J. Parallel Distrib. Comput. 120 (2018) 355-368

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

PARALLELAND
DISTRIBUTED
COMPUTING

HMVES: A Versioning File System on DRAM/NVM Hybrid Memory A

Shengan Zheng, Hao Liu, Linpeng Huang *, Yanyan Shen, Yanmin Zhu

Shanghai Jiao Tong University, China

Check for
updates

HIGHLIGHTS

A Hybrid Memory Versioning File System on DRAM/NVM is proposed.
A stratified file system tree maintains the consistency among snapshots.
Snapshots are created automatically, transparently and space-efficiently.

Byte-addressability is utilized to improve the performance of snapshotting.
Snapshot efficiency of HMVES outperforms existing file systems by 7.9x and 6.6x.

ARTICLE INFO ABSTRACT

Article history:

Received 9 January 2017

Received in revised form 12 October 2017
Accepted 27 October 2017

Available online 16 November 2017

Keywords:
Versioning
Checkpoint
Snapshot
File system
Memory

The byte-addressable Non-Volatile Memory (NVM) offers fast, fine-grained access to persistent storage,
and a large volume of recent researches are conducted on developing NVM-based in-memory file systems.
However, existing approaches focus on low-overhead access to the memory and only guarantee the
consistency between data and metadata. In this paper, we address the problem of maintaining consistency
among continuous snapshots for NVM-based in-memory file systems. We propose an efficient versioning
mechanism and implement it in Hybrid Memory Versioning File System (HMVFS), which achieves fault
tolerance efficiently and has low impact on I/O performance. Our results show that HMVFS provides better
performance on snapshotting and recovering compared with the traditional versioning file systems for
many workloads. Specifically, HMVFS has lower snapshotting overhead than BTRFS and NILFS2, improving
by a factor of 9.7 and 6.6, respectively. Furthermore, HMVFS imposes minor performance overhead
compared with the state-of-the-art in-memory file systems like PMFS.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Emerging Non-Volatile Memory (NVM) combines the features
of persistency as disk and byte addressability as DRAM, and has
latency close to DRAM. As computing moving towards exascale,
storage usage and performance requirements are expanding dra-
matically, which increases the need for NVM-based in-memory file
systems, such as PMFS [8], SCMFS [34], and BPFS [4]. These file
systems leverage byte-addressability and non-volatility of NVM to
gain maximum performance benefit [26].

While NVM-based in-memory file systems allow a large
amount of data to be stored and processed in memory, the ben-
efits of NVM are compromised by hardware and software errors.
Bit flipping and pointer corruption are possible due to the byte-
addressability of NVM media. Moreover, the applications that han-
dle increasingly large-scale data usually require long execution
time and are more likely to get corrupted by soft errors. To recover

* Corresponding author.
E-mail address: Iphuang@sjtu.edu.cn (L. Huang).

https://doi.org/10.1016/j.jpdc.2017.10.022
0743-7315/© 2017 Elsevier Inc. All rights reserved.

from these failures, we need to reboot the system and restart the
failed applications from the beginning, which will have a severe
consequence on the run time of the workloads. Hence, it is becom-
ing crucial to provision the NVM-based in-memory file systems
with the ability to handle failures efficiently.

Journaling, versioning and snapshotting are three well known
fault tolerance mechanisms used in a large number of modern
file systems. Journaling file systems use journal to record all the
changes and commit these changes after rebooting. Versioning
file systems allow users to create consistent on-line backups, roll
back corruptions or inadvertent changes of files. Some file systems
achieve versioning by keeping a few versions of the changes to
single file and directory, others create snapshots to record all the
files in the file system at a particular point in time [27]. Snapshot-
ting file systems provide strong consistency guarantees to users for
their ability to recover all the data of the file system to a consistent
state. It has been shown in [17] that multi-version snapshotting
can be used to recover from various error types in NVM systems.
Moreover, file data is constantly changing and users need a way
to create backups of consistent states of the file system for data
recovery.

https://doi.org/10.1016/j.jpdc.2017.10.022
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2017.10.022&domain=pdf
mailto:lphuang@sjtu.edu.cn
https://doi.org/10.1016/j.jpdc.2017.10.022

356 S. Zheng et al. /]. Parallel Distrib. Comput. 120 (2018) 355-368

However, the implementation of file system snapshotting is
a nontrivial task. Specifically, it has to reduce space and time
overhead as much as possible while preserving consistency ef-
fectively. To minimize the overhead caused by snapshotting, we
require a space-efficient implementation of snapshot that is able
to manage block sharing well, because the blocks managed by
two consecutive snapshots always have a large overlap. Therefore,
snapshot implementations must be able to efficiently detect which
blocks are shared [7]. When a shared block is updated from an old
snapshot, the new snapshot can be created only if the old snapshot
is guaranteed to be accessible and consistent. Moreover, if a block
has been deleted, the file system must be able to determine quickly
whether it can be freed or it is still in use by other versions. To
ensure the consistency among all snapshots, we need to maintain
additional metadata structures or journals in the file system.

The state-of-the-art and widely used approach of implement-
ing consistent and space-efficient snapshot is Rodeh’s hierarchical
reference counting mechanism [22], which is based on the idea
of Copy-on-Write (CoW) friendly B-tree. Rodeh’s method modifies
the traditional B-tree structure and makes it more CoW-friendly.
This method was later adopted by BTRES [24]. However, such de-
sign introduces unnecessary overhead to in-memory file systems
due to the following two reasons.

Firstly, the key of taking fast and reliable snapshots is to reduce
the amount of metadata to be flushed to persistent storage. CoW
friendly B-tree updates B-tree with minimal changes to reference
counts, which is proportional to fan-out of the tree multiplied by
height. Nevertheless, the total size of the file system is growing
rapidly, which leads to a larger fan-out and higher tree to write-
back. GCTree [7] refers to this kind of I/O as an update storm, which
is a universal problem among B-tree based versioning file systems.

Secondly, directory hierarchy is used as tree structure base in
most B-tree based file systems, which leads to an unrestricted
height. If we want to take a global snapshot, a long pointer chain
will be generated for every CoW update from the leaf-level to
the root. Some file systems [20,7] confine changes within the file
itself or its parent directory to avoid the wandering tree problem,
which increases the overhead of file I/O and limits the granularity
of versioning from the whole file system to single file.

To address these problems, we propose the Hybrid Memory
Versioning File System (HMVEFS) based on a space-efficient in-
memory Stratified File System Tree (SFST) to maintain consis-
tency among continuous snapshots. In HMVFS, each snapshot of
the entire file system is a branch from the root of file system tree,
which employs a height-restricted CoW friendly B-tree to reuse
the overlapped blocks among versions. Unlike traditional directory
hierarchy tree with unrestricted height, HMVFS adopts node ad-
dress tree as the core structure of the file system, which makes
it space and time efficient for taking massive continuous snap-
shots. Furthermore, we exploit the byte-addressability of NVM and
avoid the write amplification problem such that exact metadata
updates in NVM can be committed at the granularity of bytes rather
than blocks. We have implemented HMVES by applying SFST to
our ongoing project: HMFS, a non-versioning Hybrid Memory File
System. We evaluate the effectiveness and efficiency of HMVFS.
The results show that HMVFS has lower overhead than BTRFS and
NILFS2 in snapshotting and recovering, improving by a factor of
9.7, 6.6 (snapshotting) and 1.8, 3.3 (recovering), respectively. The
contributions of this work are summarized as follows.

e We have solved the consistency problem for NVM-based in-
memory file systems using snapshotting. File system snapshots are
created automatically and transparently. The lightweight design
brings fast, space-efficient and reliable snapshotting into the file
system.

o We design a stratified file system tree (SFST) to represent the
snapshot of whole file system, in which tree metadata is decou-
pled from tree data. Log-structured updates to files balance the

endurance of NVM. We utilize the byte-addressability of NVM to
update tree metadata at the granularity of bytes, which provides
performance improvement for both file I/O and snapshotting.

The remainder of this paper is organized as follows. Section 2
provides the background knowledge. Section 3 shows our overall
design and Section 4 describes our implementation. We evaluate
our work in Section 5, present related work in Section 6 and
conclude the paper in Section 7.

2. Background
2.1. CoW friendly B-tree

Copy-on-Write (CoW) friendly B-tree is used by BTRFS [24] to
allow BTREFS to better scale with the size of storage and create
snapshots in a space-efficient way. The main idea is to use standard
B+-tree construction but (1) employ a top-down update procedure,
(2) remove leaf-chaining, and (3) use lazy reference-counting for
space management.

Fig. 1 shows an example of how insertion and deletion change
the reference counts of the nodes in B-tree. In this section, node
refers to the node in the abstract B-tree, which is different from
the node block mentioned in the rest of the paper. Each rectangle
in the figure represents a block in B-tree and each block is attached
with a pair (block_id, reference_count). Originally, the reference
count records the use count of the block, i.e. if a block is used by
n versions, its reference count is set to n. A block is valid if its
reference count is larger than zero. This reference counting method
can be directly applied to the file system to maintain the consis-
tency among continuous snapshots. However, if the file system
keeps reference counts for every block, massive reference counts
will have to be updated when a new snapshot is created, which
results in a large overhead. To reduce the update overhead, Rodeh
came up with an improvement to the original CoW friendly B-tree,
which transforms a traversing reference count update into a lazy
and recursive one. Most updates in the reference counts of nodes
are absorbed by their parent nodes. Such improvement reduces the
time complexity of updates from O(#totalblocks) to O(#newblocks).
This method is adopted by B-tree based file systems like BTRFS as
their main data consistency algorithm.

Fig. 1(a) illustrates an original state of a simplified CoW friendly
B-tree with reference counts. In Fig. 1(b), a leaf node D is modified
(i.e.anew D’ is written to storage). We perform path traversal from
block D to the root of the tree (D—F—P), all the visited blocks are
duplicated and written to the new locations. As a consequence, we
have a new path D’—F—Q. We set the reference count (count)
of the newly created nodes (i.e. D’, F, Q) to 1, and for the nodes that
are directly referred by the nodes in the new path, we increase their
count by 1, i.e. the reference counts of node C and E are updated to
2. Although the reference counts of node A and B have not changed,
they are accessible by the newly created tree Q.

In Fig. 1(c), we consider the scenario that tree P is about to be
deleted. We perform a tree traversal from node P and decrease the
reference counts of the visited nodes. If count is larger than 1,
the node is shared with other trees, thus we decrease count by
1 and stop downward traversal. If count is equal to 1, the node
only belongs to tree P. We set the count to zero and continue the
traversal. The nodes with zero count are considered invalid.

2.2. Hybrid Memory File System (HMFS)

HMES is a log-structured non-versioning in-memory file system
based on the hybrid memory of DRAM and NVM. HMEFS utilizes log-
structured writes to NVM to balance the endurance, and metadata
is cached in DRAM for fast random access and update. HMFS also
supports execute-in-place (XIP) in NVM to reduce the data copy

S. Zheng et al. / . Parallel Distrib. Comput. 120 (2018) 355-368 357

P,1 Pl

N |

El | Fl E.2

— L I

Al B,1 C,1 D,1 Al B,1 C.2

(a) Original tree P.

D,1

(b) Forming a new tree Q.

(c) Deleting tree P.

Fig. 1. Lazy reference counting for CoW friendly B-tree. (A,x) implies block A with reference count x.

| Application |
Read, Write, .. ||
HMFS/HMVES
| Cache ” Metadata ” Data |
| DRAM || NVM |

Fig. 2. Architecture of HMFS/HMVEFS.

overhead of extra DRAM buffer cache. The architecture of HMFS is
illustrated in Fig. 2.

As is shown in Fig. 3(a), HMFS splits the entire volume into two
zones that support random and sequential writes, and are updated
at the granularity of bytes and blocks respectively. Each zone is
divided into fixed-size segments. Each segment consists of 512
blocks, and the size of each block is 4 kB. There are 5 sections in the
random write zone of HMFS which keeps the auxiliary information
of the blocks in the main area. The location of each section is fixed
once HMFS is formatted on the volume.

Superblock (SB) contains the basic information of the file sys-
tem, such as the total number of segments and blocks, which are
given at the time of formatting and unchangeable.

Segment Information Table (SIT) contains the status informa-
tion of every segment, such as the timestamp of the last modifica-
tion to the segment, the number and bitmap of valid blocks. SIT is
used for allocating segments, identifying valid/invalid blocks and
selecting victim segments during garbage collection.

Block Information Table (BIT) keeps information of every
block, such as the parent node-id and the offset.

Node Address Table is an address table for node blocks. All
the node blocks in the main area can be located through the table
entries.

Checkpoint keeps dynamic status information of the file sys-
tem for recovery.

There are two types of blocks in the sequential write zone in
HMES. Data blocks contain raw data of files and node blocks in-
clude inodes or indirect node blocks, they are the main ingredients
to form files. Fig. 4 shows the inner structure of each file. (Blue for
node blocks and green for data blocks.) An inode block contains the
metadata of a file, such as inode number, file size, access time and
last modification time. It also contains a number of direct pointers
to data blocks, two single-indirect pointers, two double-indirect
pointers and one triple-indirect pointer. Each indirect node block
contains 1024 node-ids (NID) of indirect or direct node blocks,
each direct node block contains 512 pointers to data blocks. NID
is translated to node block address with node address table. The
cascade design of file structure can support file size up to 2 TB and
is still efficient for small files (less than 4 kB) with inline data.

The idea of node and data blocks is inspired by F2FS [15]. In the
design of traditional log-structured file system (LFS), any update to
low-level data blocks will lead to a series of updates in direct node,
indirect node and inode, resulting in serious write amplification.
F2FS uses B-tree based file indexing with node blocks and node

address table to eliminate update propagation (i.e. wandering tree
problem [25]), only one node block will be updated if a data block
has been modified, while traditional log-structured file systems
updates two or three pointer blocks recursively [15]. If one needs
to update multiple data blocks within the range of the same direct
node in SFST (Fig. 5), only one node block needs to be updated.
Multiple nodes will be updated only when the modified data blocks
are managed by different direct nodes.

3. Hybrid memory versioning file system

HMVFS is a versioning file system based on HMFS. We imple-
ment a stratified file system tree (SFST) to convert the original
HMES into HMVFS. HMVFS allows the existence of multiple snap-
shot roots of SFST, as Fig. 5 shows, each root points to a version
branch that represents a valid snapshot of the file system.

3.1. NVM friendly CoW B-tree

B-tree is widely used as the core structure of file systems, but
trivial reference count updates hinder disk-based file systems to
achieve efficient snapshotting by causing the entire block to be
written again [7]. However, in memory-based file systems, refer-
ence counts can be updated precisely at variable bytes granularity,
which motivates us to build an NVM-aware CoW friendly version-
ing B-Tree as a snapshotting solution to a B-tree based in-memory
file system.

In SFST, we decouple these reference counts and other block-
based information from B-tree blocks. As shown in Fig. 3(b), the
auxiliary information is stored at a fixed location and updated with
random writes to achieve efficiency, whereas the actual blocks of
B-tree are stored in the main area and updated with sequential
writes to support versioning. We adopt the idea of CoW friendly
B-tree [24] to the whole file system on version basis, in which con-
tinuous file system snapshots are organized as SFST with shared
branches, as shown in Fig. 5. With the idea of lazy reference count-
ing [22], we achieve efficient snapshotting and also solve the block
sharing problem which involves frequent updates to the reference
counts of shared blocks.

3.2. Stratified File System Tree (SFST)

We implemented SFST (Fig. 5) in HMFS to convert it into a Hy-
brid Memory Versioning File System (HMVFS), the layout of HMVFS
is shown in Fig. 3(b). SFST is a 7-level B-tree where the levels can be
divided into four different categories: one-level checkpoint layer,
four-level node address tree (NAT) layer, one-level node layer and
one-level data layer. We convert the original checkpoint into a
list of checkpoint blocks (CP) to keep status information of every
snapshot the file system creates. We convert node address table
into node address tree (NAT) which contains different versions
of the original node address table. We also move NAT and CP to
sequential write zone to better support block sharing in SFST. Each
node in SFST is a 4 kB block located in the main area of HMVFS, and
yields strictly sequential writes as Fig. 3(b) shows.

358 S. Zheng et al. /]. Parallel Distrib. Comput. 120 (2018) 355-368

DRAM Segment [Node
Information | Address

Table Table

Journal | Cache

Block
Information
Table
(BIT)

Segment
Information
Table
(SIT)

Data Blocks

>
Z
&
g
Jmodypay)

| Main Area |
—F €—— Scquential Writes ——>

| Auxiliary Information
<+ Random Writes

(a) Layout of HMFS.

DRAM Segment

Information | | Node Address Tree Cache
Table (NAT Cache)
Journal

Checkpoint Information
Tree
(I

Z
<
<

Node Address Tree (NAT)‘ ‘ Checkpoint Blocks (CP) ‘

Table i
(SIT)

Table

(BIT) Data Blocks

1 yo0[quodng
yoojquadng

Block ‘ Segment

uxiliary Information | Main Area (SFST) |
4—— Random Writes ——»———— Scquential Writes —————>

W
W
W
[
[
W
"
A

.

(b) Layout of HMVFS.

Fig. 3. Layout of HMFS and HMVFS, sections in the dash rectangles are shared between HMFS and HMVFS and other sections are specific to HMFS or HMVES.

[————————,— e ——
| Node |
| Inode block Indirect |
| Metadata | node |
| Triple-indirect LN }
| Double-indi Indirect Indirect Indirect
| ect node node node |
} Single-indirect 7\ 7/ \ }
| Dueclorimn(er Direct Direct | | Direct Direct | = . Direct |
| Inline data node node node node node |
I |
[— —— N N W

< ~) < 2 < < .x <

S S S S S S S S S

£ < < =l £ 2 et S K]

=} = = = = = = = =

8 8 s g g 8 g 8 s

alla g8 g[8 8 8 a

Fig. 4. File structure. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

New snapshot

I

i

Checkpoint |

CP 1 CcP
block | block
i -
e S A -
INode Address Tree i 1
| NAT | NAT |
| root ! root | |
I I
|

| / ==
| NAT | | NAT | NAT ||
| internal internal || internal |
| ! |
| / / !] |
I I
! NAT | | NAT | | NAT || NAT }
! internal internal internal | |internal | |
I
I : I
} 1 — ! ! ;

I
| NAT | .. NAT NAT | 1| NAT ||
| leaf leaf leaf | leaf | |

I
LT L |
7777777777777777777 R
| Node |
w i

|

! Indirect i > | Direct | |
| node ~t | node ||
} N |

Data block
Data block
Data block
Data block
Data block
Data block

Fig. 5. Logical layout of SFST.

The reference counts of tree nodes are stored in BIT. The de-
coupled design of auxiliary information and blocks can be applied
to other in-memory B-tree based file systems to achieve efficient
snapshotting as well. We discuss the auxiliary information of SFST
in Section 3.5.

In SFST, Data Layer contains raw data blocks. Node Layer is a
collection of inodes, direct nodes and indirect nodes. Each node is
attached with a 32-bit unique NID, which remains constant once
the node is allocated. In order to support larger number of files,

we can increase the NAT height to support more nodes in the file
system. For each update to a node, a new node is written with the
same NID as the old one, but in a different version branch of SFST.

Node Address Tree (NAT) is a CoW friendly B-tree which con-
tains the addresses of all valid node blocks within every version,
it is an expansion of node address table with added dimension of
version. The logical structure of NAT in NVM is shown in Fig. 5.
Node blocks are intermediate index structures in files (relative to
data blocks), and node address tree keeps the right addresses of
nodes with respect to different versions. NAT is further discussed
in Section 3.3.

Checkpoint block (CP) is the root of every snapshot. It contains
snapshot status, such as valid node count, timestamp of the snap-
shot. The most important part of CP is the pointer to the NAT root,
which is exclusive to every snapshot. Snapshot information in CP
is crucial to recovering the file system. The structure and manage-
ment of checkpoint blocks are further discussed in Section 3.4.

In DRAM, HMVFS keeps metadata caches as residents, these
caches provide faster access to metadata and are written back
to NVM when taking snapshots. We use journaling for SIT entry
updates and radix tree for NAT cache. The structure of Checkpoint
Information Tree (CIT) is a red-black tree. The nodes of CIT are
recently accessed checkpoint blocks of different snapshots, which
are frequently used during garbage collection.

3.3. Node address tree

Node address tree (NAT) is the core of SFST. We design NAT as
a multi-version node address table. To access the data of a file, one
must follow the link of blocks like: inode=-indirect node=-direct
node— data. However, in the file structure of HMVFS, the con-
nections between nodes (=) are not maintained by pointers but
NIDs, i.e. an indirect node contains only NIDs of direct nodes. In
order to acquire the block address of the next node on the link,
file system has to lookup the node address table of the current
version. For file system versioning, to access the node blocks with
the same NID from different versions, NAT must maintain different
views of node address table for different versions. It is a challenging
task to implement NAT such that NAT can be updated with low
latency and be constructed space-efficiently. Fortunately, the byte-
addressability of NVM allows us to update the variables of auxiliary
information with fine-grained access, which inspired us to build
a stratified versioning B-tree with block-based reference-counting
mechanism without any I/O amplification.

We implement NAT with a four-level B-tree, as Fig. 5 shows. The
leaf blocks of NAT consist of NID-address pairs (NAT entries) and
other tree blocks contain pointers to lower level blocks. The B-tree
design ensures low access overhead as well as space-efficiency for
snapshotting.

In the tree of file structure, the parent node contains NIDs of
the child nodes (unless the child nodes are data blocks, then it
contains data block addresses), which remain unchanged in any
later version during the existence of the file. For example, consider

S. Zheng et al. / . Parallel Distrib. Comput. 120 (2018) 355-368 359

an inode that contains two direct nodes (NID = 2,3). NAT of the
current version has two entries for NID and block address: {2,0xB},
{3,0xC}. In the next version, if a modification to this file requires to
write a new node #3 (due to Copy-On-Write), NAT in DRAM should
write a dirty entry {3,0xD} and keep other clean entries traceable.
During snapshot creation, these dirty entries will be written back
to NVM and form a new branch of B-tree (like the right part of
Fig. 5). An important thing to notice is that throughout the entire
data update procedure, the inode that contains NID 2 and 3 is never
modified, it is still traceable by the original version of file system.
The overhead of snapshotting is only caused by NAT updates which
is much less than that of traditional schemes. CoW friendly B-
tree [22] helps us to keep minimum modification size as well as
the integrity of NAT among multiple versions.

The design of NAT not only reduces the overhead of block
updates within files, but also excludes directory updates from file
updates. In HMVES, the directories contain inode numbers, which
remains unchanged during file updates. In some file-grained ver-
sioning approaches (like NILFS [14], ZFS [2]), a directory containing
different versions of a file has different pointers to each version of
the file. Not only does it amplify the overhead of file updates, but it
also increases unnecessary entries in the directory which leads to
a longer file lookup time.

3.4. Checkpoint

As is shown in Fig. 5, checkpoint block is the head of a snapshot.
In HMVFS, checkpoint block stores the status information of the
file system and a pointer to the NAT root block. All the blocks of
snapshots are located in the main area, and follow the rule of log-
structured write in order to simplify the design and improve the
wear-leveling of NVM. HMVFS separates data and node logging in
the main area with data and node segments, where data segments
contain all the data blocks and node segments contain all the other
types of blocks (inodes, direct nodes, indirect nodes, checkpoint
blocks and NAT blocks).

Checkpoint blocks are organized with doubly linked list in NVM.
There is a pointer in superblock that always points to the newest
checkpoint block for the purpose of system rebooting and crash
recovery. In HMVFS, we have also implemented a Checkpoint In-
formation Table (CIT) in DRAM that keeps checkpoint block cache
for faster lookup.

3.5. Auxiliary information

Compared with HMFS, the random write zone in HMVFES con-
tains the following three sections as the auxiliary information of
SFST.

Superblock (SB) in HMVFS not only contains static information
of the file system, but also maintains the list head of all snapshots
and a pointer to the newest one as the default version for mounting.
SB also contains a state indicator of the file system, it can be set to
checkpointing, garbage collecting, etc.

Segment Information Table (SIT) in HMVFS is the same as the
SIT in HMFS, but we revise the process of SIT update to ensure
stronger consistency for versioning.

Block Information Table (BIT) is expanded from the BIT in
HMES to keep more information for snapshotting. It contains not
only the node information of the block, but also maintains the start
and end version number which indicates the valid duration of a
block. BIT also contains reference counts of each block in SFST,
and manages these blocks to form a CoW friendly B-tree with lazy
reference counting.

The auxiliary information of these sections occupies only a
small fraction of total space, which is about 0.4% since we use a
16B BIT entry to keep the information of each 4 kB block.

4. Implementation

In this section, we provide implementation details of HMVFS.
We first illustrate how to manage snapshots with snapshot policy
and operations. We then show the metadata operations of SFST and
how to ensure overall consistency. Finally, we demonstrate how
garbage collection handles block movements in multiple snap-
shots.

4.1. Snapshot management

We implement our snapshots with space and time efficiency
in mind. Our snapshot is a height-restricted CoW friendly B-tree,
with total height of 7. In the current prototype, we choose NAT
height to be 4 to support up to 64PB of data in NVM. NAT height
can be increased to adapt future explosive needs of big data (each
additional level of NAT expands the support of the total size of NVM
by 512x).

Checkpoint is a function that creates a valid snapshot of the
current state. If a data block update is the only difference between
two consecutive versions, SFST applies a bottom-up CoW update
with 7 block writes, only 5 blocks of NAT and CP are actually
written on Checkpoint because node and data blocks are updated
in run time by XIP scheme. Moreover, these NAT nodes are updated
only when new nodes are allocated, for the best case of sequential
writes to a file, approximately 512 MB (An NAT leaf contains 256
NAT entries and a direct node block contains 512 pointers to data
blocks, thus size ~ 256 x 512 x 4 kB = 512 MB) of newly written
data requires one new NAT leaf update. Even for an average case,
node updates are fewer compared with other B-tree based version-
ing file systems which suffer from write amplification problem.
Therefore, Checkpoint in SFST is fast and space-efficient because
it only contains few updates of NAT blocks.

4.1.1. Snapshot policy

We adopt a flexible snapshot policy for snapshot creation and
deletion. Users can either explicitly invoke snapshot creation/dele-
tion function in the foreground, or set time interval for periodical
snapshot creation and period of validity for snapshot deletion in
the background according to their usage patterns.

Specifically, snapshot creation is triggered on one of these
occasions: (1) after an fsync system call from the applications;
(2) after garbage collection; (3) after a certain time interval since
last snapshot creation; (4) when explicitly invoked by users. In
our design, background garbage collection is carried out every
five minutes automatically, hence Checkpoint is conducted at
most every five minutes. Shorter time interval can be specified
by user-defined parameters if the users are eager to save their
rapid changes to files. Moreover, Checkpoint only needs to build
NAT and the checkpoint block of SFST in the main area, since
node blocks and data blocks are updated directly using XIP. Thanks
to our efficient design of snapshots, we manage to do frequent
checkpoints with low impact on foreground performance.

Snapshot deletion is triggered by the user manually or by back-
ground cleaning in order to save NVM storage space. We provide
interfaces for users to delete snapshots manually, or set up pre-
serve flags and period of validity to delete old and unwanted snap-
shots while maintaining the important ones. In the foreground,
users can explicitly delete a snapshot given its version number, or
its timestamp. In the background, there are two ways to deal with
the unwanted snapshots which are out of period of validity. One
way is to directly delete them all, thus the file system will only
contain recent snapshots. This can be used to save NVM storage
space for intensive use of the file system. Another way is to select a
some of the snapshots and skip them during background cleaning,
these snapshots will survive the background deletion process and

360 S. Zheng et al. /]. Parallel Distrib. Comput. 120 (2018) 355-368

serve as a old reference for future recovery. This is designed for
ordinary use of the file system where old snapshots are useful to
retrieve old but important files. A gap number n can be set by
the user to keep only one valid snapshot out of n continuous old
snapshots.

We can keep up to 23? different versions of the file system
(due to the 32-bit version number). For most file systems, taking
snapshots at a high frequency automatically reduces the I/O perfor-
mance and occupies a large amount of memory space, while SFST
creates space-efficient snapshots that imposes little overhead in
snapshotting and I/O performance.

4.1.2. Snapshot creation

When Checkpoint is called, the state of HMVFS will be set
to checkpointing and file 1/O will be blocked until Checkpoint is
done. The procedure of creating a snapshot is shown in List 1, the
snapshot becomes valid after step 4.

List 1 Steps to Create a Snapshot

1. Flush dirty NAT entries from DRAM and form a new NAT in NVM in a
bottom-up manner;

2. Copy SIT journal from DRAM to free segments in the main area in
NVM;

3. Write a checkpoint block;

4. Modify the pointer in superblock to this checkpoint;

5. Update SIT entries;

6. Add this checkpoint block to doubly linked list in NVM and CIT in
DRAM;

To create a snapshot, we build a new branch of SFST from the
bottom up, like the right part of Fig. 5. With XIP in mind, updates
in node layer and data layer have already been flushed to NVM at
runtime. Therefore, we start from the NAT layer.

In step 1, since NAT caches are organized in radix tree, we can
retrieve dirty blocks effectively. We write back the dirty blocks and
follows the bottom-up procedure to construct NAT of this version.
New child blocks create parent blocks that contain pointers to both
these new blocks and adjacent blocks from old snapshots. The old
blocks are shared with this new NAT and their reference counts are
increased by one. We then recursively allocate new blocks till NAT
root to construct the NAT of this version.

Segment Information Table (SIT) contains information of seg-
ments which are updated frequently. We use SIT journal in DRAM
to absorb updates to SIT in NVM, and update SIT only during
snapshot creation. In step 2, SIT journal in DRAM is copied to
the free segment of main area without any BIT update. Step 4 is
an atomic pointer update in superblock, which validates of the
checkpoint. After that, the file system updates SIT according to
the SIT journal on NVM. The SIT journal is useless after snapshot
creation, but since it is never recorded on BIT or SIT, the file system
will overwrite them as regular blocks. This ensures consistency in
SIT, and in the meantime, avoid frequent updates to NVM.

When a checkpoint block is added to the superblock list in step
6, the snapshot becomes valid. HMVES will always start from the
last completed snapshot after a crash or reboot.

4.1.3. Snapshot deletion

On snapshot deletion, a recursive count decrement is issued to
the target version. The address of checkpoint block of this version
(the root of this branch of SFST) is found on the red-black tree on
CIT in DRAM. The basic idea of snapshot deletion is illustrated in
Fig. 1(c). We start the decrement of count from the checkpoint
block through the whole branch of SFST recursively. Algorithm 1
describes the snapshot deletion operation in pseudo code.

When decrement is done, we remove the checkpoint block from
the doubly linked listin NVM and the red-black tree in DRAM. After
that, all the blocks of this version are deleted and the occupied

Algorithm 1 Delete snapshot

1: function SNAPSHOTDELETION(CheckpointBlock)
Record CheckpointBlock in superblock;

3 BlockDeletion(CheckpointBlock);

4 Remove CheckpointBlock from CIT;
5 Call GarbageCollection;

6: end function
7

8

9

: function BLockDELETION(block)

: Record block in superblock;

: count|[block] — —;
10: if count[block] > 0 or type[block] = data then
11: return

12: end if
13: for each ptr to child node of block do
14: BlockDeletion(ptr);

15: end for
16: end function

space will be freed during garbage collection. Since snapshot dele-
tion produces considerable free blocks, we call garbage collection
function right after it. For the blocks which are referred in other
valid versions, their reference counts are still greater than zero, and
HMVES considers these blocks as valid ones. The massive reads and
deletions to reference counts are the bottleneck of snapshot dele-
tion, but since NVM provides variable updates at the granularity of
byte, the overhead of snapshot deletion is small and acceptable.

4.1.4. Recovery

HMVEFS provides one writable snapshot for the newest version
and a large number of read-only snapshots for old versions. To
recover from an incorrect shutdown, HMVFS mounts the last com-
pleted snapshot. Since HMVES keeps all dynamic system informa-
tion in checkpoint block and SIT is not tainted (SIT is updated only
during the last snapshot creation with consistency guarantee), the
blocks which are written after the last completed snapshot are
invalid and cannot be found in any SFST. After fsck cleans the
invalid BIT entries, the file system is recovered and can overwrite
the blocks from the incomplete version as regular blocks. We
discuss how to handle file system crash during snapshot creation
in Section 4.3.

To access the files in snapshots, HMVFS follows the link from
superblock to checkpoint block to NAT and then to the node and
data blocks of files, which introduces no additional latency in
recovery. For mounting read-only old snapshots, we only need to
locate the checkpoint block of the snapshot in the checkpoint list,
which only introduces little extra time.

4.2. Metadata operations

In log-structured file systems (LFS), all kinds of random modifi-
cations to file and data are written in new blocks instead of directly
modifying the original ones. In our implementation, the routines
of file operations remain almost the same as that of a typical LFS.
Only a small amount of additional reference data is written to block
information table (BIT) on each block write. A BIT entry contains
six attributes, and is 16 bytes in total, which is negligible in block
operations where the block size is 4096 bytes.

BIT entries are used to solve block sharing problem incurred by
multi-version data sharing that is caused by garbage collection and
crash recovery. As Fig. 5 shows, there are nodes in SFST that have
multiple parent nodes. When a NAT/node | data block is moved,
we have to alert all its NAT parent blocks/NAT entries/parent node
blocks to update the corresponding pointers or NAT entries to the
new address in order to preserve consistency. We store the parent

S. Zheng et al. / . Parallel Distrib. Comput. 120 (2018) 355-368 361

Table 1
Types of blocks in the main area.
type of the block type of parent node_id
Checkpoint N/A N/A
NAT Internal . .
NAT leaf NAT internal Index code in NAT
Inode
Indirect NAT leaf NID
Direct
Data Inode or direct NID of parent node

node information of all the blocks in BIT, and utilize the byte-
addressability of NVM to update the information at the granularity
of byte.

struct hmvfs_bit_entry ({
_ l1le32 start_version;

_ le32 end_version;
__1le32 node_id;

__lel6 offset_and_type;
__lel6 count;

}

For any block in SFST, BIT entries are updated along with the
block operations without journaling. Meanwhile, the atomicity and
consistency guarantees are still provided.

e start_version and end_version are the first and last ver-
sions in which the block is valid, i.e. the block is a valid node on each
branch of SFST from start_version to end_version. write
and delete operations to the block set these two variables into the
current version number. Since SFST follows strict log-structured
writes, these two variables are unchangeable.

e type is the type of the block. There are seven kinds of blocks in
the main area, which is shown in Table 1. We store the types of
these blocks in their BIT entries, because different parent nodes
in SFST lead to different structures of storing the links to the
child nodes. type is set at the same time when the block is
written.

e node_id is the key to finding the parent node, it is set once the
block is written. node_id has different meanings regarding differ-
ent types, as Table 1 shows. For NAT nodes, each node contains 512
addresses, and the tree height is 4. We use log, 512 x 3 = 27 bits
innode_id to keep the index of all NAT nodes. For a node block of
afile,node_id is the exact NID that NAT stores and allocates. For a
datablock of a file, node_id is the NID of its parent node. Given the
above relation, the parent node of any block in SFST can be easily
found.

e offset is the offset of the corresponding pointer to the block
in its parent node. Combined with node_id, we can locate the
address of the pointer to the block. With the byte-addressability
of NVM, the pointer can be accessed with little cost. For a typical
CoW update, a new parent block is written by copying the old one
and modifying the pointer at offset to the latest address. After
building all parent nodes recursively from the bottom up, and we
will get a new version tree as the right part of Fig. 5.

e count is the reference count of the block, but differs from that of
normal files, count basically records all the references by different
versions. When a new block is allocated, its count is set to 1. If a
new link is added from a parent block to it, its count increases
by 1. If one of its parent block is no longer valid (only occur after
snapshot deletion), its count decreases by 1. Once the count
reaches zero, the block is freed and can be reused. We implement
the idea of reference counting from Rodeh on HMVFS to maintain
file system consistency [22,23].write and delete are not the only

two operations that modify count. Version level operations such
as snapshot creation and deletion modify it as well. The rule of
updating reference counts has been revealed in Section 2.1.

BIT contains not only the reference counts of all the blocks in
the main area, but also the important metadata that reveals the
relation of discrete blocks in SFST. The metadata operations above
maintain the correctness of BIT and the consistency of SFST with
minor cost in I/O performance.

4.3. Consistency guarantee

SFST guarantees the file system consistency after a power crash
atany time. The metadata of SFST is consistent as long as NVM is at-
tached to the memory bus and support at least 8-byte atomic write.
In that case, we can access data in NVM directly via LOAD/STORE in-
structions of CPU(x86_64). Like other in-memory storage systems,
SFST uses CPU primitives mfence and c1flush to guarantee the
durability of metadata.

When the above hardware conditions are met, the consistency
of BIT and SIT is ensured all the time. Some parameters in BIT
(start_version,node_id, offset and type) are set only once
during block allocation by one thread, and the file system can undo
these changes according to the version number. We can also call
fscktoscan BIT and invalidate end_version for an uncommitted
version of the snapshot. For count, the only operation which will
decrease count and may cause inconsistency is snapshot deletion,
which we will discuss later.

The updates to start_version, end_version, node_id,
offset and type occur before the block allocation, their value
will not be modified in run time. Atomic update to the whole
entry is not necessary. We use atomic writes (provided by CPU)
to update every single variable of BIT. Though the updates to these
four members of BIT are not atomic, the system remains consistent.
For example, when the system crashes in the process of updating
node_id and the block has not been allocated to a specific file,
we cannot index it from the NAT. The corrupted BIT data of this
block has no effect on the consistency of the whole file system. We
update count and end_version by atomic write at runtime.

struct hmvfs_sit_entry {
_ le32 valid_blocks;
_ 1e32 mtime;

}

For SIT, valid_blocks is the number of valid blocks that a
segment contains. The block is valid if it can be indexed from any
valid checkpoint. That is, there is at least one valid version number
in[start_version, end_version) of its BIT entry. Mt ime is the
modified time of this segment. For example, if one block of the
segment is invalidated or allocated, the mtime of the segment
will be set to the system time in milliseconds. Therefore, SIT en-
try is used to describe usage information of a segment, which is
the reason that we select victim segments in garbage collection
function according to SIT. Because of the frequent modifications
to SIT, we keep a cache of SIT in DRAM to absorb writes. We
initialize these entries in DRAM during mounting, and flush the
update log to free space on the main area in NVM when creating
a checkpoint. After the checkpoint becomes valid (i.e., the pointer
of superblock is modified to this checkpoint block), the log will be
written to SIT, which can be redone if the system crashes during
SIT updating. Such design ensures consistency in SIT, and in the
meantime, avoids frequent updates to NVM.

File system consistency is also guaranteed during snapshot
creation and deletion. For snapshot creation, when a crash happens
before step 4 of List 1 in Section 4.1.2 , the file system will start

362 S. Zheng et al. /]. Parallel Distrib. Comput. 120 (2018) 355-368

from the last completed snapshot and discard any changes in
this version. If a system crash happens during or after step 5, we
redo Checkpoint from this step. During snapshot deletion, we
keep a record of the snapshot version number and the progress of
deletion, as is shown in Algorithm 1. Since we follow a strict DFS
procedure, only the information of currently being deleted block
is needed to show where the deletion stops. If the file system is
remounted from a crash occurred during snapshot deletion, we
will redo the deletion before the file system becomes available to
users.

4.4. Garbage collection

Garbage collection function is implemented in every log-
structured file system to reallocate unused blocks and reclaim the
storage space. The garbage collection process leverages the byte-
addressability of NVM to perform efficient lookup of the most in-
valid block count in every SIT entry, and uses it to select the victim
segment. After that, the garbage collection process moves all the
valid blocks of the victim segment to the current writing segment,
and sets the original segment free for further use. When the target
segment is truly freed, garbage collection thread will perform an
update to SIT journal accordingly. Since garbage collection does
not require any updates in SFST, it has little impact on foreground
operations like snapshot creation, block I/Os, etc.

The challenge of garbage collection for SFST is that when a block
is moved, we must update the pointers in its parent node of every
version to the new address. Otherwise, the consistency among
multiple snapshots will be broken. Since we have inserted BIT
modifications into normal file operations, we can use node_id and
offset in BIT entry of the block to pinpoint the pointers from par-
ent blocks to target block and modify them to the new address. To
determine the related versions, we traverse from start_version
to end_version of the existence of target block. The trick to
performing quick inquiry of the parent nodes is that for each parent
node, we skip all but one of the versions in the existence of parent
node due to the fact that the parent node remains the same and
valid during its own existence. All we have to do is find the succes-
sor parent node version by versiongcessor < end_versiongs+
1 and continue until we reach the end_version of the target
block. The byte-addressability and low access latency of NVM
accelerates the update process substantially.

5. Evaluation

We evaluate the performance of HMVFS using various real
workloads. We examine HMVFS against traditional file systems
in memory, demonstrating that HMVFS achieves versioning at an
acceptable performance cost compared with other in-memory file
systems. Moreover, we compare the overhead of snapshot opera-
tions of HMVFS with popular versioning file systems to show the
snapshotting efficiency of HMVFS.

5.1. Experimental setup

We conduct our experiments on a commodity server with 64
Intel Xeon 2 GHz processors and 512 GB DRAM, running the Linux
3.11 kernel. For EXT4, BTRFS, NILFS2, we use ramdisk carved from
DRAM and configure 128 GB as ramdisk to simulate NVM. In the
case of HMVFS, PMFS and NOVA, we reserve 128 GB of mem-
ory using the grub option memmap. User processes and buffer
cache use the rest of the free DRAM space. The swap daemon is
switched off in every experiment to avoid swapping off pages to
disks.

It is important to note that our experiments focus on file sys-
tem performance and the overhead of snapshotting operations,

rather than evaluate different types of NVM. Since most of the
performance results are relative, the same observations in DRAM
should be valid in NVM. To compare the efficiency of snapshot
creation and recovery, since the performance of time overhead is
important and strongly related to space consumption, we use the
comparison of time overhead as an effective and straightforward
way to evaluate the efficiency of snapshotting among versioning
file systems.

We use 10zone [13] to run sequential/random read/write op-
erations over different transfer size to emulate different file I/O
workloads. We also use Filebench suite [10] to emulate two com-
mon workloads in real life. The fileserver workload emulates file
system activities of an NFS server, it contains an even mixture of
metadata operations, appends, whole-file reads and writes. The
varmail workload is characterized by a read-write ratio of 1:1, it
consists of sequential reads as well as append operations to files.

We compare HMVES with two popular versioning file systems,
BTRFS [24] and NILFS2 [14], to show the efficiency of snapshot
operations of HMVFS. We also compare HMVFS with three non-
versioning but state-of-the-art in-memory file systems with the
best 1/0 performance: PMFS [8], NOVA [35] and EXT4 [9]. PMFS
is a typical in-memory file system, NOVA is a log-structured in-
memory file system, and EXT4 is one of the most widely-used
traditional file system with direct access patch DAX [6,28].

5.2. Overall performance

Before analyzing the efficiency of snapshot operations, we must
show the file operations of HMVFS is efficient and suitable for
in-memory computing. We run a series of benchmarks against
HMVEFS and evaluate its performance. The results show that HMVFS
imposes acceptable read/write overhead to achieve snapshot func-
tionality.

Iozone [13] is a file system benchmark tool which generates
a variety of file operations. In this experiment, we configure the
file size to 16 GB, and measure the average read/write throughput
according to different transfer size (the granularity of file I/0). By
default, we use direct I/O for all file operations to make sure that
there is no page cache or buffer benefit in any file system. The
transfer size is ranged from 1 kB to 4096 kB.

Fig. 6 shows the results of sequential/random read/write
throughput respectively. As we can see, the read/write throughput
of each file system mainly rises along with the increases of transfer
size. Meanwhile, there is no large difference between the sequen-
tial and random result, since all the data is located in memory.
Among all file systems, PMFS and NOVA perform the best in all
four figures, while the read throughput of BTRFS and the write
throughput of NILFS2 are the poorest. PMFS utilizes its simple block
allocation and deallocation policies to achieve high performance,
while NOVA uses per-inode logging to record all the data updates
with little overhead. The throughput of HMVFS is the closest one to
PMFS and NOVA among other file systems. HMVES even surpasses
PMFS’s write throughput when transfer size is less than 16 kB.
It is clear that HMVFS utilizes its multi-level node structure in
each file to achieve particularly well performance in small-size I/O,
since node cache in DRAM allows lower level data blocks to be
found efficiently. PMFS also uses B-tree as its file structure, but it
mainly focuses on uniform access control in its index structure to
achieve metadata level consistency, while HMVES utilizes B-tree to
create snapshots so as to achieve version level consistency. NOVA
achieves the best performance in sequential and random writes
with large IO size, this is because it keeps per-inode radix tree
in DRAM to index all its data blocks and perform log-structured
writes to NVM data blocks.

Among three traditional file systems, EXT4 performs the best.
There are some optimizations in EXT4 designed for direct access,

S. Zheng et al. /]. Parallel Distrib. Comput. 120 (2018) 355-368

—o—HMVFS BTRFS NILFS2 EXT4 == PMFS =#—NOVA
14000
2 12000
8 10000
B
S 8000
= 6000
2
£ 4000
2 2000
=
= 0
1 2 4 8 16 32 64 128 256 512 102420484096
Tranfer Size (KB)
(a) Sequential read throughput.
—e—HMVFS BTRFS NILFS2 EXT4 == PMFS =#—NOVA
14000
2 12000
& 10000
2
S 8000
< 6000
=
£ 4000
2 2000
=
= 0

1 2 4 8 16 32 64 128 256 512102420484096
Tranfer Size (KB)

(c) Random read throughput.

—4—HMVFS

Throughput (Mbytes/s)

363

BTRFS NILFS2

EXT4 ==PMFS —8—=NOVA

16000
14000
12000
10000
8000
6000
4000
2000

64 128 256 512102420484096
Tranfer Size (KB)

(b) Sequential write throughput.

—4—HMVFS BTRFS NILFS2 EXT4 ==PMFS —8—NOVA

20000
15000
10000

5000

Throughput (Mbytes/s)

0

64 128 256 512102420484096
Tranfer Size (KB)

(d) Random write throughput.

Fig. 6. Performance of file systems under iozone workloads.

like bypassing page cache layer, which makes it a popular choice
for in-memory file system on RAMdisk. In Figs. 6(a) and 6(c),
the read and write performance of EXT4 and NILFS2 are similar.
Meanwhile, BTRFS suffers from its complex B-tree-based design.
As is shown in Fig. 6(a), BTREFS still performs quite well before
the 10 size is bigger than 4 kB. This is because such a small size
10 can fit into one extent, without further read in other blocks.
However, when the 10 size is greater than 4 kB, the file system has
to locate other extents to complete the read request. This means
BTRFS has to go through multiple layers of indirections to find
the corresponding data block, which increases the read overhead
significantly.

Since NILFS2 is a completely log-structured file system, each
write is amplified to multiple updates to data and metadata blocks,
which explains its low write performance in Figs. 6(b) and 6(d).
Although BTRFS is also a log-structured file system, the writes
in BTRES are organized with extents. Extent-based file systems
can handle write requests much better than a simple file block
layout like NILFS2, hence BTRES achieves a relatively higher write
performance compared with NILFS2.

We notice that almost all file system throughputs reach the
top values at around 1024 kB transfer size. This is because the L2
cache size in our experiment is 1024 KkB. For transfer size larger
than L2 cache size, L2 cache miss rate and data TLB misses increase
significantly, which will affect the file I/O throughput.

5.3. Snapshot creation and deletion

Despite I/O performance, HMVES also ensures less snapshotting
overhead compares with other approaches. For a snapshot con-
tains only one 1 GB file, BTRFS and NILFS2 consumes 1.38 and
1.84 times the overhead of HMVFS. To measure the benefits of
directory structure on snapshots, we take snapshots of a directory
containing 1 to 64 files (1 GB each), and measure their overhead
of creating snapshots. For BTRFS, the overhead is strongly related
to the number of files, the structural design of BTRFS is similar to
EXT4, which is based on B-tree. Such design makes it vulnerable
when the number of files in one directory is not large enough to
reflect the advantage of B-tree structure. In HMVEFS, the directory

is also B-tree based, but since HMVFS creates snapshot on fsync to
deal with consistency problem instead of logging and performing
transactions, less work is required and the overhead of HMVFS
remains low under various number of files. NILFS2 organizes direc-
tory entries with array, which ensures NILFS2 to receive relatively
well performance in searching and adding entries when there are
not too many files in one directory. However, when the amount
of entries grows, array based directories introduce much more
overhead than B-tree based ones.

HMUVFS deletes obsolete snapshots automatically, just as NILFS2
does. To evaluate the efficiency of snapshot deletion, we run file-
server, webserver and webproxy workloads for more than 15 min,
take snapshots every 5 min, and delete the second snapshot. We
record the time of creating and deleting the second snapshot
on HMVFS, BTRFS, NILFS2, and compare the average overheads
under the same workloads. We find out that although the over-
head of snapshot deletion of BTRFS and NILFS2 are several times
less than the overhead of their snapshot creation (BTRFS:2.36;
NILFS2:1.57; HMVFS:1.03), HMVFS still achieves fastest snapshot
deletion among all.

5.4. Impact of file count

Different numbers of files in file systems lead to different
overhead of creating snapshots. We use fileserver workload from
Filebench to emulate I/O activities of a simple file server contain-
ing different amounts of files. The file operations include creates,
deletes, appends, reads, and writes. In this experiment, we config-
ure mean file size to 128 kB, mean append size to 8 kB, directory
width to 20 and run time to 5 min. We run fileserver three times
and report the average readings.

Fig. 7(a) shows the results of varying the number of files from
2k to 16k. We see that on average HMVFS and PMFS perform the
best amongst all file systems, while NILFS2 performs the worst.
Although HMVES has to keep records of reference count updates
in DRAM and rebuild the file system tree on every fsync to ensure
consistency, such overhead causes HMVES drops the performance
by only 8% compared with PMEFS. Since fileserver mainly focuses
on random writes on large files and updates on metadata, PMFS

364 S. Zheng et al. /]. Parallel Distrib. Comput. 120 (2018) 355-368

= HMVEFS BTRFS = NILFS2 EXT4 mPMFS

ops/sec (x1000)

4k 8k

Number of Files

(a) Operations per second.

=HMFS =BTRFS =NILFS2
400
350 -
300 (g1 1 -
250 - e = -
200 - e

L afll il T
2k 4k 8k 16k

Number of Files

Snapshotting Time (ms)

(b) Efficiency of snapshot creation.

Fig. 7. Performance of file systems under fileserver workload.

utilizes the simple block allocation and deallocation policies, while
HMVFS takes the advantage of NAT and performs quick block
allocation.

The directories of HMVFS are also log-structured like normal
files, we use hashed and multi-level index entry tree to store and
lookup the contents, the complexity of which is O(log(#entries)).
We achieve quick access from such design when each direc-
tory contains moderate amount of entries. As the number of
entries grows, the overhead of entry update increases, due to
the log-structure nature of all inodes. Thus, we observe that the
performance of HMVFS slightly degrades as the number of file
increases.

EXT4 and BTRFS perform 13% and 22% worse than HMVFS.
Despite the ramdisk environment, the short code path and fast
random access design of EXT4 still ensure good 1/O performance,
which is also stable under different numbers of files. More im-
portantly, in BTRFS and EXT4, data is organized with extents and
the file system structure is also B-tree. It fits the nature of data
extent that fileserver performs only write-whole-file and append.
On file creation, a large data extent can be built. When fileserver
appends data to existing files, BTRFS and EXT4 only need to create
a new extent and merge it with the old one, which is very efficient.
These extent-based file systems perform well under fileserver
workload.

NILFS2 performs 73% worse than HMVES. Since NILFS2 is a
completely log-structured file system, any write to a file or direc-
tory will lead to recursive updates to multiple data and metadata
blocks, resulting in a wandering tree problem. This problem gets
worse when NILFS2 is mounted in memory, lots of redundant
blocks of data and metadata are written for every append operation
which takes extra time and space.

Fig. 7(b) shows the time overhead of creating snapshots after
processing the workload above. On average, the overhead of snap-
shotting by BTRFS and NILFS2 is 9.7x and 6.6x worse compared
with HMVFS. Without snapshotting, fsync operation of EXT4 and
PMFS is to flush data and metadata back to storage in order to
maintain consistency. We compare our snapshotting overhead
with that of £sync operation after the same workload on these two
file systems to further show the efficiency of HMVFS. EXT4 takes
14.3x time of HMVFS does and PMFS takes only 36%. On fsync,
EXT4 has to commit all the changes as well as to keep checksum
and journal up-to-date, which leads to a significant overhead. On
the contrary, since PMFS supports XIP, most of the data changes
have already been committed to storage, only a small part of
work is left for £sync to do except waiting for current flush to
complete.

BTRFS is capable of taking snapshots of its subvolume, based
on the idea of CoW friendly B-tree. However, the structure of
B-tree is applied to the file system directory layout. In order to
take a snapshot that records a single change of data, BTRFS must
rebuild all the directories along the path from the inode to the

root, which introduces a significant overhead for snapshotting. As a
result, BTRFS performs the worst when there is negligible change in
data.

NILFS2 keeps all valid versions of files, it uses B-tree for scal-
able block mapping between the file offset and the virtual sector
address. It also translates the virtual sector address to the physical
sector address by using the data address translation (DAT) file, and
appends the changes on every snapshot [18]. However, the DAT
file is array-based, and NILFS2 suffers from inner wandering tree
problem with its inode design.

To conclude, HMVES and PMFS perform well under fileserver
workload, meanwhile BTRFS and EXT4 exploit the advantage of
extent-based file systems and achieve good performance. As for
snapshotting efficiency, HMVFS outperforms BTRFS and NILFS2 by
a large scale.

5.5. Effects of directory structure

Varmail emulates a mail server, which performs a set of create-
append-sync, read-append-sync, read and delete operations. The
read-write ratio is 1:1. In this experiment, we configure the mean
file size to 16 kB, the number of total files to 100,000, mean
append size to 8 kB and run time to 5 min. We run varmail on
each different structures of directories three times and report the
average readings.

Fig. 8(a) shows the IOPS results of different mean-directory-
depths of varmail (depth = log,,;#files). We see that EXT4
performs the best among all file systems, while HMVFS and BTRFS
achieves lower but also stable throughput. This is because all these
three file systems use hashed B-tree to organize and locate direc-
tory entries [9,24]. However, NILFS2 and PMFS use only flat struc-
ture to store directory entries, and their performance degrades as
the directory depth decreases.

The 1/O performance of EXT4 outperforms HMVFS by a factor
of 1.21 in varmail, and that of BTRFS is close to HMVFS. Extent
based file systems perform reasonably well on append based work-
loads and varmail is a typical one that emulates new emails with
appends. The difference between BTRFS and EXT4 is caused by
the write amplification problem of appends and deletes on BTRFS
write. Although HMVFS does not adopt the idea of extent, write
amplification problem is eliminated by the NAT updates in SFST.

On the other hand, the IOPS results of NILFS2 and PMFS grow
as the mean-directory-depth increases, i.e. the number of en-
tries in single directory decreases. These two file systems use flat
and array-based structure to organize directory entries, and that
reduces the performance when each directory holds more than
100,000 entries. However, if the number of directory entries is
decreased to around 4000 (depth=1.4), the performance of the
two file systems increases sharply and nearly reaches their limits.
PMFS even performs the most operations per second when each
directory contains only 240 entries (depth = 2.1).

S. Zheng et al. /]. Parallel Distrib. Comput. 120 (2018) 355-368 365

®HMVFS ®BTRFS ®NILFS2 = EXT4 mPMFS

25

ops/sec (x1000)

Directory Depth

(a) Operations per second.

= HMFS ®BTRFS
1400
1200
1000
800
600
400
200
0

NILFS2

Snapshotting Time (ms)

0.7 1.2 1.4 2.1
Directory Depth

(b) Efficiency of snapshot creation.

Fig. 8. Performance of file systems under varmail workload.

During this experiment, we also notice that the preallocation
time of each workload is inversely proportional to the final per-
formance. To prove this point, we do file creations under the same
workloads. Among five file creation results for each of dir-depth,
HMVES, BTRFS, EXT4 create files with steady overhead regard-
less of directory structure (standard deviation: 1.19, 0.78, 0.76).
On the other hand, the overhead of file creation on NILFS and
PMFS increases 9.8x and 16.6x when dir-depth is decreased from
2.1 to 0.7, which clearly shows that directory structure of many
workloads affects the performance and access time of array-based
directory file systems. Meanwhile, The B-tree based directory
structure of HMVFS handles massive files well and provides stable
throughput.

Fig. 8(b) shows the time overhead of creating a snapshot after
processing the varmail workload above. On average, the overhead
of snapshotting by BTRFS and NILFS2 is 8.7x and 2.5x worse com-
pared with HMVEFS. For BTRFS, taking snapshot leads to a CoW
update in B-tree, the difference among the results of different
dir-depths is that updates are distributed and logged in differ-
ent directories, which can be improved by the concurrency of
CPU.

In NILFS2, all the updates of files in snapshots are stored in their
parent directories, with new entries pointing to the new addresses
of corresponding inodes. Since the overhead of accessing each
directory cannot be ignored, the cost of snapshotting on NILFS2 is
proportional to the number of directories in this snapshot, which
leads to a slight increase in snapshotting overhead along with the
growth in dir-depth.

5.6. Recovery performance

In this section, we evaluate the recovery performance of three
versioning file systems: HMVFS, BTRFS and NILFS2. For all the ex-
periments, we perform five write sequences, each of which writes
sixteen 1 GB files. At the end of each write sequence, a snapshot
is created. We measure the time of recovering from the second,
third and fourth snapshot to show the average recovery time from
an arbitrary snapshot. For each experiment, firstly, we unmount
the file system to emulate a sudden crash. Secondly, we mount the
file system, and load the snapshot after that. The recovery time is
shown in Fig. 9. HMVFS outperforms BTRFS and NILFS2 in crash
recovery by a factor of 1.8 and 3.3.

For HMVFS, we mount the file system based on the given
snapshot number. We measure the time of the mount operation,
and the time for loading snapshot separately. In Fig. 9, the loading
time of HMVFS is almost zero. During that time, the file system
searches the given version number in checkpoint list, and then
changes the checkpoint pointer in the superblock. The overhead
of loading snapshot in HMVFS is significantly lower than that

120

Recovery time (ms)

HMVES

BTRFS NILFS2

® Mounting File System ™ Loading Snapshot

Fig. 9. Recovery performance.

in BTRFS or NILFS2. Once the snapshot has been loaded, HMVFS
resumes normal mounting procedure, where it utilizes the byte-
addressability of NVM to mount more efficiently than BTRFS and
NILFS2.

We find that the mounting time of BTRFS is longer than HMVES.
Moreover, the loading procedure takes more time than the other
two file systems because BTRFS loads its snapshot by user requests,
and there is context switching overhead. Although BTRES uses
CoW-friendly B-tree like HMVES, the granularity of its snapshot is
not the whole file system but a subvolume. The subvolume tree can
be snapshotted to another directory which serves as the same di-
rectory as the original one, except that it is only a snapshot. There-
fore, when users call the recovery function to load the old snapshot,
BTRFS simply removes the current subvolume and changes the
name of the snapshot subvolume. When the renaming is complete,
the snapshot can be accessed as the original subvolume.

NILFS2 uses one stratified tree to represent the whole file sys-
tem. Therefore, like HMVFS, the principle of versioning is simply
achieved by switching the head pointer of the checkpoint block to
the snapshot. NILFS2 creates checkpoints automatically. Users can
select significant versions among continuously created checkpoints,
and can change them into snapshots which will be preserved until
they are changed back to checkpoints. The overhead of loading a
snapshot is low because searching for the snapshot is efficient in
memory. However, NILFS2 is not optimized for byte-addressable
access. Hence, the mounting time is longer than the other two
file systems, which makes it the slowest file system for snapshot
recovery.

366 S. Zheng et al. /]. Parallel Distrib. Comput. 120 (2018) 355-368

6. Related work
6.1. In-memory file systems

To better cope with emerging non-volatile memory, in-memory
file systems such as PMFS [8], SCMFS [34], BPFS [4], Aerie [32],
Shortcut-JFS [16] and NOVA [35] leverage the byte-addressability
and random access features of NVM to gain maximum perfor-
mance benefit [26]. Among all these file systems, PMFS is the
only open source NVM-aware file system available, hence we
only include PMFS in our evaluation. Researchers have also pro-
posed many hybrid volatile/non-volatile main memory systems
in [1,21,38]. The consistency issues for in-memory systems are ad-
dressed in [11,31,3]. However, existing in-memory file systems fo-
cus on providing direct access functionality and high performance,
which ensures only data and metadata consistency. Meanwhile,
HMVFS focuses on implementing fast, space-efficient and reliable
snapshot function. A preliminary version of HMVFS was published
in [37], and the consistency mechanism of HMVFS is described
in [36].

PMFS [8] is a state-of-the-art in-memory file system optimized
for byte-addressable non-volatile memory. It provides direct ac-
cess to NVM, which bypasses the block layer and file system page
cache to improve performance. Like EXT4, it uses B-tree to organize
the data pages of a file. For consistency, PMFS uses journaling for
metadata updates, along with c1flush and mfence, to ensure
metadata consistency.

BPFS [4] uses a new technique called short-circuit shadow pag-
ing to provide atomic, fine-grained updates to persistent storage
to ensure consistency. It also requires architectural enhancements
to enforce write ordering. A limitation of BPFS is that atomic
operations which span a large portion of the tree can require a
significant amount of extra copies which incurs large overheads.

NOVA [35]is alog-structured file system for DRAM/NVM hybrid
memory. Compared with HMVFS, NOVA maintains separate logs
for each inode to improve concurrency, but do not keep logs for
file data. NOVA keeps logs in NVM and indices in DRAM. It uses
logging and lightweight journaling for complex atomic updates.
NOVA provides metadata, data consistency, rather than version
consistency.

Consistent and Durable Data Structure (CDDS) is proposed
in [31] to store data efficiently. Similar to PMFS, CDDS expects
NVM to be exposed across a memory bus. To reduce the over-
head of system call, CDDS maps data into the address space of
process and use userspace libraries to handle data access. Further-
more, all updates in CDDS are executed in place to reduce the
cost of moving data. In physical layer, CDDS uses the primitives
sequence {mfence, c1flush, mfence} to provide atomicity and
durability for object store. In data structure, CDDS guarantees
consistency by versioning, Copy-On-Write, and B-Tree. However,
CDDS is in a single-level storage hierarchy, which ignores the
difference between NVM and DRAM, such as the speed of writing
and device’s lifetime. Frequent updates to the same location on
NVM will decrease system performance. Moreover, objects are
flushed from cache of CPU to NVM once they have been up-
dated, which will reduce memory locality and pollute the CPU
cache.

6.2. Versioning file systems

Journaling and snapshotting are two main mechanisms which
ensure file system consistency from rebooting after sudden power
failure. Journal is a running transaction log that keeps track of all
modifications to the file system since the last consistent state, and
snapshots contain consistent metadata and data backups of the file
system.

Many file systems only use journaling to record all the updates
and recover with journal, which leaves the file systems in only
one consistent state. Ext3 [30], LinLogFS [5], UBIFS [12], XFS [29],
NTFS [19] and many other traditional on-disk file systems use this
simple implementation to support metadata consistency. Com-
pared with versioning consistency, journaling can only recover
the data over a short period of time. Most journaling file systems
delete the journals when they are committed. This is because
the cost of replaying and storing journals is proportional to the
number of journals, which increases rapidly along with the amount
of operations. Versioning consistency can achieve versioning in
a long period of time with little recovery and space overhead.
Moreover, journaling introduces additional double copy overhead
to the metadata and data of the file system, which is unnecessary
in versioning file systems like HMVES.

Among log-structured file systems, single snapshot is often
an efficient way to store a consistent state of whole file system.
YAFFS2 [33], F2FS [15] and Sprite LFS [25] store a valid snapshot
back to persistent storage once in a while. Log-structured file
systems also suit data salvage and snapshots because past data
is kept in the storage, some modern implementations of LFS offer
multiple versions of file system states by taking advantage of this
feature.

In ZFS [2], writeable snapshots (clones) can be created, resulting
in two independent file systems that share a set of blocks. For any
file updates to either of the cloned file systems, new data blocks
are created to reflect those changes, but the unchanged block
continues to be shared. ZFS can take single snapshot of a file or
recursive snapshots of a directory, providing a consistent moment-
in-time snapshot of the file system. However, during snapshotting,
a new inode is allocated for each inode already in the file system,
which leads to a significant overhead of creating a snapshot of a
large amount of files.

BTRFS [24] is constructed from a forest of CoW friendly B-trees,
and snapshots are taken to the subvolume with a new tree sharing
everything but the different parts. In BTRFS, file data, metadata
and snapshots are organized in extents instead of blocks. Extent-
based file systems perform better sequential I/O than block-based
ones, but in byte-addressable storage like NVM, extent-based file
structure gains little benefit at the cost of complexity. Moreover,
each extent contains a back-reference to the tree node or the file
that contains the extent, which causes more overhead of snapshot
operations.

Gceext4 [7] is a modified version of EXT4 based on GCTree, a
novel method of space management that uses the concept of block
lineage across snapshots, as the basis of snapshots and Copy-on-
Write. GCTree inserts several pointers to the inodes and index
blocks of EXT4 to form a list of descendants of an inode or block.
GCTree also implements a special (ifile) to add a layer of indirection
between directory entries and inodes, which shares similar pur-
pose to NAT in our design. However, ifile itself in Gcext4 is array-
based rather than tree-based, which makes it difficult to deal with
substantial inode updates efficiently.

NILFS [14] creates a number of snapshots every few seconds or
per synchronous write basis. Users can select significant versions
among continuously created snapshots, and change them into
specific snapshots which are preserved all the time. There is no
limit on the number of snapshots and each snapshot is mountable
as a read-only file system. However, different versions of a file
are stored in different snapshots, which increases the overhead
of data seeking and segment cleaning. Also, NILFS suffers from
wandering tree problem with its file structure, which results in a
large overhead of file access.

Although the above file systems provide snapshotting func-
tionality, they are built around the traditional storage layout with
block I/O interface. They do not support direct access (DAX) to the

S. Zheng et al. /]. Parallel Distrib. Comput. 120 (2018) 355-368 367

file data on NVM. Without DAX, not only the performance will
drop since they only perform block-based I/O, but the consistency
problem will also arise. Traditional block-based file systems rely
on block driver to ensure consistency, while NVM has no such
driver. Hence, the file systems have to ensure the consistency
of data and metadata writes to NVM. . Traditional file systems
typically neglect this issue. Therefore, they can hardly be extended
to support versioning in NVMs.

7. Conclusion

As the need of NVM-based file system increases, snapshotting
has become a crucial component of fault tolerance. To utilize
the byte-addressability of memory and lower the overhead of
snapshotting, we present HMVFS, a new versioning file system
on DRAM/NVM hybrid memory. We use the stratified file system
tree (SFST) as the core structure of the file system such that
different versions of files can be easily updated and snapshotted
with minimal updates to metadata. HMVFS exploits the structural
benefit of CoW friendly B-tree and the byte-addressability of NVM
to automatically take frequent snapshots with little cost in time
and space. While other studies focus on fast and reliable access
to the file systems in NVM, we develop a file system with snap-
shot functionality and only takes little performance cost compared
with other in-memory file systems. The snapshotting overhead of
HMVFS outperforms BTRFS up to 9.7x and NILFS2 up to 6.6x, and
the I/O performance of HMVES is close to PMFS. To the best of
our knowledge, this is the first work that solves the consistency
problem for NVM-based in-memory file systems using snapshot-
ting, and we expect it to become a powerful choice of in-memory
versioning solutions.

Acknowledgments

We thank the anonymous reviewers for their insightful and
helpful comments, which improve the paper. We also thank Linzhu
Wau for his assistance. The work described in this paper is sup-
ported by the National High-tech R&D Program of China (863
Program) under Grant No. 2015AA015303 and the National Natural
Science Foundation of China under Grant No. 61472241. Yanyan
Shen is partially supported by NSFC (No. 61602297).

References

[1] J. Arulraj, A. Pavlo, S.R. Dulloor, Let’s talk about storage & recovery meth-
ods for non-volatile memory database systems, in: Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, ACM, 2015,
pp. 707-722.

[2]]J. Bonwick, B. Moore, ZFS: The last word in file systems, 2007.

[3] V. Chidambaram, T. Sharma, A.C. Arpaci-Dusseau, R.H. Arpaci-Dusseau,

Consistency without ordering, in: FAST, 2012, p. 9.

J. Condit, E.B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, D. Coetzee,

Better I/O through byte-addressable, persistent memory, in: Proceedings of

the ACM SIGOPS 22nd Symposium on Operating Systems Principles, ACM,

20009, pp. 133-146.

C. Czezatke, M.A. Ertl, LinLogFS-A log-structured file system for linux, in:

USENIX Annual Technical Conference, FREENIX Track, 2000, pp. 77-88.

[6] DAX: Page cache bypass for filesystems on memory storage, 2014. URL https:

/[lwn.net/Articles/618064/.

C. Dragga, DJ. Santry, Gctrees: Garbage collecting snapshots, ACM Trans.

Storage (TOS) 12 (1) (2016) 4. http://dx.doi.org/10.1145/2857056.

S.R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran,].

Jackson, System software for persistent memory, in: Proceedings of the Ninth

European Conference on Computer Systems, ACM, 2014, p. 15.

[9] Ext4, https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout.
[10] Filebench, http://filebench.sourceforge.net.
[11] J. Huang, K. Schwan, M.K. Qureshi, NVRAM-aware logging in transaction sys-
tems, Proc. VLDB Endow. 8 (4) (2014) 389-400.
[12] A. Hunter, A Brief Introduction to the Design of UBIFS, Rapport Technique,
2008.
[13] lozone Filesystem Benchmark, http://www.iozone.org/.

[4

[5

[7

8

[14] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, S. Moriai, The Linux
implementation of a log-structured file system, Oper. Syst. Rev. 40 (3) (2006)
102-107.

[15] C. Lee, D. Sim, J. Hwang, S. Cho, F2FS: A new file system for flash storage,
in: 13th USENIX Conference on File and Storage Technologies, FAST 15, 2015,
pp. 273-286.

[16] E. Lee, S. Yoo, J.-E. Jang, H. Bahn, Shortcut-JFS: A write efficient journaling
file system for phase change memory, in: 012 IEEE 28th Symposium on Mass
Storage Systems and Technologies, (MSST), IEEE, 2012, pp. 1-6.

[17] G.Lu, Z. Zheng, A.A. Chien, When is multi-version checkpointing needed?in:
Proceedings of the 3rd Workshop on Fault-Tolerance for HPC At Extreme Scale,
ACM, 2013, pp. 49-56.

[18] C.Min, S.-W. Lee, Y.I. Eom, Design and implementation of a log-structured file
system for flash-based solid state drives, IEEE Trans. Comput. 63 (9) (2014)
2215-2227. http://dx.doi.org/10.1109/TC.2013.97.

[19] R. Nagar, Windows NT File System Internals: A Developer’s Guide, O'Reilly &
Associates, Inc., 1997.

[20] Z. Peterson, R. Burns, Ext3cow: a time-shifting file system for regulatory
compliance, ACM Trans. Storage (TOS) 1(2) (2005) 190-212. http://dx.doi.org/
10.1145/1063786.1063789.

[21] M.K. Qureshi, V. Srinivasan, J.A. Rivers, Scalable high performance main mem-
ory system using phase-change memory technology, ACM SIGARCH Comput.
Archit. News 37 (3) (2009) 24-33.

[22] O. Rodeh, B-trees, shadowing, and clones, ACM Trans. Storage (TOS) 3 (4)
(2008) 2. http://dx.doi.org/10.1145/1326542.1326544.

[23] 0. Rodeh, Deferred reference counters for Copy-On-Write B-trees, Tech. rep.,
Technical Report 1j10464, IBM, 2010.

[24] O. Rodeh, J. Bacik, C. Mason, BTRFS: The Linux B-tree filesystem, ACM Trans.
Storage (TOS) 9 (3) (2013) 9. http://dx.doi.org/10.1145/2501620.2501623.

[25] M. Rosenblum, J.K. Ousterhout, The design and implementation of a log-
structured file system, ACM Trans. Comput. Syst. (TOCS) 10 (1) (1992) 26-52.

[26] P.Sehgal, S.Basu, K. Srinivasan, K. Voruganti, An empirical study of file systems
on nvm, in: 2015 31st Symposium on Mass Storage Systems and Technologies,
(MSST), IEEE, 2015, pp. 1-14.

[27] D.-L].Stender, Snapshots in Large-Scale Distributed File Systems (Ph.D. thesis),
Humboldt-Universitdt zu Berlin, 2013.

[28] Supporting filesystems in persistent memory, 2014. https://lwn.net/Articles/
610174/.

[29] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, G. Peck, (1996)
Scalability in the XFS file system, in: USENIX Annual Technical Conference, Vol.
15, 1996.

[30] S.C. Tweedie, Journaling the Linux ext2fs filesystem, in: The Fourth Annual
Linux Expo, 1998.

[31] S. Venkataraman, N. Tolia, P. Ranganathan, R.H. Campbell, Consistent and
durable data structures for non-volatile byte-addressable memory, in: FAST,
Vol. 11, 2011, pp. 61-75.

[32] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, M.M. Swift,
Aerie: Flexible file-system interfaces to storage-class memory, in: Proceedings
of the Ninth European Conference on Computer Systems, ACM, 2014, p. 14.

[33] C.-H.Wu, T.-W. Kuo, L.-P. Chang, Efficient initialization and crash recovery for
log-based file systems over flash memory, in: Proceedings of the 2006 ACM
Symposium on Applied Computing, ACM, 2006, pp. 896-900.

[34] X.Wu,A.Reddy, SCMFS: afile system for storage class memory, in: Proceedings
of 2011 International Conference for High Performance Computing, Network-
ing, Storage and Analysis, ACM, 2011, p. 39.

[35] J. Xu, S. Swanson, NOVA: a log-structured file system for hybrid volatile/non-
volatile main memories, in: 14th USENIX Conference on File and Storage
Technologies, FAST 16, 2016, pp. 323-338.

[36] J. Zha, L. Huang, L. Wu, S.-a. Zheng, H. Liu, A consistency mechanism for
NVM-Based in-memory file systems, in: Proceedings of the ACM International
Conference on Computing Frontiers, ACM, 2016, pp. 197-204.

[37] S.Zheng, L. Huang, H. Liu, L. Wu, J. Zha, Hmvfs: A hybrid memory versioning
file system, in: Mass Storage Systems and Technologies, (MSST), IEEE, 2016,
pp. 1-14.

[38] P. Zhou, B. Zhao, J. Yang, Y. Zhang, A durable and energy efficient main
memory using phase change memory technology, in: ACM SIGARCH Computer
Architecture News, Vol. 37, ACM, 2009, pp. 14-23.

Shengan Zheng is currently a Ph.D. student at Shanghai
Jiao Tong University, China. He received his bachelor de-
gree from Shanghai Jiao Tong University, China, in 2014.
His research interests include in-memory computing and
file systems.

http://refhub.elsevier.com/S0743-7315(17)30299-X/sb1
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb1
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb1
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb1
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb1
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb1
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb1
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb3
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb3
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb3
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb4
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb4
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb4
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb4
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb4
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb4
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb4
https://lwn.net/Articles/618064/
https://lwn.net/Articles/618064/
https://lwn.net/Articles/618064/
http://dx.doi.org/10.1145/2857056
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb8
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb8
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb8
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb8
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb8
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
http://filebench.sourceforge.net
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb11
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb11
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb11
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb12
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb12
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb12
http://www.iozone.org/
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb14
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb14
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb14
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb14
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb14
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb16
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb16
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb16
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb16
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb16
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb17
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb17
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb17
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb17
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb17
http://dx.doi.org/10.1109/TC.2013.97
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb19
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb19
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb19
http://dx.doi.org/10.1145/1063786.1063789
http://dx.doi.org/10.1145/1063786.1063789
http://dx.doi.org/10.1145/1063786.1063789
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb21
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb21
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb21
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb21
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb21
http://dx.doi.org/10.1145/1326542.1326544
http://dx.doi.org/10.1145/2501620.2501623
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb25
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb25
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb25
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb26
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb26
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb26
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb26
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb26
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb27
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb27
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb27
https://lwn.net/Articles/610174/
https://lwn.net/Articles/610174/
https://lwn.net/Articles/610174/
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb31
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb31
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb31
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb31
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb31
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb32
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb32
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb32
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb32
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb32
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb33
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb33
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb33
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb33
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb33
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb34
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb34
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb34
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb34
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb34
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb36
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb36
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb36
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb36
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb36
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb37
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb37
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb37
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb37
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb37
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb38
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb38
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb38
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb38
http://refhub.elsevier.com/S0743-7315(17)30299-X/sb38

368

S. Zheng et al. /]. Parallel Distrib. Comput. 120 (2018) 355-368

Hao Liu is currently a Ph.D. student at Shanghai Jiao Tong
University, China. He received his master degree from
University of Science and Technology of China in 2009. His
research interests include in-memory computing storage
systems, mainly focus on file system and key value store
system.

Linpeng Huang received his M.S. and Ph.D. degrees in
computer science from Shanghai Jiao Tong University in
1989 and 1992, respectively. He is a professor of com-
puter science in the department of computer science and

| engineering, Shanghai Jiao Tong University. His research

interests lie in the area of distributed systems and service
oriented computing.

Yanyan Shen is currently an assistant professor at Shang-
hai Jiao Tong University, China. She received her B.Sc.
degree from Peking University, China, in 2010 and her
Ph.D. degree in computer science from National Univer-
sity of Singapore in 2015. Her research interests include
distributed systems, efficient data processing techniques
and data integration.

Yanmin Zhu is a professor in the Department of Computer
Science and Engineering at Shanghai Jiao Tong University,
Shanghai, China. He obtained his PhD in 2007 from Hong
Kong University of Science and Technology, Hong Kong.
His research interests include crowd sensing, and big data
analytics and systems. He is a member of the IEEE and IEEE
Communication Society. He has published more than 100
technical papers in major journals and conferences.

	HMVFS: A Versioning File System on DRAM/NVM Hybrid Memory
	Introduction
	Background
	CoW friendly B-tree
	Hybrid Memory File System (HMFS)

	Hybrid memory versioning file system
	NVM friendly CoW B-tree
	Stratified File System Tree (SFST)
	Node address tree
	Checkpoint
	Auxiliary information

	Implementation
	Snapshot management
	Snapshot policy
	Snapshot creation
	Snapshot deletion
	Recovery

	Metadata operations
	Consistency guarantee
	Garbage collection

	Evaluation
	Experimental setup
	Overall performance
	Snapshot creation and deletion
	Impact of file count
	Effects of directory structure
	Recovery performance

	Related work
	In-memory file systems
	Versioning file systems

	Conclusion
	Acknowledgments
	References

