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Abstract. Current in-memory DBMSs suffer from the performance bot-
tleneck when data cannot fit in memory. To solve such a problem, anti-
caching system is proposed and with proper configuration, it can achieve
better performance than state-of-the-art counterpart. However, in cur-
rent anti-caching eviction procedure, all the eviction parameters are fixed
while real workloads keep changing from time to time. Therefore, the
performance of anti-caching system can hardly stay in the best state.
We propose an adaptive eviction framework for anti-caching system
and implement four tuning techniques to automatically tune the evic-
tion parameters. In particular, we design a novel tuning technique called
window-size adaption specialized for anti-caching system and embed it
into the adaptive eviction framework. The experimental results show that
with adaptive eviction, anti-caching based database system can outper-
form the traditional prototype by 1.2x–1.8x and 1.7x–4.5x under TPC-C
benchmark and YCSB benchmark, respectively.
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1 Introduction

In-memory DBMSs remove heavy components such as data buffers and
locks, thus providing higher OLTP throughput than traditional disk-oriented
DBMSs [1,24]. However, a fundamental problem of in-memory DBMSs is that
the improved performance is only achievable when database is smaller than the
amount of available physical memory. If database grows larger than main mem-
ory while executing transactions, operating system will start to page virtual
memory, and accesses to main memory will cause page faults; the performance
of in-memory DBMSs may suffer a rapid decrease. One widely adopted method
to enhance performance is to apply a main memory distributed cache, such as
Memcached [23], in front of a disk-based DBMS. Such implementations with a
two-tier model, however, come with a problem of double data buffering, causing
a serious waste of memory resources.

As a better solution, anti-caching system [4] is proposed. In an anti-caching
based in-memory database, when memory is exhausted, the DBMS gathers the
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“coldest” tuples and writes them to disk with minimal translation from their
main memory format, thereby freeing up space for more recently accessed tuples.
As such, the “hotter” data resides in main memory, while the colder data resides
on disk in the anti-cache portion. Unlike a traditional DBMS architecture, each
tuple is in either memory or a disk block, but never in both places at the same
moment. Anti-caching system is not bound with any specified database systems,
it is a design architecture which can be applied to any in-memory DBMSs aimed
at dealing with OLTPs [3].

However, the configuration for anti-caching system prototype is fixed. Evic-
tion parameters such as eviction size, eviction threshold and eviction check inter-
val, are all preset by DBMS using a configuration file. For different types of
workloads, an in-memory DBMS with anti-caching cannot run at its best per-
formance with these fixed eviction parameters. Furthermore, anti-caching system
with a fixed eviction configuration cannot always work at a high performance
level when transaction workloads change from time to time.

One natural method is to manually modify the anti-caching configuration
file each time a new workload comes. For example, DBMSs such as Oracle and
MySQL are equipped with tuning manuals for DBAs and users. But for perfor-
mance tuning, manual method comes with obstacles such as inflexibility, ineffi-
ciency and time consumption.

The drawbacks of both fixed anti-caching configuration and labored man-
ual tuning motivate us to develop an adaptive tuning design, which is able to
support evicting data dynamically with respect to temporary workload. Instead
of tuning components like buffer pool in traditional disk-oriented DBMSs, we
tune eviction-related parameters for anti-caching in a main memory DBMS. The
whole procedure is automatic and we name it adaptive eviction framework in
this paper.

We modify a few existing tuning techniques in order to embed them into
the adaptive eviction framework. However, it is hard for these methods to exert
their full potential because none of them is anti-caching oriented.

To overcome such a challenge, we propose a novel tuning technique called
window-adaption specialized for anti-caching system. By shrinking and extend-
ing the window size related to anti-caching eviction parameters according to
the workloads and system information, unsuitable eviction parameters will be
adaptively tuned to a more proper set.

Our contributions can be concluded as follows.

• We make an observation into the relationship between different workloads and
anti-caching parameter configurations; we find that fixed eviction parameter
configuration limits the potential of anti-caching system.

• To the best of our knowledge, we are the first to propose an adaptive eviction
framework for anti-caching based in-memory databases.

• We implement a variety of tuning methods aimed for in-memory anti-caching
system based on previous work and propose a novel tuning technique called
window-size adaption with high efficiency.
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Fig. 1. Anti-caching architecture

• We conduct extensive experiments with standard TPC-C and YCSB bench-
marks. The experimental results show that with adaptive eviction frame-
work, anti-caching based database system can outperform the previous one
by 1.2x–1.8x and 1.7x–4.5x under TPC-C benchmark and YCSB benchmark,
respectively.

The remainder of this paper is organized as follows. Section 2 introduces the
background of anti-caching system and the motivation of our proposed adaptive
eviction framework. Section 3 provides the design of adaptive eviction framework
and introduces four tuning techniques for adaptive eviction. The experimental
results are presented in Sect. 4 and we review the related work in Sect. 5. The
paper is concluded in Sect. 6.

2 Background and Motivation

2.1 Anti-caching Background

Anti-caching system aims at alleviating the pressure of in-memory DBMS while
the data grows larger than memory space with transaction processing. The basic
idea is to manage data in tuple granularity instead of page granularity. Since a
data tuple is always much smaller than a page size (usually 4 KB), tuple-grained
eviction can avoid evicting hot tuples to disk when a page includes both hot and
cold tuples but considered to be a cold page by OS.

Figure 1 shows the storage architecture of anti-caching system, which includes
four main components: Data Table, Index Table, Evicted Table and Block Table.
Among them, Data Table, Index Table and Evicted Table reside in DRAM while
Block Table is in disk.

Similar to other in-memory DBMSs, in an anti-caching based database sys-
tem, the whole database stays in the memory when transactions begin. All the
data tuples reside in Data Table. The Index Table is built by sampling the tuple
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accesses. Notice that Data Table stores data tuples in a LRU linked list for each
database table, with the top being hotter and the bottom being colder. Along
with transactions processing, both Index Table and Tuple Data may grow larger
and the DRAM space can be very limited. Therefore, an eviction decision should
be made by anti-caching system to free up memory for hot data. Once the evic-
tion check interval is reached, anti-caching system scans all the Data Tables and
decides how much data should be evicted for each table.

Anti-caching system globally tracks hot and cold data. However, the cost of
maintaining a single chain across partitions is prohibitively expensive due to the
added overhead of inter-partition communication. Instead, anti-caching main-
tains a separate LRU Chain per table that is local to a partition. Therefore, in
order to evict data, anti-caching system must determine (1) from which tables
to evict data and (2) the amount of data that should be evicted from a given
table. In its current implementation, the DBMS answers these questions by the
relative skew of accesses to tables. The amount of data accessed at each table is
monitored, and the amount of data evicted from each table is inversely propor-
tional to the amount of data accessed in the table since last eviction. Therefore,
the hotter a table is, the less data will be evicted from it.

Block Table is a disk-resident hash table that stores evicted tuples in block
format. Since Block Table stores relatively colder data, it’s less accessed than
the memory-resident Data Table. Data tuples stay in either DRAM or disk, thus
the memory space occupation and coherence maintaining overhead is efficiently
reduced. To track the tuples in Block Table, Evicted Table is designed to map
evicted tuples to block ids. When a transaction requires data not in Data Table,
the database system then looks up the Evicted Table, obtains its corresponding
block id, and finally locates the binding block address for data access.

Main memory DBMSs, like H-Store [2], owe their performance advantage
to processing algorithms which assume that data is in main memory. But any
system will slow down if a disk read must be processed in the middle of a transac-
tion. Anti-caching avoids stalling transaction execution at a partition whenever
a transaction accesses an evicted tuple by applying a pre-pass process [4].

2.2 Motivation

With proper configuration, anti-caching system can behave much better than
traditional disk-oriented DBMSs with large-than-memory database, due to its
fine-grained eviction data control. However, the eviction parameters of anti-
caching system prototype is fixed, thus unsuitable for multiple workloads or
changing workload. The key parameters of anti-caching system fall on three:
eviction threshold, eviction size and eviction check interval. Their functions are:
deciding when to evict, how much to evict and how often should the system check
if eviction is needed, respectively. In this section we give a few observations of the
fixed configuration performance for anti-caching system and then analyze some
typical cases to give insight about the drawbacks of fixed eviction parameter
configuration.
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Fig. 2. Performance range with different eviction parameter groups
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Fig. 3. Anti-caching with different types of threshold setup

Observations: We conduct a variety of experiments using the same type of
YCSB benchmark to observe the limitations of fixed eviction configuration.
Figure 2 shows that under different anti-caching configuration for three evic-
tion parameters listed above, the performance of anti-caching system distin-
guishes from each other a lot. We can see that the best versus the worst ratio
on transaction performance is 8.4x, 6.2x for each. We notice that the best per-
formance group in Fig. 2(a) is <Check interval = 100 ms, Eviction size = 20 MB,
Threshold = 0.8>. However, for other groups with Check interval = 100 ms, Evic-
tion size = 20 MB, their performance seems to be very poor. It might be con-
sidered that the threshold makes sense. The <Check interval = 10000 ms, Evic-
tion size = 200 MB, Threshold = 0.8> group, however, just gives the extreme
reverse result. Therefore, it’s hard to find the optimized eviction parameter
group pattern for a certain workload. The deeper reason is that the performance
of anti-caching system is not bound with a certain parameter group, but tightly
related to workload state (e.g., skew, read/write ratio) and system state (e.g.,
memory usage). In conclusion, we argue that fixed eviction parameter
configuration is improper for anti-caching system.

Case Analysis: In this part we offer some cases to further explain why fixed
eviction parameter configuration is improper for anti-caching system. To make
the explanation simpler, we assume that the index size is stable (even though it
can grow larger and larger under real workloads).

Figure 3 shows the case how different types of eviction threshold configura-
tion can affect the anti-caching processing. Figure 3(a) illustrates that when low
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Fig. 4. Anti-caching with different types of eviction size and interval setup

threshold is set up by a DBA or system maintainer, the memory utilization rate
would be very low. Even if the user workload is slow and steady without too
much data expansion in memory, eviction process will still be invoked frequently,
naturally deriving the conclusion that such a fixed low-threshold configuration
is not optimized. Figure 3(b) shows the case when an improper high threshold is
set up. It might be considered that high threshold can better utilize the available
memory. However, once the total database memory is not enough, page swap will
happen automatically. Since page swap is transparent to user transactions, when
the anti-caching engine checks whether all the data tuples needed for a specific
transaction, it may consider those tuples in pages which are swapped before still
reside in memory. However, such accesses need disk I/O indeed, thus resulting in
much longer latency. If a high threshold is set up, then fewer evictions will occur
with the price of page swap during a transaction execution. We argue that such
a fixed high-threshold configuration is also not proper. Figure 3(c) shows how
a fixed threshold fails to utilize available memory when meeting with workload
changes, say, from write-heavy to read-heavy. The main difference between these
two workloads in anti-caching environment is that the latter workload results in
much fewer data appended into memory, thus only a little more memory is used
in addition. In such cases, the available memory can be abundant. However,
the anti-caching system just performs conservatively with regular evictions. We
argue that the fixed eviction threshold configuration is not optimized.

Figure 4 shows how eviction size and check interval can affect the transaction
performance. Figure 4 shows the case when fixed eviction size and check interval
are set up. For example, if a normal read-heavy workload turns into a write-heavy
workload, then the data in memory will increase very quickly. Page swap might
happen during a transaction processing and the database performance can suffer
a rapid descending. To better illustrate the inefficiency of fixed configuration for
eviction size and check interval, we compare it with the cases that either eviction
size or check interval changes along with the workload change. These two cases
are shown in Fig. 4(b) and (c), respectively. With workload-aware adjustment
for eviction size and check interval, page swap can be avoided to some extent,
thus maintaining a high transaction performance. Therefore, we argue that both
fixed eviction size and check interval are not optimized.
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Fig. 5. Adaptive eviction framework

3 Adaptive Eviction

3.1 Overview

Figure 5 presents the framework of adaptive eviction. The three important
components are Monitor, Analyzer and Adaptive Eviction Processor (AEP).
The Monitor is responsible for gathering information about transaction work-
load and system state. Workload information includes read/write times, query
numbers in a certain time period, accessed tuple numbers; system informa-
tion includes real-time transaction performance and memory usage. The raw
information collected by Monitor is conveyed to Analyzer for further com-
putation. For example, the read/write ratio of the workload is computed by
rw ratio = read number/total access number; the access skew is computed by
access skew = total access number/access tuple number. The Info Buffer of
Analyzer is used to store the historic workload and system information while
the Comparator is used to compare its current results with the history, which
implies whether there is a change of workload characteristics or system state.
The result computed by Analyzer is then transferred to AEP. AEP is the core
tuning model of adaptive eviction framework. We can implement different tun-
ing techniques in AEP to modify the eviction parameter group for anti-caching
based database systems.

Algorithm 1 further introduces the work flow of adaptive eviction frame-
work. First, necessary components go through either startup or initiation. During
transactions processing, the Monitor keep tracking the information of both sys-
tem and workload, and then transfer them to Analyzer. Once the eviction check
interval is reached, Analyzer deals with the workload/system information data
received during the check interval period. It counts the access skew, read/write
ratio and transaction rate. Then it makes a comparison of these data with cor-
responding ones computed last time to tell whether eviction parameters should
be reconfigured or not. In our current implemented version of adaptive evic-
tion framework, when either one of the following two conditions are satisfied, a
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reconfiguration action should be performed: (1) available memory space change
is over 10%; (2) workload state change is over 10% (e.g., 10% write-heavier, 10%
more skew access). The choice of our threshold 10% is based on a few exper-
imental observations, which show such a configuration outperforms than most
other ones. We expect to explore more critical knowledge about the choice of
threshold representing changes in our future work. AEP is the core component
which performs actual tuning procedure. It decides the concrete method of how
eviction parameters change. We implement four tuning techniques as AEP to
tune the eviction parameters, which are presented in next part of this section.
Notice that even if the eviction parameters have been changed, the data eviction
do not need to happen if only the memory occupation of data is smaller than
the eviction threshold.

Algorithm 1. AdaptiveAntiCaching

1 P ← default eviction parameters
2 while transaction state is ON do
3 Analyzer ← Monitor.getInfo()
4 if Monitor.timer.last() == P.check interval then
5 Analyzer.compute()
6 Analyzer.compare()
7 AEP ← Analyzer.changeInfo()
8 if AEP.shouldChangeConfig() is True then
9 AEP.tune(P)

10 if data memory > P.threshold then
11 Evict(database, P);

12 Monitor.timer.continue()

3.2 Tuning Techniques

We design our adaptive eviction framework as a pluggable platform for equipping
various tuning techniques. Four tuning methods are implemented in our study.
They are simple-rule based tuning (SRB), experiment-reflected tuning (ER),
candidate block replacement tuning (CBR) and window-size adaption tuning
(WSA). Among them, the first three refer to previous research [12–14] and WSA
is an efficient tuning technique we propose for better adapting to anti-caching
system. Next we will introduce each of the tuning technique with more details.

SRB: Simple Rule-Based. Pavlo et al. [14] introduce machine learning into
in-memory database to tune the indexes, views, storage layout and etc. We adopt
the simpler off-line machine learning version to obtain the patterns with certain
<workload info, system info, eviction parameter set> format. It is fast to make a
tuning decision and can often work better than the default configuration of anti-
caching. However, it is not accurate indeed and can suffer serious performance
degrading in a few cases.
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Table 1. Design issues for different tuning techniques

SRB ER CBR WSA

In-memory DBMS oriented Yes No No Yes

Anti-caching oriented No No No Yes

Tuning time Short Long Middle Short

Memory overhead Small Neutral Large Small

Performance improvement Low Middle Middle High

ER: Experiment-Reflected. Duan et al. [13] proposes this feedback-driven
tuning method based on adaptive sampling. Adaptive sampling analyzes the
samples collected so far to understand how the surface looks like (approximately),
and where the good settings are likely to be. Based on this analysis, more exper-
iments are done to collect new samples that add maximum utility to the current
samples.Although this technique is able to be quite adjacent to the optimized
eviction parameter values for single-type workload, it is time-consuming and
suffer from serious performance bottleneck under changing workload.

CBR: Candidate Block Replacement. Storm et al. [12] describes such a self-
tuning approach based on cost-benefit analysis. This method previously attempts
to solve the problem of developing a database-wide, memory-tuning algorithm by
considering each of the memory consumers such as compiled cache-pool, buffer-
pool, sort-buffer, etc., wherein each has a different usage. It accumulates the cost
savings in processing time for each component with which a database process
is interacting with the memory subcomponent. This technique is also called
shared memory management technique (SMMT) and has been incorporated in
IBM’s DB2. It behaves in a block-grained memory replacement, thus losing the
flexibility of tuple-grained data control.

WSA: Window-Size Adaption. The idea of window-size adaption comes from
the TCP flow control mechanism in network communication. Figure 6 shows the
implementation of WSA. The aim of WSA is to balance the trade-off between
utilizing memory space and avoiding page swap. If more data can reside in the
memory, access to disk will become less, thus promoting the overall transaction
performance and decreasing the average delay. However, if the system greedily
holds too much data tuples in DRAM, the sum of space used by indexes, data
tuples, buffers and evicted tables may exceed the available memory space, thus
causing heavy OS page swap. To explore the full potential of anti-caching, we
design two phases for WSA. One is Relaxation Phase, during which transaction
burden is not heavy and memory space is sufficient, anti-caching system tries
to hold more data tuples in the memory and reduce the tuning overhead (i.e.,
decrease eviction size, increase eviction threshold and check interval); the increas-
ing/decreasing ratio is chosen to be 0.1 in our current implementation version.
The other is Shrinking Phase, where transaction burden is detected to be heavy
or memory resource is inadequate, anti-caching system makes a radical change
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Fig. 6. Window-size adaption

for its eviction parameters (i.e., double eviction size, halve eviction threshold
and check interval). Notice that for most workloads the Relaxation Phase can
improve transaction behavior with optimizing the eviction parameters gradually
and this process is slow and steady. As for Shrinking Phase, it changes rapidly to
avoid the danger of OS page swap by sacrificing the memory usage and adding
more frequent checking overhead. However, compared to access tuples in the
method of OS page swap, it is more reasonable to evict data in advance to save
memory space. This is because anti-caching itself allow asynchronously fetching
disk-resident tuples while executing next transactions which only concern data
in memory. By taking advantage of this intrinsic feature of anti-caching system,
WSA becomes a well-suited tuning method in our study.

Table 1 makes a conclusion of four tuning techniques used in our adaptive
eviction framework. Compared the other three tuning techniques, WSA is anti-
caching oriented, thus it can obtain considerable performance improvement with
small overhead and short tuning time. SRB is also a fast-tuning technique
with small memory occupation. However, it is unaware of the dynamic work-
load/system changing, which limits its ability. As for ER and CBR, they are
previously designed for disk-oriented DBMSs to optimize buffer resources, thus
cannot fully exert their potential for anti-caching based database systems.

4 Experiments

We implement our adaptive eviction framework in H-Store and compare its per-
formance against traditional anti-caching system. Four kinds of adaptive eviction
techniques introduced in Sect. 3.2 are tested in our experiments. We first describe
the two benchmarks and the DBMS configurations used in our analysis.

4.1 Benchmarks

TPC-C: This benchmark is the current industry standard for evaluating the
performance of OLTP systems. It consists of nine tables and five procedures
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that simulate a warehouse-centric order processing application. Only two of these
procedures modify or insert tuples in the database, but they make up 88% of the
benchmark’s workload. For our experiments, we use a 10 GB TPC-C database
containing 100 warehouses and 100,000 items. For this benchmark, we set the
available memory to the system to 12 GB. As the benchmark progresses and more
orders accumulate, the data size will continue to grow, eventually exhausting
available memory, at which point the anti-caching system will begin evicting
cold data from the data tables to disk.

YCSB: The Yahoo! Cloud Serving Benchmark is a collection of workloads
that are representative of large-scale services created by Internet-based com-
panies. For all of the YCSB experiments in this paper, we use a 20 GB YCSB
database containing a single table with 20 million records. Each YCSB tuple
has 10 columns, each with 100 bytes of randomly generated string data. The
workload consists of two types of transactions; one that reads a single record
and one that updates a single record. We use the write-heavy transaction work-
load mixtures (i.e., 50% reads/50% updates). We also vary the amount of skew
in workloads to control how often a tuple is accessed by transactions. In our
experiments, we use a Zipfian skew with values of s between 0.5 and 1.5.

4.2 System Setup

We deploy latest H-Store with our adaptive eviction framework on a single node
with a dual socket Intel Xeon E5-2620 CPU (12 cores per socket, 15M Cache,
2.00 GHz) processor running 64-bit Ubuntu Linux 14.04. All transactions are
executed with a serializable isolation level. The benchmark clients in each exper-
iment are deployed on a separate node in the same cluster. In each trial except
one that tests the connection between performance change and running time,
H-Store is allowed to “warm-up” for two minutes. During the warm-up phase,
transactions are executed as normal but throughput is not recorded in the final
benchmark results. For H-Store, cold data is evicted to the anti-cache and hot
data is brought into memory. After the warm-up, each benchmark is run for a
duration of ten minutes, during which average throughput is recorded. The final
throughput is the number of transactions completed in a trial run divided by the
total time (excluding the warm-up period). Each benchmark is run five times
and the throughputs from these runs are averaged for a final result. To prop-
erly control the data size for experimental presentation, we write extra codes
for benchmark testing. Once the goal (e.g., 2x memory size) is achieved for one
experiment, new data will not be generated throughout this experiment. For each
trial we test the performance of six database configurations: one is pure DBMS
without anti-caching system (i.e., No AC), another is anti-caching system with-
out eviction parameter configuration as baseline (i.e., Default), the other four are
anti-caching systems equipped with our proposed adaptive eviction framework,
which includes four different tuning techniques (i.e., SRB, ER, CBR, WSA). We
don’t perform manually-tuned experiments because such a method fails to access
the optimal performance, due to the random changing patterns and slow human
reactions to the OLTP workloads.
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Fig. 7. Adaptive eviction performance under TPC-C benchmark

4.3 Results and Analysis

We now discuss the results of executing two benchmarks with our adaptive
eviction framework across different size configurations and workload skews.

TPC-C: The results for running the TPC-C benchmark are shown in Fig. 7.
We first examine the performance of different tuning methods with the change
of data size, whose result is depicted in Fig. 7(a). It can be simply observed
that with data size being larger and larger, the performance of DBMS degrades
again and again. This is because more data tuples are evicted to disk thus
more disk I/Os should be taken. When the data size can just fit into mem-
ory (data/memory = 1), DBMS with no anti-caching behaves the best because
the overhead of eviction process is removed. However, when data size become
larger, the performance of DBMS without anti-caching decrease rapidly. It can
be concluded that using tuning methods with our adaptive eviction framework
can obtain higher average throughputs than anti-caching system with default
eviction parameter configuration. Among the four tuning techniques, window-
size adaption is the best and it beats default anti-caching system in transaction
throughput with 21%, 52% and 118% under 2x, 4x and 8x memory data size,
respectively. Compared with other tuning techniques, WSA wins 43% to 75%
when the data size is 8x memory. WSA can efficiently balance the trade-off
between utilizing memory space and avoiding page swap. Therefore, it is more
proper than the other implemented tuning methods for anti-caching system.

Figure 7(b) shows the performance change of each tuning technique along
with time. Notice that we just choose the first 60 s to give explanations for bet-
ter visual effect. The time-sequential throughput change can tell more detailed
information about what happens for each tuning technique while transactions
are being executed. When transactions just begin, the memory space is suffi-
cient and DBMS without anti-caching works at its best state with fetching all
the target tuples from memory. Since no eviction threshold is limited for it, the
performance will not be worse until OS page swap happens. However, once the
data size start to exceed the available memory, page swap can occur frequently
for DBMS without anti-caching and the performance goes down rapidly and
finally reaches a stable state. Other anti-caching choices, start with relatively
lower transaction throughputs, grow steadily until the same bottleneck occur
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Fig. 8. Adaptive eviction performance under YCSB benchmark

for them: the data size become too large and only a small fraction of them can
reside in memory. The interesting thing is that compared to the baseline, all
tuning techniques have a jump-after-fall phenomenon. For example, WSA expe-
riences a performance fall from 10 s to 12 s and just after this, it has an obvious
performance jump to 17 s. Another instance is for the CBR tuning method. Its
performance falls from 8 s to 15 s and jumps from 15 s to 22 s. The reason for the
fall-and-jump style is simple: when performance degrading is captured by Ana-
lyzer in our adaptive eviction framework, a tuning decision should be made by
AEP, configuring the eviction parameters to a relatively proper set. After such
a procedure, anti-caching system fits more to the current workload than before
and obtains a performance growth, which we regard as a jump action. Among
the four tuning techniques, WSA’s stable state is the highest and it gains 1.25x
better performance than the baseline.

YCSB: The results in Fig. 8 are for running the YCSB benchmark with write-
heavy workload across a range of workload skews and data sizes. Figure 8(a)
shows the performance difference of each tuning technique with different work-
load skews. We can observe that under the workload of same skew, anti-caching
system can obtain higher average transaction throughput by taking advantage
of our proposed adaptive eviction framework. With the skew becoming higher,
more transaction accesses reach the same group of hot data in memory, DBMS
can obtain a natural throughput improvement. However, in the case of low
skew, anti-caching system with default eviction parameter configuration behaves
poorly and is only 52% better than no anti-caching choice. While using adaptive
eviction, the performance can obtain considerable improvement, up to 1.7x–4.5x
compared with the baseline. In particular, under low-skew workload, WSA also
beats other tuning techniques by 2.6x, 2.2x and 2.3x compared with SRB, ER
and CBR, respectively. The reason is that when transaction accesses randomly
fall into data tuples, WSA gently changes its window size to fit more cold data
in memory while promising that the memory resource is not over-used. It keeps
more access in memory rather than evicts a large amount to disk. In this way
WSA fits anti-caching system better than other tuning techniques.

Figure 8(b) presents the performance behaviors of different tuning techniques
for three data size setups. The performance difference among all the anti-caching
choices in the 1x memory data size scenario is slight, but it can still be clearly
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observed that WSA obtains an average throughput nearly to pure DBMS without
anti-caching system. We can infer that with the transactions proceeding, different
windows of WSA behave in the following style: the eviction size becomes smaller
and smaller, while the eviction threshold and check interval becomes larger and
larger. In larger-than-memory data scenarios, adaptive eviction obtains more
obvious improvement than the baseline, up to 1.2x–1.8x for 2x memory and
2.3x–4.6x for 4x memory, respectively. The interesting thing is that with much
larger data size, the improvement of using adaptive eviction is also larger. This
is reasonable because with adaptive eviction framework, anti-caching system is
able to leave more hot data in memory with more proper eviction parameters.

5 Related Work

Anti-caching Data Management. [3] concludes different kinds of “anti-
caching” data management mechanisms and divides them into three cate-
gories: user-space, kernel space, hybrid of user- and kernel-space. H-Store anti-
caching [4] falls into the user-space approach. Project Siberia [6–8] also adopts
a user-space “anti-caching” approach for Hekaton [5]. Instead of maintaining
an LRU like H-Store anti-caching, Siberia performs offline classification of hot
and cold data by logging tuple accesses first, and data in Hekaton is evicted
to or fetched from a cold store in disk. Kernel-space approaches mainly refers
to OS paging, which is an important part of virtual memory management in
most contemporary general purpose operating systems. OS paging tracks data
access in the granularity of pages and it allows a program to process more data
than the physically available memory [9]. As for hybrid of user- and kernel-space
approach, efficient OS paging [10] and access observer method [11] are proposed
to better assist the hot/cold data classification. Our work is based on H-Store
Anti-caching as it is the state-of-the-art in-memory DBMS data management
architecture and deals with workload online to serve multiple application sce-
narios.

Performance Tuning. Performance tuning of database systems has been an
interesting and active area of research in the last three decades and recent trend
has been in developing self-tuning database systems with little or no human
intervention. Several methods have been proposed in the literature [12,15,16]
to implement self-tuning techniques ranging from use of histograms, gradient
descent technique, creation of index, use of materialized views, etc. There have
been several attempts to self-manage the DBMS memory [13,17–19] for improved
performance. Oracle 10 g uses automated shared memory management (ASMM)
to resize the subcomponents of the shared memory pool based on current work-
load. When switched on, the ASMM controls the sizes of certain components
in the SGA by making sure that the workload gets the memory it needs. It
does that by shrinking the components which are not using all of the memory
allocated to them, and growing the ones which need more than the allocated
memory. Microsoft SQL Server also has an automatic memory tuning manager.
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However, none of these techniques can fully exert their potential for anti-caching
architecture because of either disk-oriented design or heavy and redundant buffer
components.

Workload Characterization. The key to successful implementation of a self-
tuning database system is the knowledge base [21,22] on two aspects. One is
helping the system to identify important performance bottlenecks. The other
is collecting information about tuning impact of each tuning parameter on the
system performance under different workloads and user load conditions. There
have been attempts to identify key tuning parameters that have significant tun-
ing impact on performance. [20] has presented the impact of various tuning
parameters on the performance and the parameters are ranked using statistical
approach. In our study we consider that the workload characteristics are bound
with anti-caching memory environment, since the workload itself does not really
affect the system performance.

6 Conclusion

In this paper, we propose an adaptive eviction framework for anti-caching based
in-memory databases to figure out the problems caused by fixed eviction param-
eter configuration. With adaptive eviction for anti-caching system, in-memory
DBMS is able to collect workload and system information to adaptively adjust
the eviction parameters, taking more advantage of anti-caching system. We
propose a novel window-size adaption strategy based on our designed general
adaptive eviction framework; by extending and shrinking the eviction param-
eters along with the workload characteristics and system information change,
an in-memory DBMS can smartly avoid weak memory utilization or slow OS
page swap. The experimental results show that with adaptive eviction, an anti-
caching based database system can obtain higher transaction performance under
both TPC-C and YCSB benchmarks. In particular, window-size adaption tun-
ing technique can outperform the base line up to 2.2x and 4.5x under TPC-C
and YCSB benchmark, respectively. We conclude that for OLTP workloads, the
results of this study demonstrate that adaptive eviction can efficiently improve
the transaction performance of in-memory DBMS with anti-caching system.
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