeap is a JVM heap designed for PM-DRAM memo-
ries. JPDheap allows a JVM to store heap objects in different

memory regions, speeding up memory accesses and reducing
write slowdowns; PMHeap is GC-insensitive and has large
capacity, which helps reduce GC frequencies and serialization
overheads. The evaluation results show that JPDHeap pro-
vides notable performance enhancement on various workloads.
JPDHeap has been practically used in production environ-
ments, providing high throughput for Java applications.
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