
Adaptive Prefetching for Accelerating Read and
Write in NVM-based File Systems

Shengan Zheng, Hong Mei, Linpeng Huang, Yanyan Shen, Yanmin Zhu
Department of Computer Science and Engineering

Shanghai Jiao Tong University

Email: {venero1209, meih, lphuang, shenyy, yzhu}@sjtu.edu.cn

Abstract—The byte-addressable Non-Volatile Memory (NVM)
offers fast, fine-grained access to persistent storage. While DRAM
and NVM have similar read performance, the write operations
of existing NVM materials incur longer latency and lower
bandwidth than DRAM. This read-write asymmetry nature of
NVM causes two bottlenecks for accessing read- and write-
intensive file data: expensive data block lookups via file inner
structure and high-latency direct writes to data blocks in NVM.
However, existing NVM-based file systems fail to address both
bottlenecks well.
This paper presents WARP, an adaptive prefetching module

designed for NVM-based file systems, which aims to deal with
two bottlenecks effectively. WARP employs two acceleration
approaches: 1) mapping data blocks into kernel virtual address
space to bypass the indirection of file inner structure for read-
intensive file data; and 2) allocating DRAM buffer to absorb
frequent writes for write-intensive file data. We design a WARP
benefit model to identify read- and write-intensive access patterns
for file data, and use a successor prediction model to predict
future data access based on historical file access traces. With
WARP, we are able to prefetch file data according to both file
access patterns and traces with consistency guarantee. WARP
can be implemented on various NVM-based file systems, and we
choose HMVFS for the experiments. The evaluation results show
that HMVFS with WARP provides high prefetching accuracy and
up to 32%-83% improvement compared with the state-of-the-art
NVM-based file systems.

I. INTRODUCTION

The emergence of Non-Volatile Memory (NVM) technolo-

gies such as PCM and 3D-Xpoint [1] leads to significant

changes to the storage hierarchy in personal computers, mo-

biles, cloud, and high-performance platforms. As a result, var-

ious NVM-based file systems such as SCMFS [2], BPFS [3],

PMFS [4] and NOVA [5] have been proposed to gain great per-

formance benefits of the byte-addressability and non-volatility

properties of NVM [6].

While DRAM and NVM have similar read performance, the

write operations of existing NVM technologies incur higher

latency and lower bandwidth than DRAM, as illustrated in

Table I. On one hand, since the read latency of NVM is

close to DRAM, the indirections of file inner structure in

locating file data become the bottleneck for file reads [7].

Most NVM-based file systems employ the same hierarchical

file inner structure as traditional file systems, which leads

to considerable overhead for traversing software routines to

search the physical address of each data block. On the other

hand, the write latency of NVM is much higher than that

of DRAM, and the overhead from the direct write access

degrades the performance of file write operations [8]. Unfor-

tunately, direct write to all the file data in NVM is applied to

almost all the existing NVM-based file systems, which leads

to suboptimal system performance. Hence, accelerating read

and write operations has become critical in order to achieve

high performance for NVM-based file systems.

Inspired by SIMFS [7] and HiNFS [8], we propose two

kinds of optimization approaches to accelerating file reads

and writes in NVM-based file systems. For file data being

frequently read, we map data pages into kernel virtual address

space and users can read them via one memcpy operation
without using software routines to iteratively search for the

addresses of data blocks. For file data being frequently written,

a DRAM buffer is allocated to absorb multiple writes to the

same NVM block, and then the buffered data is written back

to NVM with consistency guarantee. In this way, we are able

to yield comparable write performance as DRAM.

However, applying the above two optimization approaches

into one file system simultaneously is a nontrivial task. The

page table entries in kernel virtual address space should

be consistent with the file data either in NVM or DRAM

buffer at any time. In addition, each out-of-place file write,

including shadow paging in BPFS [3], log-structured write in

HMVFS [9] and copy-on-write in PMFS [4] and NOVA [5],

will lead to updates in the corresponding page table entries,

because the addresses of the valid data blocks on NVM will

be changed. Furthermore, allocating and deallocating DRAM

buffer will introduce unnecessary time overhead for read-

intensive files, since the read latency and bandwidth of NVM

are close to those of DRAM. Unfortunately, existing NVM-

based file systems are typically blind to file access patterns.

If the files can be prefetched using different optimization

approaches according to their own access patterns, both opti-

mization approaches can be deployed in one file system more

effectively.

The development of an effective prefetching mechanism (for

deploying read/write acceleration approaches in NVM-based

file systems), however, is challenging. The reason is three-fold.

First, the target file data to be prefetched should be selected

carefully in order to reach maximum performance benefit

with minimized prefetching overhead and the limited DRAM

space. Second, the acceleration type (i.e., mapping data blocks

into kernel virtual address space for read acceleration, or

2017 IEEE 35th International Conference on Computer Design

1063-6404/17 $31.00 © 2017 IEEE

DOI 10.1109/ICCD.2017.17

49

allocating DRAM buffer for write acceleration) should be

determined by the previous access pattern of the file data in

order to improve prediction accuracy as much as possible.

Simply prefetching file data with its recent access pattern

may cause frequent switching between different acceleration

approaches, which leads to even worse performance. Third,

prefetching phase should be removed from the critical path.

For instance, if prefetching is performed at the beginning of

the actual read/write, its overhead will substantially affect

the performance of foreground file I/Os. In particular, the

file system has to identify the most beneficial file data, and

prefetch it according to its previous access pattern before the

actual read/write happens.

In this paper, we propose WARP, an adaptive prefetching

module for NVM-based file systems. The prefetching granu-

larity of WARP is node, i.e., several continuous data blocks
of a file. The key idea of WARP is to: 1) recognize read-

intensive and write-intensive access patterns for each node

with a WARP benefit model; 2) identify the access successor
relationships among nodes; and 3) perform prefetching to its

successor node in an adaptive way once the predecessor node

is accessed. Specifically, we collect file access traces in the

file system, and leverage WARP benefit model to identify read-
intensive and write-intensive access patterns for each node. For

read-intensive nodes, we map data blocks into kernel virtual

address space in order to bypass the indirection of file inner

structure. For write-intensive nodes, we allocate DRAM buffer

to absorb writes to them. The stable access patterns are written

back to NVM periodically so that the file system can memorize

them in order to continuously perform future access prediction

after reboot. We implement our adaptive prefetching module

in HMVFS [9], and evaluate the performance using micro-

and macro-benchmarks.

The contributions of this paper are the following:

• We identify two performance bottlenecks in NVM-based
file systems: expensive data block lookups via file inner

structure and high-latency direct writes to data blocks in NVM.

We propose two optimization approaches to deal with the

bottlenecks: mapping data blocks into kernel virtual address

space to bypass the indirection of file inner structure for read-

intensive file data, and allocating DRAM buffer to absorb

writes for write-intensive file data.

• We develop an adaptive prefetching strategy to deploy
our optimizations with the objective of maximizing overall

I/O performance. We collect and predict file access patterns

and file access traces with WARP benefit model and successor
prediction model, and perform prefetching adaptively.

• We implement WARP in HMVFS, a Hybrid Memory
Versioning File System [9]. The evaluation results show that

HMVFS with WARP outperforms two state-of-the-art NVM-

based file systems, PMFS and NOVA, by up to 83% and 32%,

respectively.

The remainder of this paper is organized as follows. Sec-

tion II provides background and our motivations. Section III

presents read and write optimization approaches. The design

and implementation of WARP are given in Section IV and

TABLE I
COMPARISON OF NVM CHARACTERISTICS

Technology Read Operations Write Operations

Latency Bandwidth Latency Bandwidth

DRAM 15ns 15GB/s 15ns 10GB/s

NAND Flash [10], [11] 25μs 25-400MB/s 200-500μs 10-25MB/s

PCM [12] 50ns 10GB/s 350-1000ns 2GB/s

Memristor [13], [14] 100ns 10GB/s 100ns 5GB/s

STT-RAM [15] 40ns 15GB/s 40ns 10GB/s

Section V, respectively. We discuss the evaluation results of

WARP in Section VI. Finally, we provide related work in

Section VII and conclude our paper in Section VIII.

II. BACKGROUND AND MOTIVATION

Table I summarizes the characteristics of different NVM

technologies and we compare them with traditional mem-

ory and storage [16]–[22]. As we can see, different NVM

materials have different IO characteristics, but the common

points are longer latency and lower bandwidth compared with

DRAM [8]. While existing NVM-based file systems take

performance degradation caused by read-write asymmetry of

NVM into account, none of them provides flexible read/write

strategies that can be adaptive to different file access patterns.

We first perform a preliminary experiment to illustrate our

motivation. We set the read latency and write latency of NVM

to 50ns and 500ns, respectively. In Figure 1, we show the

time overhead of the file system performing a read or write

operation to 16KB data, which typically includes locating data

block and read/write access latency for each 4KB data block.

� ��� ���� ���� ���� ���� ���� ���� ���� ����

�	
���
���

��
�����
���

�	
��
���

��
����
���

�������������
����������� �
�����������

Fig. 1. Time overhead analysis for read and write on 16KB file data (ns)

NVM has similar read latency and bandwidth as DRAM

and the proportion of it in read operations is provided in the

normal read stripe (42%). It is easy to see that the major
bottleneck for read operations is not IO latency but the cost
of locating data blocks. That is, long addressing routine for
each data block access limits the throughput of the whole read

operation. If these data blocks can be mapped continuously

into kernel virtual address space, the addressing procedure will

be performed by MMU directly to translate virtual address

to physical address of the data block in NVM. Moreover, a

single request of accessing multiple continuous data blocks

in traditional file systems is broken down to a traversal over

individual data blocks separately. With the help of continuous

address space, addressing such data blocks can be performed

only once and the data can be fetched continuously by one

memcpy function (the WARP read column), which leads to
about 81% speed up compared with normal read.

50

���������	

���
�

��
�

������������
�������������

����

�������
����������

�������������

��
����� �� �������!
�	�"���	

#����!$

�����!
��
��%� ������!
��
��%�

�	�"��

#����!$

�������������������

�������������
���������	

��������������
&

�������
�����
	���

(a) Architecture of HMVFS with WARP

#�����

#����� #������' �(�) �* �+ �,#����� �' �(�) �* �' �(�) �*

���
�������

�' �(

���
����������

�������������

�) �* �(

�' �(�) �*

�) �* �+

#�����

����

����

�		�

#�����

#�����

���������		�

���������		�

���������		�

����������

���������

!
���-�������������

!

��-��������������#�����

(b) Design of WARP

Fig. 2. Architecture and Design of WARP

For write operations, the high write latency of NVM domi-

nates the overhead of NVM writes, as illustrated in the normal
write stripe (76%). Hence, the major bottleneck for write
operations is mainly caused by I/O latency rather than
locating data blocks. To overcome the high write latency
problem of NVM, a natural way is to allocate a DRAM buffer

to absorb writes to NVM, and perform write back only when

synchronization is needed. As one can see from the WARP
write stripe, write buffer is helpful to reduce write overhead
caused by NVM and perform writes more efficiently. The

latency of locating data is also reduced since locating DRAM

buffer is faster than original routine. WARP write roughly
achieves 193% speedup compared with normal write.

III. READ AND WRITE OPTIMIZATIONS

Before delving into the details of read and write opti-

mizations, we first discuss the granularity of our prefetching

approach. On one hand, we observe from many real workloads

that adjacent data blocks often share similar access patterns.

Therefore, the granularity of file access pattern prediction

should be continuous data blocks to retain spatial locality. As

a benefit, the size of metadata can be reduced when using

a larger granularity, e.g., it takes about 64 times overhead

to implement with cacheline granularity (64B) than block

granularity (4KB). On the other hand, the granularity also

needs to be a fraction of file size instead of the whole file.

Consider an application that constantly accesses a hot area of

a large file, in which building write buffer in DRAM for the

whole file would squander precious DRAM space. We set the

granularity (node) to 2MB by default in HMVFS with WARP.
The data consistency of the read/write optimization ap-

proach is guaranteed by checkpoint, a function for file
systems to write back all the data from both CPU cache

and DRAM to NVM. It is used to ensure the file system

consistency at a certain time point. In HMVFS, checkpoint
is implemented as an operation to create a snapshot from

the last one differentially. In other in-memory file systems,

it is equivalent to sync. WARP supports both file level

checkpoints and file system level checkpoints.

A. Read Optimization Approach

For frequently read nodes or files opened with READ ONLY
flag, WARP maps the data into kernel virtual address space

with READ ONLY permission, as shown in Figure 2(b). Orig-
inally, in order to read file data, file system has to go through

the file’s inner structure to locate data block for each data block

within the range. According to our read optimization, once

the node is mapped by the background prefetching thread,

named warp_prefetch, read accesses to the node will
be redirected to kernel virtual address space, which can be

accessed directly and continuously through the page table

entries via MMU. We provide details as follows.

When the file is ready for prefetching, warp_prefetch
will allocate a continuous virtual address space that is equal

to the current size of the file, and store the start address in the

inode cache in DRAM. After that, warp_prefetch will

map each valid data block of the node in NVM into kernel

virtual address space. When the prefetching is completed,

the read accesses to the node will be redirected to kernel

virtual address space, which ensures consistency. If an out-

of-place write emerges after prefetching, WARP will update

the mapping address accordingly.

Compared with traditional access routine that repeat-

edly traverses file inner structure from inode block to

data block for each data block with the complexity of

O(#Datablocks), WARP read only requires a simple call to
the copy_to_user function. The kernel will perform the

copy from file address space to user address space with any

starting address and length with O(1) cost.

B. Write Optimization Approach

For frequently written nodes or files opened with

WRITE ONLY flag, WARP allocates a write buffer in DRAM
to absorb writes to NVM. Once the write buffer is active, write

requests to the nodes or files will be intercepted by the write

buffer in DRAM. WARP will only perform write back to NVM

during checkpoint. The write buffer will be reclaimed if
it has not been accessed for a period of time. Therefore, the

51

size of the DRAM write buffer is only a small fraction of total

DRAM space.

The write optimization function will build a radix tree for

all frequently written files and a red-black tree for the data

blocks of each file. As shown in Figure 2(b), we use radix

tree to organize files because radix tree is efficient in locating

dirty files from clean ones. The inode numbers of the dirty

files are discrete, which makes radix tree the best choice to

pop them out one by one during writeback. The dirty blocks

of each file are in a different situation, since they tend to

be clustered due to the locality of file access. The red-black

tree contains pointers to adjacent data blocks, which enables

WARP to write back multiple continuous data blocks via one

function call. To write back data from DRAM buffer to NVM,

we modify fsync and sync to perform an actual write to

NVM. The time interval of write back can be set by the user

or periodically performed in the background.

IV. WARP: ADAPTIVE PREFETCHING

A. Overview

To facilitate the read and write optimizations in the NVM-

based file systems, we introduce WARP, an adaptive prefetch-

ing module. WARP predicts the access patterns and traces of

file data, and utilizes the read and write acceleration approach

described in Section III to provide high overall I/O perfor-

mance. The architecture of WARP-enabled NVM-based file

system is shown in Figure 2(a) and the design details of WARP

are illustrated in Figure 2(b). At a high level, WARP maps

data blocks into kernel virtual address space and allocates

DRAM write buffer for read- and write-intensive file data,

respectively. When a node is accessed during runtime, WARP

records its access trace and pattern. During checkpoint,
WARP identifies the most beneficial acceleration type based

on a benefit model. If the node has a stable access pattern,

the acceleration type will become active and be stored in

DRAM cache and NVM. The following access to this node or

its predecessor node will activate the background prefetching

thread warp_prefetch to invoke the corresponding read

or write acceleration function. After that, the node can be

accessed in an accelerated way. Algorithm 1 summarizes the

major steps of warp_prefetch and checkpoint.
The design of WARP consists of several key components:

WARP benefit model to predict access patterns (i.e. the

most beneficial acceleration approaches), successor prediction
model to predict access traces (i.e. the most probable successor
nodes), and prefetching algorithm to integrate them with read

and write acceleration approaches. We provide details in the

following sections.

B. WARP Benefit Model

We first propose a benefit model to identify the most ben-

eficial acceleration type (i.e. read/write-acceleration or none)

for each node based on its own access pattern. As we can see

in Figure 1, access latency and I/O bandwidth dominate the

time overhead of completing I/O requests. Our benefit model

dynamically chooses to perform read or write acceleration

Algorithm 1 WARP Prefetch
1: function WARP PREFETCH(node)
2: if node.warpType = READ then
3: vmap(node.addr,file.vmapaddr)
4: else if node.warpType =WRITE then
5: rb tree insert(node → blocks)
6: end if
7: end function
8: function WARP CHECKPOINT
9: Write back dirty nodes from DRAM buffer
10: for each accessed node do
11: Gather the access information of node
12: Calculate T with WARP Benefit Model
13: Find the minimum of Tnormal,Tread, and Twrite

14: if the access pattern of node is stable then
15: Update node.warpType according to T
16: end if
17: end for
18: end function

approach (in Section III-A and III-B) for the node with the

objective of minimizing the node’s overall I/O time between
two consecutive checkpoints.
Table II shows the time overhead breakdown of the overall

I/O of any node, which consists of locating data, access

latency and data transmission. Compared with normal data

access situation, read optimization approach has lower locating

overhead in reads since the data is already mapped. However,

it also incurs higher locating overhead in writes since out-

of-place writes change the actual addresses of data blocks.

Hence, for frequently-read nodes with few writes, the read

acceleration approach provides better read performance.

Write optimization approach, on the other hand, has less

locating overhead in locating and data transmission since all

the data buffer is maintained in DRAM. However, it incurs

additional overhead in write back during checkpointing. Dirty

data blocks have to be written back to NVM periodically

to prevent data loss, which makes this approach vulnerable

with respect to frequent writebacks of eager-persistent files to

NVM. Otherwise, write optimization approach provides near-

DRAM write speed for frequently written nodes thanks to the

DRAM buffer.

Our WARP benefit model takes both read and write opera-
tions into account to offer the best overall I/O performance.

We use the following expression to calculate the time overhead

of adopting read or write optimization approach between two

consecutive checkpoints:

T = NRead × LReadLatency + SRead × V −1
ReadBandwidth+

NWrite ×LWriteLatency + SWrite × V −1
WriteBandwidth

Note that the latency includes locating overhead caused by

each data block access, and T contains writeback overhead

involved in the write optimization approach to write back

to NVM during checkpoint. N and S are the number of

access times and total I/O access size, respectively. They

are increased for each accessed node during runtime. During

checkpoint, we compute T for each of normal, read-optimized
and write-optimized modes, and the mode with smallest T is

selected to be the best way to access the node for now. If

the access pattern remains stable over several checkpoints,

52

TABLE II
COMPARISON OF I/O OPTIMIZATION METHODS

Optimization Material
Read Overhead Write Overhead

Checkpoint Overhead
Locating Data Transmission Locating Data Transmission

Normal NVM Normal
NRead × LReadLatency+

SRead × V −1
ReadBandwidth

Normal
NWrite × LWriteLatency+

SWrite × V −1
WriteBandwidth

N/A

Read Opt. NVM Shortened Enlarged N/A

Write Opt. DRAM Shortened Shortened TWriteBack

N : The number of access times L: The access latency of memory S: The sum of size of the I/O access V : The transmission bandwidth of memory

we store the acceleration type for the node in NVM and

invoke the corresponding prefetching function to carry out the

optimization.

C. Successor Prediction Model

There are two types of successor prediction in WARP, i.e.,

inner-file and inter-file, which correspond to node and file

prefetching, respectively. We design a successor prediction

model based on Noah [23], [24] to predict future node and file

access with little space and time overhead. Noah maintains a

record for each recently accessed file, which forms a chain of

successors of files. We modify Noah in several aspects to fully

exploit the byte-addressability of NVM to conduct accurate

and beneficial prefetch on the file data.

We keep the record of the file access traces in both node

and file granularity, since the inner- and inter-file access traces

are very likely to be stable. For each accessed node, we

store inner-file access prediction result in the metadata of

the node, which is the last successor node ID of this node.

We also store inter-file access prediction result in the inode

block, which includes several tuples with the following for-

mat: {process path hash value, next ino, hint node id}
where process path hash value is the hash value of the
current working directory path of the process, next ino is
the inode number of the successor file, and hint node id is
the node ID of the first accessed node in the successor file.

Intuitively, each tuple indicates the access trace of a recent

process which has just accessed the file. When a node of a

file is accessed again by the same process with a matching

hash value in the existing tuples, warp_prefetch will

automatically invoke the acceleration function to the inner-

file successor node and inter-file hint node based on their

acceleration types.

D. Prefetching Method

The prefetching method in WARP is basically calling the

read or write acceleration function (described in Section III-A

and Section III-B) for a node. The prefetching type is the most

beneficial acceleration type for the node determined by WARP
benefit model. The prefetching victim nodes are the most likely
to be immediately accessed according to the historical access

traces calculated by our Successor Prediction Model. Once
the victim nodes and their acceleration types are determined,

warp_prefetch will call the corresponding optimization

functions to prefetch these nodes in the background. When the

prefetching is completed, the following read/write accesses to

this node will be accelerated by the corresponding acceleration

approach.

The access trace information is written back to NVM

during checkpoint, which takes little overhead thanks to
the byte-addressability of NVM. The information enables I/O

acceleration right after reboot with little time overhead on

recomputing the access patterns and traces. Deploying accel-

eration approaches in the very beginning allows applications

to perform fast I/O once the file system is mounted.

Prefetching a node with the most beneficial acceleration

type boosts the node I/O access significantly. Inaccurate

prefetching, however, causes the file system to suffer from

suboptimal performance or undo the existing acceleration,

e.g., unmapping the data blocks or deallocating the DRAM

buffer. Files with unstable access patterns may cause frequent

switches between different acceleration approaches. Even for

files with stable access patterns within a time period, their

access patterns may change in the long run.

To avoid inaccurate prefetching as much as possible, we

introduce a threshold ΔT and period of confirmation (several
checkpoints) to decide whether to change the current node

access mode or not. Specifically, when the time overhead

T of the new mode (with the smallest T) outperforms the
current mode by ΔT throughout the period of confirmation,
the new mode becomes the stable acceleration type for the

node. WARP stores stable acceleration type in the node’s cache

in DRAM and metadata in NVM afterwards. By default, we

set ΔT to 20%T and the period of confirmation to three
checkpoints.

V. IMPLEMENTATION

We implement WARP in HMVFS, an NVM-based ver-

sioning file system [9]. Note that WARP can also be imple-

mented in other NVM-based file systems such as PMFS [4]

or NOVA [5] to improve read and write performance. The

implementation details of WARP involve three aspects as

follows.

Granularity. We use node as the granularity of file

prefetching, which covers 2MB data of a file in HMVFS.

In other file systems, the size of the node can be modified

according to the specific file structures and usage patterns.

For example, PMFS can be implemented with larger page

sizes (up to 1GB), in this case, the data block itself can be

used as the granularity of WARP instead of node. Moreover,

the granularity can also be adjusted according to the file

access patterns. A smaller granularity is beneficial for random

53

�
�
�
�
�
�
�
�
�

��

��!" ��!" ���!" ���!" ���!" �#" �#" �#"

$%

�
&�

%'
&�
�(
#
")

*�
+
��
��

,

�#-. �/0	 12$� 3#0-. 3#0-.�4��%��	
�

(a) Sequential read

�
�
�
�
�
�
�
�
�

�!" ��!" ��!" ��!" ���!" ���!" ���!" �#"

$%

�
&�

%'
&�
�(
#
")

*
+
��

��
,

�#-. �/0	 12$� 3#0-. 3#0-.�4��%��	
�

(b) Random write

Fig. 3. Sensitivity to the I/O size

�

��

��

��

��

��

��

��

�
	# �5# #��
�*��
 .$$6
	#

$%

�
&�

%'
&�
�(
/
'*
)*
�+

��
��

,

�#-. �/0	 12$� 3#0-. 3#0-.�4��%��	
�

(a) Fileserver

�

�

��

��

��

��

��

��

�
	# �5# #��
�*��
 .$$6
	#

$%

�
&�

%'
&�
�(
/
'*
)*
�+

��
��

,

�#-. �/0	 12$� 3#0-. 3#0-.�4��%��	
�

(b) Webserver

�
�

��
��
��
��
��
��
��
��

�
	# �5# #��
�*��
 .$$6
	#

$%

�
&�

%'
&�
�(
/
'*
)*
�+

��
��

,

�#-. �/0	 12$� 3#0-. 3#0-.�4��%��	
�

(c) Webproxy

�

�

��

��

��

��

��

��

��

�
	# �5# #��
�*��
 .$$6
	#

$%

�
&�

%'
&�
�(
/
'*
)*
�+

��
��

,

�#-. �/0	 12$� 3#0-. 3#0-.�4��%��	
�

(d) Varmail

Fig. 4. Overall performance

accesses to the files, while a larger granularity is better for

sequentially accessed files.

Checkpoint. NVM-based file systems have to guarantee
consistency during runtime. Therefore, the functionality of

checkpoint is available in almost all the existing file systems,

by either setting up a strictly consistent file system image or

recording each file system update with journaling and logging.

Checkpoints are normally implemented in either file system

level or file level. The checkpoints of HMVFS are at file-

system level, hence a search tree is needed for file system to

track accessed file status and perform optimization approach

during checkpointing. However, in other file systems such as

NOVA [5], there is no need for WARP to store auxiliary

information and perform acceleration at file system level.

Rather, access information can be gathered, processed, stored

and accelerated at file level. When a pattern is recognized,

file system can still alert warp_prefetch to prefetch data
blocks, write back from DRAM buffer, and store auxiliary

information of WARP at file level.

Consistency. The auxiliary information of WARP for each
node is stored and updated in DRAM at runtime. During

checkpointing, the stable access type and successor node ID

of each accessed node are written back to NVM. There is

no need to maintain strict consistency guarantee when writing

back auxiliary information of WARP. This is because incorrect

auxiliary information of WARP will not jeopardize data or

metadata consistency of the file system, but only cause a longer

period to recompute the access patterns of nodes.

VI. EVALUATION

In this section, we evaluate the performance of HMVFS

with WARP and answer three questions: (1) What is the

benefit of read/write acceleration approach? (2) How does

WARP perform against existing in-memory file systems in

real workloads? (3) What is the accuracy of WARP prefetching

with WARP benefit model and the successor prediction model?

We use Filebench micro- and macro-benchmarks to an-

swer the first two questions, and provide detailed analysis of

prefetching accuracy to address question (3).

A. Experimental Setup

Since real NVM devices are not available yet, we develop

a simple performance emulator based on the NVM emulator

used in the Mnemosyne [25] and HiNFS [8] to evaluate the

performance of HMVFS with WARP. Our NVM emulator

introduces extra latencies for both NVM load and store op-

erations to emulate the slower reads and writes of NVM.

Furthermore, regarding the limited bandwidth of NVM, we

set a maximum bandwidth for NVM according to Table I. We

evaluate the performance of HMVFS with WARP against three

existing file systems: PMFS, NOVA, and EXT4(DAX). They

are the available open-source NVM-based file systems which

access NVM directly.

We conduct experiments on a commodity server with 64

Intel Xeon 2GHz processors and 128GB DRAM, running the

Linux 3.11 kernel (We only switch to Linux 4.3 for NOVA).

For EXT4, we use ramdisk carved from DRAM and configure

64GB as ramdisk to simulate NVM. For HMVFS, PMFS, and

NOVA, we reserve 64GB of memory using the grub option
memmap. User processes and buffer cache use the rest of the
free DRAM space. All the results are averaged over five runs.

B. Sensitivity to Different I/O Sizes

I/O size is an important factor in the performance of file

systems. We use sequential read and random write benchmarks

54

from Filebench to evaluate the sensitivity to the I/O size. The

latencies of reads and writes are set to 50ns and 300ns as

the mean latencies of different NVM materials, respectively.

Figure 3 evaluates the bandwidth of sequential read and

random write. As we can see, HMVFS with WARP performs

the best among all file systems. The performance gain is up

to 24% in sequential read and 37% in random write compared

to HMVFS.

In sequential read benchmark, WARP gains maximum per-

formance benefit with the I/O size of 512KB. This is because

smaller I/O size introduces more read requests that can hardly

be merged. In the meantime, the throughput of larger I/O sizes

such as 2MB or 4MB is approaching the memory bandwidth.

PMFS, NOVA, and EXT4 have similar performance because

the data is directly accessed in NVM.

For random write, the performance gain provided by WARP

is increasing with larger I/O sizes. The granularity of WARP

is 2MB for HMVFS which means that random write requests

within 2MB can be handled via the accelerated DRAM buffer

without further metadata level queries. For other NVM-based

file systems, NOVA achieves the best throughput because of

its log-structured metadata design. NOVA keeps data updates

as logs in the inodes, which can perform faster writes with

larger I/O size.

C. Overall Performance

We select four Filebench marco-workloads: fileserver,

webproxy, webserver and varmail to evaluate the application-

level performance of WARP. For each workload, we add

additional I/O latency and bandwidth limitations of PCM,

Memristor, and STT-RAM according to Table I. We use

the default configurations in each workload. Figure 4 shows

the Filebench throughputs with respect to different NVM

materials.

In the fileserver workload, HMVFS with WARP outper-

forms other file systems by 23%-96% in terms of the through-

put. The read/write ratio of fileserver is 1:2 which contains

both reads and writes with 1MB I/O size, and 16KB append

size. The performance drops by about 27% for HMVFS

without WARP because WARP identifies write-intensive nodes

and accelerates them with DRAM write buffer.

Webserver is a read-dominated workload with multiple

read threads and one append thread. It does not involve any

directory operations. The results show that most file systems

perform similarly to each other due to the low read latency of

NVM. Meanwhile, WARP identifies read-intensive nodes and

maps them into kernel virtual address space, which results in

a 15% higher performance on average.

Webproxy is a read-intensive workload. WARP performs

similarly to NOVA because the read/write ratio is more

balanced and it has operations like file creation and deletion

which can not be accelerated by WARP. PMFS performs the

worst in the Webproxy workload because of its poor scalability

in a directory containing too many files.

Varmail emulates an email server with a lot of append and

read operations. Since the I/O size of reads and writes is 1MB

and 16KB, respectively, it fits perfectly to the log-structured

nature of HMVFS which outperforms other file systems.

HMVFS with WARP also contributes to the performance gain

by facilitating read acceleration to some files in the workload.

On average, HMVFS with WARP outperforms PMFS, NOVA,

and EXT4 by 83%, 32% and 52%, respectively.

To summarize, WARP achieves a significant performance

gain in almost all cases and successfully alleviates the perfor-

mance degradation caused by high write latency and limited

bandwidth of NVM. The advantages of WARP are maximized

for the workloads with stable access patterns.

�7
��7
��7
��7
��7

���7

Fig. 5. The prefetching accuracy of WARP

D. Prefetching Accuracy

WARP stores the access pattern of each node in DRAM and

NVM periodically to boost current and future access prediction

after reboot. If the access prediction is correct, the background

prefetching thread will provide better overall performance.

Therefore, it is essential to evaluate the prefetching accuracy

over real workloads. We define an accurate prefetch as: not
only does the currently being accessed node ID equal to the

record in the last accessed node, but also the access type is

matched with its own acceleration type record. We label each

access between two consecutive checkpoints as an accurate or

inaccurate prefetch and the prefetching accuracy is measured

by the percentage of accurate prefetches.

We select fileserver, webserver, webproxy and varmail

workloads from Filebench, as well as cat 1GB file, kernel

make, and kernel grep. The prefetching accuracy of Postmark

is also evaluated with respect to different file sizes, and the

transaction number of Postmark is set to 100,000.

Figure 5 provides prefetching accuracy over all the work-

loads. We can see that the workloads in Filebench have

relatively low accuracy because of multi-threading and the

read-write-mixed nature of the workloads. Regarding kernel

make, kernel grep and cat large file, their accuracies are all
above 99%. This is because their access patterns follow a fixed

routine during each execution. Postmark achieves the highest

accuracy when the file size is 2MB. Larger file size reduces

accuracy since the inner file access can also cause inaccuracy.

To summarize, WARP provides high prefetching accuracy to

workloads with stable and preferably, read- or write-dominated

access patterns. Applications like frequently-read media player

or frequently-written journal recorder will receive higher per-

formance gain. We expect Big Data applications such as graph-

computing and super-computing may benefit from WARP.

55

VII. RELATED WORK

Since block-based file systems cannot fully exploit the byte-

addressability of NVM, many NVM-aware in-memory file

systems have been proposed. Prior NVM-aware file systems

such as PMFS [4], SCMFS [2] and BPFS [3] focus on

providing byte-addressable I/O functionality and consistency

guarantee, while recent ones such as SIMFS [7], HiNFS [8]

and NOVA [5] emphasize on achieving higher performance.

Researches have been conducted on how to accelerate

file reads and writes separately. On one hand, SIMFS [7]

accelerates file reads by mapping the address space of an

opened file into the process address space. In SIMFS, the data

of a file is organized by a structure called file page table,
which is similar to a segment of any normal page table. File
page table is attached to or detached from the process address
space when the file is opened or released by the process. This

eliminates the overhead of accessing the indirections of the

internal structure of a file.

However, NVM has longer access latency and lower band-

width than DRAM. As a consequence, the delay of memory

copy from user buffer to NVM becomes the bottleneck of the

whole write operation. To make things worse, SIMFS uses

pseudo-file-write to ensure write consistency among processes,
which introduces additional overhead in updating file page
table per write.
On the other hand, HiNFS [8] uses an NVM-aware write

buffer policy to maintain the lazy-persistent file writes in

DRAM, and persists them to NVM lazily in order to hide

long write latency of NVM. Given different write latencies

of DRAM and NVM, a Buffer Benefit Model is proposed
to distinguish whether buffering is more efficient than non-

buffering for any data block.

Although the Buffer Benefit Model accelerates file writes ac-
curately, HiNFS has to keep records of file writes in cacheline

granularity, which introduces additional write amplification

and indexing overhead. Moreover, file reads in HiNFS have to

go through additional layers to check whether the data blocks

are buffered in DRAM or not, which degrades the performance

of read-intensive applications.

To accelerate overall file access, NOVA [5] gives each file

a private metadata log, allowing NOVA to operate on files

without contending for any shared resources. The data blocks

are organized with metadata logs, which are small to facilitate

efficient garbage collection and fast recovery. Compared with

the file systems above, WARP enables adaptive prefetching

for NVM-based file systems, which accelerates both file reads

and writes simultaneously according to different file access

traces and patterns.

VIII. CONCLUSION

This paper proposes WARP, an adaptive prefetching mod-

ule designed for NVM-based file systems to accelerate file

data access according to access traces and patterns. WARP

determines the most beneficial acceleration approach with a

detailed time-overhead based benefit model, and maps file data

into kernel virtual address space or allocates DRAM write

buffer accordingly, to improve the overall performance of the

file system. Our measurements show that the file system with

WARP achieves high prefetching accuracy and up to 83% and

32% improvements compared with the state-of-the-art NVM-

based file systems PMFS and NOVA, respectively.

IX. ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful and

helpful comments, which improve the paper. We also thank

Linzhu Wu for his assistance. The work described in this

paper is supported by the National High-tech R&D Program

of China (863 Program) under Grant No. 2015AA015303 and

the National Natural Science Foundation of China under Grant

No. 61472241. Yanyan Shen is partially suppported by NSFC

(No. 61602297).

REFERENCES

[1] “3d xpoint,” https://en.wikipedia.org/wiki/3D XPoint.
[2] X. Wu and A. Reddy, “Scmfs: a file system for storage class memory,”

in SC. ACM, 2011, p. 39.
[3] J. Condit, E. B. Nightingale, C. Frost, E. Ipek et al., “Better i/o through

byte-addressable, persistent memory,” in SOSP, 2009, pp. 133–146.
[4] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy et al.,

“System software for persistent memory,” in EuroSys, 2014, p. 15.
[5] J. Xu and S. Swanson, “Nova: A log-structured file system for hybrid

volatile/non-volatile main memories,” in FAST, 2016, pp. 323–338.
[6] P. Sehgal, S. Basu, K. Srinivasan, and K. Voruganti, “An empirical study

of file systems on nvm,” in MSST. IEEE, 2015, pp. 1–14.
[7] E. H.-M. Sha, X. Chen, Q. Zhuge, L. Shi, and W. Jiang, “A new design

of in-memory file system based on file virtual address framework,” IEEE
Transactions on Computers, vol. 65, no. 10, pp. 2959–2972, 2016.

[8] J. Ou, J. Shu, and Y. Lu, “A high performance file system for non-volatile
main memory,” in EuroSys. ACM, 2016, p. 12.

[9] S. Zheng, L. Huang, H. Liu, L. Wu, and J. Zha, “Hmvfs: A hybrid
memory versioning file system,” in MSST, 2016.

[10] L. M. Grupp, J. D. Davis, and S. Swanson, “The bleak future of nand
flash memory,” in FAST. USENIX Association, 2012, pp. 2–2.

[11] “Nand flash 101 introduction,” https://www.micron.com/∼/media/
documents/products/technical-note/nand-flash/tn2919 nand 101.pdf.

[12] K. Chen, P. Jin, and other, “A novel page replacement algorithm for the
hybrid memory architecture involving pcm and dram,” in NPC, 2014.

[13] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nature nanotechnology, vol. 8, no. 1, pp. 13–24, 2013.

[14] C. Xu, X. Dong, N. P. Jouppi, and Y. Xie, “Design implications of
memristor-based rram cross-point structures,” in DATE, 2011.

[15] T. Kawahara, “Scalable spin-transfer torque ram technology for
normally-off computing,” IEEE Design & Test of Computers, 2010.

[16] J. Chen, Q. Wei, C. Chen, and L. Wu, “Fsmac: A file system metadata
accelerator with non-volatile memory,” in MSST. IEEE, 2013, pp. 1–11.

[17] F. Chen, M. P. Mesnier, and S. Hahn, “A protected block device for
persistent memory,” in MSST. IEEE, 2014, pp. 1–12.

[18] M. K. Qureshi and other, “Scalable high performance main memory
system using phase-change memory technology,” ISCA, 2009.

[19] Y. Zhang and S. Swanson, “A study of application performance with
non-volatile main memory,” in MSST. IEEE, 2015, pp. 1–10.

[20] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic, “Optimizing
checkpoints using nvm as virtual memory,” in IPDPS. IEEE, 2013.

[21] J. Zhao and Y. Xie, “Optimizing bandwidth and power of graphics
memory with hybrid memory technologies and adaptive data migration,”
in ICCAD. ACM, 2012, pp. 81–87.

[22] K. Suzuki and S. Swanson, “A survey of trends in non-volatile memory
technologies: 2000-2014,” in Memory Workshop (IMW), 2015.

[23] A. Amer and D. D. Long, “Noah: Low-cost file access prediction through
pairs,” in IPCCC. IEEE, 2001, pp. 27–33.

[24] A. Amer, D. D. Long, J.-F. Pâris, and R. C. Burns, “File access
prediction with adjustable accuracy,” in IPCCC, 2002, pp. 131–140.

[25] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in ASPLOS, vol. 39. ACM, 2011, pp. 91–104.

56

